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Chapter 2

Apply It 2.1

1.

a.

. a.

The formula for the area of a circle is nrz,
where r is the radius.

a(r) = nr?

. The domain of a(r) is all real numbers.

. Since a radius cannot be negative or zero, the

domain for the function, in context, is r > 0.

. The formula relating distance, time, and speed

is d = rt where d is the distance, r is the speed,

and ¢ is the time. This can also be written as

d 300
t = —. When d = 300, we have #(r) = —.
r r

. The domain of #(r) is all real numbers except 0.

. Since speed is not negative, the domain for the

function, in context, is r > 0.

300

. Replacing r by x: t(x) = —.
X

. X X 300 600
Replacing r by 3" t<§) = ? =
Replacing r by

f_t(x) _@_ 1200

1

4

X
by X

. When the speed is reduced (divided) by a

constant, the time is scaled (multiplied) by the
r 300c
same constant; t(—) =
c

r

If the price is $18.50 per large pizza, p = 18.5.

185 =26— L
40
q
75=-L
40
300 = ¢

At a price of $18.50 per large pizza, 300 pizzas
are sold each week.

. If 200 large pizzas are being sold each week,

g = 200.
200
—26-
P 40
p=26-5

p =21
The price is $21 per pizza if 200 large pizzas
are being sold each week.

c. To double the number of large pizzas sold, use
q = 400.

—26— ——
p 40

p=26—-10

p=16

To sell 400 large pizzas each week, the price
should be $16 per pizza.

4. Revenue = price - quantity = pq

From the table, the weekly revenue is:

pqg = 500-11 = 5500
pg = 600 - 14 = 8400
pq =700-17 = 11,900
pg = 800 -20 = 16,000

Problems 2.1

1. The functions are not equal because f(x) > 0 for

all values of x, while g(x) can be less than 0. For

example, f(—2) = /(=2)2 = /4 =2 and
g(=2) = =2, thus f(—2) # g(=2).

. The domain of G is implicitly [—3, co) while that

of H is is implicitly (—oo, o0), so G # H. (We
note, however, that for all x in the domain of
G,G(x) = H(x).)

. The functions are not equal because they have

different domains. A(x) is defined for all nonzero
real numbers, while k(x) is defined for all real
numbers.

. The functions are equal. For x = 3 we have

f(3) =2and g(3) =3 —1 =2, hence
f(3) = g(3). For x # 3, we have
2
) = X 4x3+3 _ x=3)(x—=1) _
— x—3
Note that we can cancel the x — 3 because we are
assuming x # 3 and so x — 3 # 0. Thus for

x#3,f(x) =x—1=gx).

— 1.
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Chapter 2: Functions and Graphs

10.

11.

12.

. We require both

f(x) = g(x) for all real numbers and they have the
same domains, thus the functions are equal.

. The denominator is zero when x = 1. Any other

real number can be used for x.
Answer: all real numbers except 1

. Any real number can be used for x.

Answer: all real numbers

x—2

o >0andx+ 1 #0.

x—2>0o0n[2,00),x—2=0forx =2, and

1
x—2<0on (—00,2). —— > 0on (-1, 00),
x+1

< Oon

is undefined for x = —1, and
x+1 x4+

-2
(—00, —1). It follows that al

being the
x+1

product of x — 2 and
X
(—00,—1) U (2,00) and is 0 at x = 2. It follows
x—2 .
is (—oo0, —1) U [2,00)

is positive on

that the domain of

x+1

. For «/z—1tobereal,z—1>0,s0z>1. We

exclude values of z for which «/z—1 =0, so
z—1=0,thusz = 1.

Answer: all real numbers > 1

. Any real number can be used for z.

Answer: all real numbers

We exclude values of x for which
x+3=0
x=-3

Answer: all real numbers except —3

We exclude values of x where

2x+7=0

2x = =7
7

X=—=
2

7
Answer: all real numbers except —3

We require 2 — 3x > 0 equivalently x < —2/3.
The domain of g is (—oo, —2/3].

13.

14.

15.

16.

17.

18.

19.

20.

ISM: Introductory Mathematical Analysis

We exclude values of y for which

y—4y+4=0.y>—4dy+4=(y—2)% sowe
exclude values of y for which y — 2 = 0, thus

y=2.

Answer: all real numbers except 2.

We exclude values of x for which

X 4+x—6=0
x+3)(x—2)=0
x=-=-3,2

Answer: all real numbers except —3 and 2

We exclude all values of x for which
3x2 —5x—2=0
Bx+1)x—2)=0

1
x=—2
3

1
Answer: all real numbers except 2 and —3

2 + 11is never 0.

Answer: all real numbers

flx) =3 —5x;

f0) =3,f(2) =3-5(2) =7,

f(=2) =3-5(=2) = 13.

H(s) = 55> —3

H(4) =5(4)?-3=80-3=77
H(ﬁ) =5(ﬁ)2—3 —10-3=7

a2 Zs(2) 420 47
3) 7\3 9 T 9

G(x) =2 —x?
G(—8)=2—(-8)?2=2—64=—62
G(u) =2 —u?

Gud)=2—>?=2—u*

F(x)=-Tx+1

F(s)=—-7s+1
Fe+1D)=-7¢+1)+1=-7t—-6
Fx+3)=-7x+3)+1=-7x—20
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Introductory Mathematical Analysis

y(u) =2u® —u
yY(=2) =2(-2)%—(-2)=8+2=10
y(2v) = 2(2v)% — (2v) = 8v* — 2
y(x+a) = 2(x +a)* — (x+ a)

=22 +4ax+2d* —x—a

h(v) = ——: h(36) = ——= 2 !

T @@6) 6 6

f)=x>+2x+1
Ay =12+2()+1=1+2+1=4
D) = (=12 4+2(-)+1=1-24+1=0
fox+h) =@x+h2+2x+h +1

=x2 4 2h+h? +2x+ 20+ 1

H(x) = (x + 4)2

H(0) = (0 +4)> = 16
H2)=(2+4)?2=6%=36
Hit—4) =[(t—4) + 4% =7

x—5
k =
(*x) 27

5-5
k()= >— =
) 52+1

2x—5 2x—5
k(2x) = — -

202 +1 42 +1

h) —5 h—5
k(x4 h) = (x+h) _ x+
x+n2+1 xX2+2xh+h2+1

k(x) = +/x—3

k4) =vV4-3=1=1

k3)=+/3-3=4/0=0

k(x+1)—k(x) = /(x+1)—=3—+/x—3
=Vx—2-V/x-3

flx) = 225

f(0) = 0?5 =0,

£(243) = (2431/5)2 =32 = 9,
-1\ 2/5

1(35) =1

= (—(1/32)1/%)2 = (-1/2)> = 1/4

61

Section 2.1

28. g(x) = x2/5
8(32) =32/ = ( 32)2 = (2 =4
g(=64) = (—65/5 = (3 —64)2
= (J—_32¢§)2 = (—25/5)2 =433
g(IIO) — (IIO)Z/S =4

29. f(x) =4x—5
a. fx+h) =4(x+h)—5=4x+4h—-5

y, Je ) =)

h
_ Wxtdh—5)—(x—5) _4h _
= ; ==

X
30. =z
f) = 3
h
a.f(x+h)=x—;
p fat ) —f _ H -3 51
) h h h 3
31 f(x) = x% +2x
a. fx+h) = (x+ h)> + 2(x + h)
=x% + 2xh + h? + 2x + 2h
p, ot =)
) h
(% 4 2xh + h? + 2x + 2h) — (2 + 2x)
N h
2xh + h* + 2h
=%=2x+h+2

32. f(x) = 242 —5x +3;

a. fix+h) =2x+h)>—=5x+h) +3
= 2x% + (4h — 5)x + (2h* — 5h + 3),

b fGe+h)—f(x) _ 4hx+ (2h* — 5h)
) h N h
=4x+ (2h—5) forh#0
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Chapter 2: Functions and Graphs ISM: Introductory Mathematical Analysis

33. f(x) =3 —2x + 42

a. fx+h) =3—2(x+h) + 4(x + h)?
=3 —2x—2h +4(x% + 2xh + h?)

b fox+h) —f(x) 3 —2x—2h+ 4x% + 8xh + 4h% — (3 — 2x + 4x?)
) h h
—2h + 8xh + 4h*

h

=—2+48x+4h

34. f(x) =23
a f(x+h) = (x+ h)3 =3 + 320+ 3xh% + 13

p JEEW —f) 0 +3Ch 34 - 3R 3R o

h h h
1
35 fx) = —
x—1
a. flx+h) = !
A T x+h—1
1 o 1 x—1—(x+h—1)
p JOEW—f)  FRT 1 GeDGEAD -1
) h h h (x—DEx+h—1)
36. flx) =
X
a foxppy=EENH8 xth+s8

x+h x+h

b St =) _ Lthts _ xt8 _X(Hh)(%—)%s) _ X+ h+8) — (x+ W) +38)

h h N x(x + h)h x(x + h)h
_x2+xh+8x—x2—hx—8x—8h_ —8h 8
- x(x + h)h T x(x+h)h o x(x+h)

37. filx) =3x+ 7,

fR+hmn—-f2) BC+nN+7-B2)+7)
h N h B

3 forh #£0

62
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ISM: Introductory Mathematical Analysis

3&ﬂ@—ﬂ%:2ﬂ—X+1—@—2+U

x—2 x—2
_ 22 —x4+1-7
B x—2
_ 22 —x—6
B x—2
=2x+3

39. 9y —3x—4=0

shows that for
3x+4

3x+4
The equivalent form y = s

each input x there is exactly one output,

Thus y is a function of x. Solving for x gives
9y —4
x = yT This shows that for each input y

. Thus xis a

there is exactly one output,

function of y.

40. x* —14+y=0

The equivalent form y = —x* + 1 shows that for

each input x there is exactly one output, —x* + 1.

Thus y is a function of x. Solving for x gives
x = x£J1 —y. If, for example, y = —15, then
x = #£2, so x is not a function of y.

41. y = 7x>

For each input x, there is exactly one output 7x2.
Thus y is a function of x. Solving for x gives

X = :I:\/g. If, for example, y = 7, then x = +£1,

so x is not a function of y.

42. Solving for y we get y = ++/1 — x3. The
solution is not unique so the equation does not
define y as a function of x. Solving for x we get
x = ~/1 — x2. The solution is unique so the
equation defines x as a function of y.

43. Yes, because corresponding to each input r there
is exactly one output, 7772,

44.

45.

46.

47.

48.

49.

63

Section 2.1

a. fla) = d’a® + Pd®> = @ + @ =2a°

a*(ab)? + a>(ab)?
a2alp3 + Balb?
= d’b’ + d°b?
=ab*(b+ 1)

b. f(ab)

Weekly excess of income over expenses is
7200 — 4900 = 2300.

After t weeks the excess accumulates to 2300¢.
Thus the value of V of the business at the end of ¢
weeks is given by V = f(f) = 50,000 + 2300z.

Depreciation at the end of ¢ years is
0.02#(30,000), so value V of machine is

V = f(t) = 30,000 — 0.02¢(30,000), or
V = f(t) = 30,000(1 — 0.021).

Each (nonnegative) ¢ determines a unique P. So
P is a function of g. The dependent variable is P
and the independent variable is g.

Charging $600,000 per film corresponds to
p = 600,000.

1,2
600,000 = M

q=2

The actor will star in 2 films per year. To star in 4
films per year the actor should charge

_ 1,200,000

2 = $300,000 per film.

The function can be written as g = 48p. At $8.39
per pound, the coffee house will supply

q = 48(8.39) = 402.72 pounds per week. At
$19.49 per pound, the coffee house will supply

q = 48(19.49) = 935.52 pounds per week. The
amount the coffee house supplies increases as the
price increases.

Copyright © 2017 Pearson Education, Inc. Publishing as Prentice Hall.
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50. a. (0)=1—-1=0

2003
b. (100) = 1 — (ﬁ)

=)

8

27
19

27

200 \°

d. Solve

200 \°
=05
200 + ¢

200 .
=05
200 + ¢

200 = 200505 + /0.5
,_ 200-200¥/05

J0.5
Half the group was discharged after 52 days.

~ 51.98

4
(viooo) e
51 a. f1000) =~ = 5o

10,000 A
2500

[yiowa] (103

b. £(2000) = -
f(2000) 2500 2500
10,000v/24 ; ,
= T _4y23.2=8Y2
2500 V2
2Uy*3 23
c. f2lo) = (20" _ 0
2500 2500
13
3 3
=22 [ﬁ} = 2/2f(Iy)

64

ISM: Introductory Mathematical Analysis

Thus f(21o) = 2v/2f(Iy), which means that
doubling the intensity increases the response
by a factor of 2+/2.

52. P(28) = 14 + /25 =144+ 5= 19;
P(52) =26 + /49 = 26 + 7 = 33

53. a. Domain: 3000, 2900, 2300, 2000
£(2900) = 12, (3000) = 10

b. Domain: 10, 12, 17, 20
g(10) = 3000, g(17) = 2300

54. a. —18.97
b. —581.77
c. —18.51
55. a. —5.13
b. 2.64
c. —17.43
56. a. 1,997,723.57

b. 1,287,532.35
¢. 2,964,247.40

57. a. f(11.7) = 6.94
b. f(—73) = 40.28

¢. f(0) = 0.67

Apply It 2.2

5. a. Let n = the number of visits and p(n) be the
premium amount.
p(n) =125

b. The premiums do not change regardless of the
number of doctor visits.

c¢. This is a constant function.
6. a. d(f) = 31> is a quadratic function.
b. The degree of d(r) = 3% is 2.

¢. The leading coefficient of d(f) = 31 is 3.

Copyright © 2017 Pearson Education, Inc. Publishing as Prentice Hall.
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ISM: Introductory Mathematical Analysis Section 2.2
7. The price for n pairs of socks is given by 15. a. 7
3.5n 0<n<S5S
c(n) = 3n 5<n<10. b. 1
2.75n 10<n
16. a. 0
8. Think of the bookshelf having 7 slots, from left to b. 9
right. You have a choice of 7 books for the first :
slot. Once a book has been put in the first slot,
you have 6 choices for which book to put in the 17. flx) =8
second slot, etc. The number of arrangements is f2) =8
—17) =8
Problems 2.2 f ( )
1. yes 18. g(20) = [2(20) + 1| = |41] = 41;
. §(5) = 2(5) + 1] = [11] = 113
2. fix) = # = %P + gx— 1, which is a g=N=2(-+1]=[-13[=13
polynomial function. 19. F(12) =2
F (— 3) = -1
3. gx) = 3 I cannot be written as a sum of f)
X —
multiples of nonnegative integral powers of x, so F(1)=0
g is not a polynomial. F (E) _,
5
4. yes
20. f(3) =4
5. yes f(—4) =3
=4
6. yes )
7 o 21. G®) =8—-1=7
G3)=3-1=2
2
8. gx) =2 = —5 expresses g as a quotient of G(-1)=3—(-1)?=2
X

—7_ 2 _
polynomials and thus shows that g is rational. GH=3-()"=2

22. F3)=3>-33)+1=1
F(=3) =2(-3)—5=—11

9. all real numbers

10. all real numbers F(2) is not defined.
11. all real numbers 23.91=9.8-7-6-5-4-3-2.1 = 362,880
12. allxsuchthatl <x <3 24. 3=-3)'=0'=1
13. Fis a polynomial of degree 4 with leading 25, (4-2)N=21=2-1=2

coefficient 5.

26. 6! -21=(6-5-4-3-2-1)(2-1)

14. a. 2

: = (120)(2)

b. 9 = 1440

65
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Chapter 2: Functions and Graphs ISM: Introductory Mathematical Analysis
n! n-(n—1)! 1\ 73\
T a T e 36. P(5) = s'(4) (5) _ 5! (1) (1
51(0) 5!(1)
28, 9! _ 9.8.7.6.54.3.2.1 _ 9.8.7.6 R
419—4)! ~ (432)(5.43.2) 432 = 104
=3.273=126

37. a. all Tsuch that 30 < T < 39

29. Let i = the passenger’s income and
11 5 11 16

c(i) = the cost for the ticket. b. f(30) = _(30) + 4 "2 + 4 T4 4
c(i) = 2.50 11 6 11 17
36)= 5,060 + =1+ =
This is a constant function. f36) = ( ) 4 4 4
175 175 33
) . F(39) = —(39) ——— =52 —
30. Let w = the width of the prism, then 4 4

w + 3 = the length of the prism, and 3
- ) 38. a. f(2.14) = 0.11(2.14)° — 15.31 = —14.23
2w — 1 = the height of the prism. The formula

for the volume of a rectangular prism is b. f(3.27) = 0.42(3.27)* — 12.31 = 35.71
= length - width - height. ;
Viw) = (w+3)(w)2w — 1) = 3 + Sw2 — 3w c. f(—4) =0.11(—4)° — 15.31 = —-22.35

This is a cubic function. 39, 2. 118274

31. a. C =850+ 3¢

b. 4985.27
b. 1600 = 850 + 3¢ . 252.15
750 = 3g T
q =250 40. a. 19.12
32. The interest is Prt, so principal and interest b. —62.94
amount to f(t) = P + Prt, or f(t) = P(1 + rt).
Since f(f) = at + b where a(= Pr) and b(= P) c. 57.69
are constants, fis a linear function of ¢.
41. a. 2.21
33. 0.075 if 0 <j < 44,701
() = 0.11 if44,701 <j < 89,401 b. 9.98
V=Y o013 it 89,401 < j < 138,586
0.145 if 138,586 < j c. —14.52
34. For a committee of five, there are 5 choices for Apply It 2.3

who will be member A. For each choice of
member A, there are 4 choices for member G.
Once members A and G have been chosen, there
are 3 choices for member M, two choices for (cos(x) =c(s(x)) =c(x+3) =2(x+3)
member N, then one choice for member S once =2 +6

members A, G, M, and N have been chosen.
Thus, thereare 5-4-3-2-1 = 5! = 120 ways to
label the members.

9. The customer’s price is

10. g(x) = (x + 3)2 can be written as
g(x) = a(l(x)) = (a o [)(x) where a(x) = x* and

(1 2 /3\2 N\ (3 I(x) = x + 3. Then I(x) represents the length of
3! (Z) (Z) 6 (E) (Z) 9 the sides of the square, while a(x) is the area of a
35. P(2) 21(11) - 2(1) ~ 64 square with side of length x.

66
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ISM: Introductory Mathematical Analysis Section 2.3
Problems 2.3 d. x(fg)(x) = f(x)g(x) = 2x(6 + x) = 12x + 2x?
L fix)y=x+3,gx)=x+5 . [()_f(x) 2x
g(x) 6+
a. (f+g)(x) = flx) + g ; 20 4
=x+3)+x+5) f. _() - _ = _
DI 6+2 8 2
b 400 =20 +8 =3 o (00 e
e (F- 8@ = f(r) — g(x) =206+
=@x+3)-(x+5) =12+2x
=2 h. (o)) = g(fx) = g(20) = 6+ 2
d. (R)) = fix)g(x) i (§0N2)=6+22)=6+4=10
=(x+3)(x+5)
=x2+8x+15 3.f0)=x2—1, gx) =x2+x
e (f9)(=2) = (-2)2 +8(-2) +15=3 a. (f+9() =f) + )
= (=) + (2 +x)
fJ_C() f(x)_x+3 =22 4+x—1
) glx) x+5
b. (f—g)(x) = flx) — g(x)
g (fog)x) =fgx)) —(2—1) =242
= flx+5) =—x-—1
=(x+5+3 | . |

h. (fog)(3)=3+8=11 d. (fo)(x) = fx)g(x)

i (fog)(®) = flgx)) = (= DO +x)
= fx +3) =+ —xF—x
=x+3)+5 £, f®
:x+8 €. g(x) = E
2 -1
jo (fog)3)=3+8=11 =x2+x
D=1
2. flx) =2x,gx) =6+x - W
x—1
a. (f+8) () = fx) + () =—xF -l
=(2x)+ (6+x) X 5
= 3x+6 ff(_l):_i_lz__izg
AN 1 _%
b. (f—g)(x) = flx) — g(x)
= (2x) — (6 +x) g (fog)x) = flex))
:_x—6 =f(x2+‘x)
=@ +x2-1
¢ x(f—g@4) =4)—6=-2x =x*+23+%2-1

67
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h. (g0 f)(x) = g(f(x))
=g(*—1)
=2-1)2+x2-1)
=x*—22+1+2-1

— A2

i (goN(=3) = (-3)* = (-3)* =72

4.a. f+9)x) =222 +5+3=2x2+38

b. (f+2)(1/2) =2(1/2)>+8=1/2+8=17/2

. f—g)=22+5-3=242+2
d. (fo)(x) = 2% +5)(3) = 6x% + 15

e. (f2)(2) =6(2)>+15=24+15=39

g (fog)(x) =23)%+5=23
h. (fo )(100.003) = 23

i (gof)(x) = g(flx) =3

5. f(g2) =f4-4) =fl0)=0+6=6

g(f(2)) = g(12+6) = g(18) = 4 —36 = —32

6. (fog)(p) = flg(p))

(55

4
p—=
3
1

NS}

[\

p—2

ISM: Introductory Mathematical Analysis

7. (Fo G)(1) = F(G(1)

()
) )

4 14

G- it
(GoF)(1) = G(F(1)

=GP +Tt+1)

2
T @ +T+ -1
2
T2+

+1

8. (Fo G)(r) = F(G(1))
=FQZ -2t+1)
N T T
(Go F)(1) = G(F(1))
-G (V)
— 2 (V)P =2(Vi) +1
=2t—2.1+1

2

2
9. (fog)v) = (V3 +1)2—3 T3wt1-3

2
T 3y-—2

/ 2 V2 +3
(gofH(v) = 3(V2_3)+1= 73

10. (fo /) (x) = fif(x))
=f> +2x— 1)
=2+ 22— 202 +2x—1)—1

=x* 4 +42 -2

11. Let g(x) = 11x and f(x) = x — 7. Then
h(x) = g(x) =7 = f(g(x))

12. Let g(x) = x> — 2 and f(x) = /x. Then
h(x) = vV =2 = /g(x) = flg(x))
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3
13. Letg(x) = 2 + x + 1 and f{x) = ~. Then 22. a. —0.13
X
3 3 b. 18.85
h = — — = — =
0 = 5= = sy =€)
23. a. 19447
14. Let f(x) = 7x*> — 5x 4+ 1 and g(x) = 4x* + 7x.
Then (fo 9)(x) = f(g(®) = (4> + Tx)*— b. 0.29
2 —
ST AT0) + 1 = hix) 2. a. f(g2.17)) = f(1/(2.17)3
21 ~ £(0.097863512) = 2/1.097863512
15. Let g(x) = ~ 13 and f(x) = /x. ~ 182
— 4 —
Then h(x) = Vg(x) = fig(x). b. g(f(2.17)) = g(2/3.17)
2y ~ £(0.630914826)
16. Let g(x) =3x-5 andf(x) = x2—+2 Then A~ 1/(0630914826)3 ~ 3.98
2—0Bx-=5)
h(x) = m = flg(x)).
Problems 2.4
17. a. The revenue is $9.75 per pound of coffee sold, | x 7
so r(x) = 9.75x. L fx)= 373
b. The expenses are e(x) = 4500 + 4.25x. x 3
2. 57 ') = 3 + 3

c. Profit = revenue — expenses.
(r—e)(x) = 9.75x — (4500 + 4.25x)

18.

19.

20.

21.

= 5.5x —4500.

4
vix) = gn(3x - 1)3 can be written as

) = U09) = (7o D) where fi) = 37

and /(x) = 3x — 1. Then /(x) represents the radius
of the sphere, while f(x) is the volume of a sphere
with radius x.

2
= 8lq) = g(tm) = 222"

12(20m — mz) is revenue from output of m
employees.

(fo &)(E) = fg(E))

= f(7202 + 0.29E3-68)
= 0.45(7202 + 0.29E3-%8 — 1000)0-33
= 0.45(6202 4 0.29E3-68)0-53

This represents status based on years of
education.

a. 14.05

b. 1169.64

3. F i) =20+ 14

Jx
o T

R

4. () =

5. A(r) = 4mr?, for r > 0 gives the surface area of a
sphere of radius r. Solving A = 47 for r gives

[ A
r= yyg Thus if a sphere is given to us and
T

somehow its surface area is known to be A then
it’s radius r is given by the last equation. Said

otherwise A~! (x) = x
4
3V
6. r(V) = | —
41

7. fx) = 5x + 12 is one-to-one, for if
flx1) = flxp) then 5x1 + 12 = 5xp + 12,
so 5x; = 5xp and thus x| = xp.

8. g(x) = (3x + 4)? is not one-to-one, because
g(x1) = g(xp) does not imply x; = x;. For

example, g —3 =g —3 =0.
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9.

10.

11.

12.

13.

14.

5
h(x) = (5x + 12)2, for x > I is one-to-one.
If i(x1) = h(xp) then (5x1 + 12)% = (5x3 + 12)2.
5
Since x > T we have 5x + 12 > 0, and thus
(5x1 + 12)? = (5x5 + 12)? only if
5x1 4+ 12 = 5xp 4+ 12, and hence x| = x;.
F(-11) =|-1|=1=|1| = |-94+10| = F(-9)
shows that F is not one-to-one.
. ) 5
The inverse of f(x) = (4x — 5)~ forx > 1 is
5
) = ? + 7 so to find the solution, we
find f~1(23).
23 5
1
23) = — + -
f(23) T T2
V23 5
The solutionis x = —— 4 —.
4 4
. 3 . 1 3/ X — 1
The inverse of f(x) = 2x° + lisf " = —
so the solution is /71 (129) = 4.
1,200,000 1,200,000
Fromp= —,wegetqg = ——.
Since g > 0, p is also greater than 0, so g as a
1,200,000
functionof pis ¢ = g(p) = ———. p > 0.
1,200,000
) =p (=250
1,200,000
~ 1,200,000
p
p
= 1,200,000 - ———
1,200,000
=p
Similarly, g(p(g)) = ¢, so the functions are
inverses.
From p = %, we get ¢ = 48p. Since g > 0, pis

also greater than 0, so ¢ as a function of p is

qg=gq(p) =48p, p>0.
(9 Zag. 9 _
q(p(q))—q(@)—%-ﬁ—q

48
Pla(p)) = plasp) = 72 =p

Thus, p(g) and g(p) are inverses.

15.

11.

12.

ISM: Introductory Mathematical Analysis

We show that f(x) = 10* is one-to-one. If a # b,
we may as well assume that b > a, and this
means, precisely, that for some ¢ > 0 we have

a + e = b. Now for such e, 10¢ > 1 and we have
10> = 1091¢ = 107 10¢ > 109 1 = 10%. So
10 # 10 and fis one-to-one. It follows that f
has an inverse. (In fact f~! (x) is known as log(x)
and will be studied in detail in Chapter 4.)

Apply It 2.5

Let y = the amount of money in the account.
Then, after one month,

y = 7250 — (1 - 600) = $6650, and after two
months y = 7250 — (2 - 600) = $6050. Thus, in
general, if we let x = the number of months
during which Rachel spends from this account,
y = 7250 — 600x. To identify the x-intercept, we
set y = 0 and solve for x.

y = 7250 — 600x
0 = 7250 — 600x
600x = 7250

1
x=12—

12

1
The x-intercept is (125, O).

Therefore, after 12 months and approximately 2.5
days Rachel will deplete her savings. To identify
the y-intercept, we set x = 0 and solve for y.

y = 7250 — 600x

y = 7250 — 600(0)

y = 7250

The y-intercept is (0, 7250).

Therefore, before any months have gone by,
Rachel has $7250 in her account.

Let y = the cost to the customer and let x = the
number of rides he or she takes. Since the cost
does not change, regardless of the number of rides
taken, the equation y = 24.95 represents this
situation. The graph of y = 24.95 is a horizontal
line whose y-intercept is (0, 24.95). Since the line
is parallel to the x-axis, there is no x-intercept.
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13. The formula relating distance, time, and speed is 2.
d = rt, where d is the distance, r is the speed, and

tis the time. Let x = the time spent biking (in 101

hours). Then, 12x = the distance traveled. Brett o.11 0.1
bikes 12 -2.5 = 30 miles and then turns around N

and bikes the same distance back to the rental (-4.5) 1,1)
shop. Therefore, we can represent the distance ————+ '(3 0 ) — 1:0

from the turn-around point at any time x as
|30 — 12x|. Similarly, the distance from the rental (0, -6)
shop at any time x can be represented by the

function y = 30 — |30 — 12x]|.

x ]0 ] 1V ]2 ]25]3 | 4]5 3. f0) = 1,f2) = 2, f(4) = 3,(—2) = 0
y o 12243 | 24] 120

b. Domain: all real numbers

y
B 36 - (2.5,30) c. Range: all real numbers
.é’ 24
12+ (5,0) d. f(x) = 0 for x = —2. So a real zero is —2.
(0,0) 23 4 % ho);rs

4. a. f(0)=2,/(2) =0
14. The monthly cost of x therms of gas is

[ 0.53x, if0<x<70
Y71 0.53(70) + 0.74(x — 70), if x > 70

b. Domain: all x > 0

c. Range: ally > 2

or
_ | 0.53x, if0<x<70 '
Y= 074x— 147, ifx> 70 d. f(x) = 0 for x = 2. So a real zero is 2.
x| 0| 10| 30 50 70 80 90 | 100 5. a. f(0)=0,/(1) = 1, (—1) = 1

x| 0]53]159]265|37.1|445 | 519|593

b. Domain: all real numbers

c. Range: all nonnegative real numbers

[o)
(=)

d. f(x) = 0 forx = 0. So a real zero is 0.

Cost (dollars)
N
o

[y}
[e]

[ A R x
(0,0)] 20 40 60 80 100 therms

6. a. f(0) = 0,/(2) = 1.f(3) = 3,/(4) =2

Problems 2.5 b. Domain: all x suchthat0 <x <4

1. (—1,-3)is 1n23 rd quadrant; (4, —2) is in 4’th ¢. Range: all y such that 0 < y < 3
quadrant; (—g, 4) is in 2°’nd quadrant; (6, 0) is

on the positive x-axis. d. f(x) = 0 forx = 0. So areal zero is 0.

7
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7.y =2 10. y=3—-2x

Ify=0,thenx =0. Ifx =0, theny = 0.
Intercept: (0, 0)

y is a function of x. One-to-one.

Domain: all real numbers

Range: all real numbers

y=x+1

Ify=0,thenx = —1.
Ifx=0,theny = 1.
Intercepts: (—1,0), (0, 1)

y is a function of x. One-to-one.
Domain: all real numbers
Range: all real numbers

.y=3x-5

5
Ify=0,then0 =3x—5,x = 5

5
If x = 0, then y = —5. Intercepts: (5, 0) ,(0,-5)

y is a function of x. One-to-one.
Domain: all real numbers
Range: all real numbers

11.

12.

3
Ify:O,thenO:3—2x,x:§.

3
If x = 0, then, y = 3. Intercepts: (E’ O) ,(0,3)y

is a function of x. One-to-one.
Domain: all real numbers

Range: all real numbers

(0, 0) is the only intercept of y = x> + x.

y is a function of x. It is a one-to-one function.
Both its domain and its range are (—oo, 00).

2
y_x2

2
Ify=0,then0 = = which has no solution.

Thus there is no x-intercept. Because x # 0, Not
one-to-one.

Domain: all real numbers except 0

Range: all real numbers > 0
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13. x=0

If y =0, then x = 0. If x = 0O, then y can be any
real number. Intercepts: every point on y-axis
y is not a function of x.

14. y = 4x> — 16

15.

If y =0, then 0 = 4x% — 16 = 4(x% — 4),
0=4(x+2)(x—2),x = £2.

If x =0, theny = —16.

Intercepts: (£2,0), (0, —16)

y is a function of x. Not one-to-one.
Domain: all real numbers

Range: all real numbers > —16

204

e

y=x
Ify=0,then 0 = x>, x = 0. If x = 0, then
y=0.

Intercept: (0, 0). y is a function of x. One-to-one.
Domain: all real numbers

Range: all real numbers

73

Section 2.5

16. (17,0) is the only intercept of x = 17.

17.

18.

204

17|«
- o

y is not a function of x.

x ==yl
Ify =0, thenx = 0. If x = 0, then
0=—[yl,y=0.

Intercept: (0, 0)
y is not a function of x.

2=y

Ify = 0, then x> = 0, x = 0. If x = 0, then
0 =y2, y=0. Intercept: (0,0)y

is not a function of x.
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19. 2x+y—-2=0

Ify=0,then2x —2 =0,x = 1. If x = 0, then

y—2 =0,y = 2. Intercepts: (1, 0), (0, 2)
Note that y = 2 — 2x. y is a function of x.
One-to-one.

Domain: all real numbers

Range: all real numbers

20. x+y=1
Ify=0,thenx =1.Ifx =0, theny = 1.
Intercepts: (1,0), (0, 1)
Note thaty = 1 — x.
y is a function of x. One-to-one.
Domain: all real numbers
Range: all real numbers

21.

has domain (—o0, c0) and range (—o0, 00).
(0, —1) is the only intercept.

22. f(x) =5 —2x2. If f(x) = 0, then 0 = 5 — 2x2
22 =5

=2
2

74

23.

24,

ISM: Introductory Mathematical Analysis

5 1
x::t\/izzt@.
2 2

If x = 0, then f(x) = 5.
V10
Intercepts: (:I:T 0) ,(0,5)

Domain: all real numbers

Range: all real numbers < 5

e
V10
2
y=nhx) =3

Because y cannot be 0, there is no x-intercept. If
x = 0, then y = 3. Intercept: (0, 3)
Domain: all real numbers

Range: 3
sy
31
.......... X
5
g(s) = —17

Because g(s) cannot be 0, there is no s-intercept.
If s = 0, then g(s) = —17.

Intercept: (0, —17)

Domain: all real numbers

Range: —17
204
.......... X
—20 20
_20 4
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25. y=h(x) =x*—4x+1

If y =0, then 0 =x% —4x+ 1, and by the

44+ /12

—5— =2+ V3. If
x = 0, then y = 1. Intercepts: (2 & /3, 0), (0,1)
Domain: all real numbers

Range: all real numbers > —3

quadratic formula, x =

y
2-\V3
:\_// 29. s=f() =2 -9
\ X
\/ 2+V3
2,3
(2.73) Note that for +/# — 9 to be a real number,

?—9>0,507>9,and |t| > 3. If s = 0, then
0=+v12—-9,0=1—9,ort= =+3. Because
|t| > 3, we know 7 # 0, so no s-intercept exists.
Intercepts: (—3,0), (3,0)

Domain: all real numbers t < —3 and > 3
Range: all real numbers > 0

26.

10+

has domain (—o0, 0o) and range (—oo, 121/8]. -3 1
Intercepts are (0, 12), (—4,0), and (3/2,0).

27. f(H) = -1
Iff(f) = 0, then 0 = —, 1 = 0.
If t = 0, then f(r) = 0. Intercept: (0, 0)
Domain: all real numbers 1
Range: all real number 30. F(r) = Ty

1
If F(r) =0, then 0 = ——, which has no solution.
r

Because r # 0, there is no vertical-axis intercept.
Intercept: none.

Domain: all real numbers # 0

Range: all real numbers # 0

£(r)

28. p=h(g) =1 +2q+ ¢*
Ifp=0,thenl +2¢+¢>=0,(1+¢)*=0,s0
g=—1.Ifg=0thenp = 1.
Intercepts: (-1, 0), (0, 1)
Domain: all real numbers
Range: all real numbers > 0

75
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31.

32.

33.

has domain (—o0, 00) and range [0, c0).
Intercepts are (0, 2) and (2/7,0).

v=H®u) = |u—3|

Ifv=0,then0= |u—3|,u—3=0,s0u = 3.
Ifu=0,thenv=|—-3=3.

Intercepts: (3,0), (0, 3).

Domain: all real numbers

Range: all real numbers > 0

10

16
F([) == t_2

16
If F(f) =0, then 0 = FR which has no solution.

Because ¢ # 0, there is no vertical-axis intercept.
No intercepts

Domain: all nonzero real numbers

Range: all positive real numbers

4 £

10

ISM: Introductory Mathematical Analysis

2

3. y=flx) = "

Note that the denominator is 0 when x = 4.

2
Thusx # 4. If y =0, then 0 = P which has
X —

1
no solution. If x = 0, then y = —3

1
Intercept: (O, —5)

Domain: all real numbers except 4
Range: all real numbers except 0

10t

35. Domain: all real numbers > 0
Range: all real numbers 1 < ¢ < 8

36.

Both domain and range are [0, 00).
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37. Domain: all real numbers
Range: all real numbers > 0

18(x)

38. Domain: all positive real numbers
Range: all real numbers > 1

Lo H®

39. From the vertical-line test, the graphs that
represent functions of x are (a), (b), and (d).

40. From the horizontal line test, the graphs which
represent one-to-one functions of x are (c) and (d).

41. Write D = D(n) for her debt after n payments.
From the given data, D = D(n) = 8700 — 300n.
The intercepts are (0, 8700) and (29, 0). The first
is her initial debt load; the second is the number
of months it takes her to become free of debt.

42. The cost of an item as a function of the time of

day, x is

9, if 10:30AM. <x<2:30PM.
8, if2:30PM. <x<4:30PM.
y=1413, if4:30PM. <x<6:00PM.
18, if6:00PM. <x<8:00PM.
13, if8§:00PM. <x<10:00PM.

43.

44.

45.

<

20
16
12

|

Cost (dollars)

!
]

!

>
zC
o
\S]
o -
-

N
o

T [

go

Section 2.5

As price increases, quantity supplied increases; p

is a function of q.

50+

101

210

As price decreases, quantity increases; p is a

function of gq.

251

10004

300

25

14
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46.

47.

48.

49.

50.

51.

52.

53.

54.

No, she needs to keep training. She can run for 3
hours at a rate of 10 km/hr and can then run for
another hour at a rate of 5 km/hr. She stops after a
total of 4 hours, having covered 35 km which is
less than the distance of a full marathon.

0.39
—0.50, 0.57
—0.61, —0.04

0.62,1.73,4.65

fx)
80-/

_j{ _i—zo-. >

No real zeros

—-1.70,0

—0.49,0.52,1.25

ISM: Introductory Mathematical Analysis

55.

25

)

e

-15

a. maximum value of f(x): 19.60

b. minimum value of f(x): —10.86

56.
1x)
I (1,16)

05 15

57.

a. maximum value of f(x): 5

b. minimum value of f(x): 4

58.
10

. /JS
f

=5

a. range: (—o0o, 00)

b. intercepts: (—1.73,0), (0,4)

78
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59. liney = x: (a, b) on graph, then b = 54, and
1
33 a=<b# Shiforall b.so (b.a) is
not on the graph.

Answer: (0, 0); symmetry about origin

-5 | 5 5 2. The intercepts are (—3,0), (3,0), and (0, —9).
5 There is symmetry about the y-axis.
a. maximum value of f(x): 28 322 42t =8—y

Intercepts: If y = 0, then

2x2 = 8,x2 =4,orx = £2;

b. range: (—o0, 28]

c. real zeros: —4.02, 0.60 .
ifx=0,then0 =8 —y,soy = 8.

60. Testing for symmetry gives:
5

X-axis: 2% + ()2t =8 — (—y)
/ 2x2+y2x4:8+y
-5 5 y-axis:  2(=x0)? +y2(—x)* =8 —y
/ 222 2t =8—y

N origin:  2(=x)? + (—=0)*(=0)* = 8 = (=)

a. range: (—o0, 00) 22 +y2x =84y
line y = x : (a, b) on graph, then
242 + b%a* =8 — b, but

2b% + a*b* = 8 — a will not

b. intercepts: (0, 0.29), (—1.03,0)

c. real zero: —1.03

61. necessarily be true, so (b, a) is not
301/ on the graph.
Answer: (£2,0), (0, 8); symmetry about y-axis
20 \
10 4. x = y3
0 ——
1 2 3 4 5 6 Intercepts: If y = 0, then x = 0; if x = 0, then
0=y>s0y=0.
Problems 2.6 Testing for symmetry gives:

1y = 5x X-axis: x=(—y)3 =

e 3
Intercepts: If y = 0, then 5x = 0, or x = 0; if y-axis: =Yy

x=0,theny=5-0=0. xz_y3
Testing for symmetry gives:

) origin: —x = (—y)3
X-axis: —y = 5x .
y=-—-5x =Y
. _ _ line y = x: (a, b) on graph, then a = b3, and
-axis: = 5(—x) = —5x y
o y=5t= b= Ya # a forall a, o (b, a)
origin: =y =5(=x) is not on the graph.
y=5x Answer: (0, 0); symmetry about origin

79
Copyright © 2017 Pearson Education, Inc. Publishing as Prentice Hall.


https://testbanks.ac/product/9780134141107-SOLUTIONS-5/

ICLI CK HERE TO ACCESS THE COMPLETE Sol uti ong

Chapter 2: Functions and Graphs ISM: Introductory Mathematical Analysis

5. 25x% + 144y* = 169 7. The only intercept is (—7, 0). The graph is

169 symmetric about the x-axis.

Intercepts: If y = 0, then 2552 = 169,x2 = 75
13 .y =|2x] =2
SOXx = :l:?; y =12
160 Intercepts: If y = 0, then |2x| = 2, 2|x| = 2,
— 2 _ 2 _ 7
If x = 0, then 144y~ = 169 y~ = 144,and |x| = 1,sox £+ 1;ifx = 0, theny = —2.
13

y= iﬁ' Testing for symmetry gives:

Testing for symmetry gives:

x-axis:  25x% + 144(—y)? = 169
25x% + 144y* = 169

y-axis: 25(—x)2 + 144y* = 169
25x% + 144y = 169

origin: Since the graph has symmetry about
x- and y-axes, there is also
symmetry about the origin.

line y = x: (a, b) on graph, then
254> + 144b* = 169, and

1
a? = 55169~ 144b%).(b, a) on
graph, then 256%+1444>=169 and

1
2 2
= — (169 — 25b

@ = 1g1% )

1 2
— (169 — 144b
7 55 )

for all b, so (b, a) and (a, b) are not
always both on the graph. Not
symmetric about y = x.

13 13
Answer: (:l:? 0) s (O, iﬁ) symmetry about

X-axis, y-axis, and origin.

.y=157

Intercepts: Because y # 0, there is no x-intercept;
if x = 0, theny = 57.

Testing for symmetry gives:

X-axis: (—y) =57
y=-57

y-axis: y =157

origin: (—y) =57
y=-57

line y = x: (a, b) on graph, then b = 57, but a
can be any value, so (b, a) = (57, a)
is not necessarily on the graph.

Answer: (0, 57); symmetry about y-axis

X-axis: —y = [2x| -2
y=—|2x|+2
y-axis: y=2(—x)| -2

y=|2x| =2
origin: —y = 2(—x)| =2
y=—|2x+2

line y = x: (a, b) on graph, then b = |2a| — 2

b+2
anda = :I:% = |2b| — 2 for all

b, so (b, a) is not on the graph.

Answer: (%1, 0), (0, —2); symmetry about y-axis

X ==y

Intercepts: Because y # 0, there is no x-intercept;

if x =0, then 0 = —}7, which has no solution.
Testing for symmetry gives:
X-axis: x=—(—y)™*
X = —y_4
y-axis: —x=—y*
x = y_4
origin: —x=—(—y)™*
X = y_4

line y = x: (a,b) on graph, then a = —b~* and
b= (—a)_l/4 # —a~* for all g, so
(b, a) is not on the graph.

Answer: no intercepts; symmetry about x-axis
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10. y = vVx2 —36

11.

12.

Intercepts: If y = 0, then Vx2 —=36=0,
X2 —36= 0,)62 = 36, so x = +6;

if x = 0, then y = +/—36, which has no real root.
Testing for symmetry gives:

—y=+x2-36

y= /=36

N

y = VAT=36

= AT
y=—vx2-36

line y = x: (a,b) on graph, then b = Va2 =36
or b*> = a* — 36 and

a* = b + 36 # b* — 36 for all b,
so (b, a) is not on the graph.

Xx-axis:

y-axis:

origin:

Answer: (%6, 0); symmetry about y-axis

x—4y—y>4+21=0

Intercepts: If y = 0, then x + 21 = 0, so
x = -—21;

if x = 0, then —4y — y2 + 21 = 0,

Y 4+4y-21=0,(+7)(y—3)=0,s0y=-7
ory=3.

Testing for symmetry gives:

x-axis: x—4(=y) = (=y)>+21=0
x+4y—y>+21=0

y-axis: (—x) —4y—y>+21=0
—x—4y—y>4+21=0

origin: (=x) —4(=y) — (—y)?+21=0

—x+4y—y*+21=0
line y = x: (a, b) on graph, then
a—4b—b*+21 =0and
a=0b>+4b—21, but
b = a* + 4a—21 will not necessarily
be true, so (b, a) is not on the graph.
Answer: (—21,0), (0,—-7), (0, 3); no symmetry

The only intercept is (0, 0). The graph is
symmetric about y = x.

13.

14.

Section 2.6
3 2
x0T =2x"+x
=flxX)= ——
y =fx) P
Intercepts: If y = 0, then
3 2 2
-2 -1
X x+x=x(x ) =0,s0x=0,1;

x2+1 x2+1
ifx =0, theny = 0.

Testing for symmetry gives:

X-axis: Because fis not the zero function,
there is no x-axis symmetry
: (—x)® —2(=x)* + (—»)
y-axis: =
(—x)2+1
_ -3 =2 —x
O
origin' —y = (_x)3 B 2(_x)2 + (_x)
’ (—02+1
_ X422 +x
Y= x2+1
line y = x: (a, b) on graph, then
3 _ 2, 2
b= az—a—i—a’ but
a-+ 1
b3 —20% +b . ,
a = ——=——— is not necessarily
b2 + 1

true, so (b, a) is not on the graph.
Answer: (1, 0), (0, 0); no symmetry of the given
types

X2+ xy + y2 =0
Intercepts: If y = 0, then ¥ =0,50x=0;
ifx =0, theny2 =0,s0y=0.

Testing for symmetry gives:

X-axis: ¥4+ x(=y) +(=y)?> =0
X —xy +y2=0
y-axis: (=) + (=x)y+y* =0
X —xy +y2=0
origin: (=% + (=0)(=y) + (=»)? =0

X 4xy +y2=0

line y = x: (a, b) on graph, then a®> +ab +b*=0
and b2 + ba + a® = 0, s0 (b, a) is
on the graph.

Answer: (0, 0); symmetry about origin, symmetry
abouty = x
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2 4
15. y = 3— y= X
X + 27 X + y
. _ _ ; 4
Intercepts: If y = 0, then i 0, which line y = x: (a, b) on graph, then b = j_ -,
a
hasnosolutlon;lfx:O,theny:E. ; +b_a4 . +b_b4
Testing for symmetry gives: anca B T a
. 2 will not necessarily be true, so
X-axis: -y = B+ 27 (b, a) is not on the graph.
2 Answer: no intercepts; symmetry about origin
YT T ey _
2 17. The intercepts are (0, —2), (0, 2), and (8/5, 0).
-axis: = The graph is symmetric about the x-axis.
y y () +27 grap y X
. 2
= —x3 +27
. 2
origin: -y =
g YT S r27
_ 2
V= —x3 427
2
= x3 =27
) 2 442 4432
line y = x : (a, b) on graph, then b = 3_’_27and 18. x—1=y"+y“orx=y"+y +1
a
2 2 Intercepts: If y = 0, then x = 1; if x = 0, then
a=, b 27 # D127 for all b, so Y432 =—1,s0n0 y-intercept
(b, a) is not on the graph. Testing for symmetry gives:
2 ‘o _ 4 2
Answer: (O, 2—7), no symmetry X-axIs: x—1=(=y)"+(-y)
x—1= y4 + y2
x4 y-axis: —x=y"+y* +1
16. y = 4 2
x+y x=—-y -y —1

4 . 4 )
. : —x = (— — 1
Intercepts: If y = 0, then Al 0, which has no origim o= (=) 4+ (=7 +
X — A2
N 0 . x=—y'—y -1
solution; if x = 0, then y = =, which has no line y = x: (a, b) on graph, then
solution. a4 b? 4 1and

Testing for symmetry gives:

4 b#a* +ad>+1
) X
X-axis: -y = )T(—y) for all a so (b, a) is not on the graph.
A Answer: (1, 0); symmetry about x-axis.
YT oy s
. (—x)* I
y-axis: y=—— T
(—x) +y 1
P f—t——t—+ C-Zx
y= T
—X+Yy 1
L (=
origin: -y = m

82
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19.

20.

y = flx) = —4x
Intercepts: If y = 0, then B —4x = 0,

x(x+2)(x—2) =0,s0x =0orx = £2;if
x =0, theny = 0.

Testing for symmetry gives:

X-axis: Because fis not the zero function,
there is no x-axis symmetry.

y-axis: y = (—x)% —4(—x) 21.

y=—x +4x
origin: —y = (—x)3 —4(—x)
y=x>—dx

line y = x: (a, b) on graph, then b = a> — 4a,
but a = b3 — 4b will not necessarily
be true, so (b, @) is not on the graph.

Answer: (0, 0), (£2, 0); symmetry about origin.

2y =5—x2

Intercepts: If y = 0, then 5 —x2 = 0, so
5

x::l:«/g.Ifx=0,y= >

Testing for symmetry gives:

X-axis: 2(—y) =5—x2

2y = -5+ x2
e — 2
y-axis: 2y =5—(—x) 2
2y =5—x2
origin: 2(—y) =5 — (—x)?
2y = =5+ x?

line y = x: (a, b) on graph, then 2b = 5 — a?.
(b, a) on graph, then 2a = 5 — b.
(a, b) and (b, a) are not both on the
graph.

5
Answer: (:i: \/3, 0), (0, 5)’ symmetry about

y-axis

83

Section 2.6

x| =1Iy[=0

Intercepts: If y = 0, then |x| = 0 so x = 0; if
x=0,then —|y] =0,s0y = 0.

Testing for symmetry gives:

X-axis: |x| = |-y =0
x| = [yl =0
y-axis: |—x|—1]y| =0
x| — [yl =0
origin: Since there is symmetry about the

x- and y-axes, symmetry about
origin exists.

line y = x: (a, b) on graph, then |a| — |b| = 0,
thus |a| = |b|, and |b| — |a| = 0, so
(b, a) is on the graph.

Answer: (0, 0); symmetry about x-axis, y-axis,
origin, line y = x.

. The intercepts are (0, —5), (0, 5), (=5, 0), and

(5,0). The graph is symmetric with respect to
both the x- and y-axes and hence with respect to
the origin. It is also symmetric with respect to the
line y = x.
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23, 9x? +4y? =25 y-axes, symmetry about origin

2 , 25
Intercepts: If y = 0, then 9x° = 25,x° = 9 SO
5 5
X = :I:g; if x = 0, then 4y2 =25,s0y = :I:z.

Testing for symmetry gives:
x-axis: 92 + 4(—y)? =25

Ox2 + 4y? =25
y-axis: 9(—x)? 4+ 4y> =25
9x2 + 4y? =25
origin: Since there is symmetry about x-
and
y-axes, symmetry about origin
exists.

line y = x : (a, b) on graph, then
9a® + 4b* = 25 and

1
b? = 1(25 — 9a2).(b, a) on graph,
then 952 + 44% = 25 and

1
b2 = 55— 4a%), so (a, b) and

(b, a) are not always both on the

graph.
5 5
Answer: j:g, 0],10, :l:z ; symmetry about

X-axis, y-axis, origin

y
5

24. xz—y2=4

Intercepts: If y = 0, then x2 = 4, so x = +2; if
x = 0, then —y2 =4, y2 = —4, which has no real
roots.

Testing for symmetry gives:

X-axis: P2 —(—y)?:=4

X2 — y2 =4
y-axis: (—x)2—y? =4
x2—y2 =4
origin: Since there is symmetry about x-and

exists.

line y = x: (a, b) on graph, then a> — b = 4
and a®> = 4 + b% # b> — 4 for all b,
so (b, a) is not on the graph.

Answer: (%2, 0); symmetry about x-axis, y-axis,

origin.

il

-6

y = f(x) = 5 — 1.96x> — wx*. Replacing x by —x
gives y = 5 — 1.96(—x)? — w(—x)* or

y =5 —1.96x> — 7x*, which is equivalent to
original equation. Thus the graph is symmetric
about the y-axis.

a. Intercepts: (£0.99,0), (0,5)
b. Maximum value of f(x): 5

c. Range: (—o0, 5]

iV

y = f(x) = 2x* — 7x? + 5. Replacing x by —x
gives y = 2(—x)* — 7(—x)? + 5 or

y = 2x* —7x2 + 5, which is equivalent to original
equation. Thus the graph is symmetric about
y-axis.

Real zeros of f: 1, £1.58
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27.

Problems 2.7

3. The required graph is obtained by translating the
graph of y = 1/x 2 units to the left and the
streching the resulting graph vertically away from

the x-axis by a factor of 3.

+*10

5
......

Section 2.7
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8. Translate the graph of y = /x 2 units to the right;

shrink the resulting graph vertically towards the
x-axis by a factor of 1/3; and reflect the result
about the x-axis.

12.

13.

14.

15.

16.

17.

18.

ISM: Introductory Mathematical Analysis

Translate the graph of y = f{x)5 units to the right
and 1 unit up; shrink the result by a factor of 1/2
vertically towards the x-axis; and then reflect
about the x-axis.

Shift one unit left, four units down, and stretch by
a factor of 2 away from the x-axis.

Reflect about the y-axis and translate 5 units
downward.

Shrink horizontally toward the y-axis by a factor
of 3.

Compared to the graph for k = 0, the graphs for
k = 1,2, and 3 are vertical shifts upward of 1, 2,
and 3 units, respectively. The graphs for

k = —1, -2, and —3 are vertical shifts downward
of 1,2, and 3 units, respectively.
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19.

—2

Compared to the graph for k = 1, the graphs for
k = 2 and 3 are vertical stretches away from the
x-axis by factors of 2 and 3, respectively. The

graph for k = 3 is a vertical shrinking toward the
X-axis.
Apply It 2.8

15. a. ¢(500,700) = 160 + 2(500) + 3(700) =
160 + 1000 + 2100 = 3260

The cost of manufacturing 500 12-ounce and
700 20-ounce mugs is $3260.

b. ¢(1000,750) = 160 + 2(1000) + 3(750) =
160 + 2000 4 2250 = 4410

The cost of manufacturing 1000 12-ounce
mugs and 750 20-ounce mugs is $4410.

Problems 2.8
1. f(1,2) =4(1)—(2)* +3=4—-4+43=3
2. f2. —1) =3(2)2(-1)—4(-1) = —12+4 = -8
3. 8(3,0,—1) = 2(3)[3(0) + (=1)] = —6
4. g,b)=14+b+b>=0

-33) -9

5. h(-3,3,5,4) = =
( ) 5242 25-16

6. 1(1,5.3,1) = (1)(1) = 1
7. g(4,8) = 2(4)(42 — 5) = 2(4)(11) = 88

8. (4.9 =AHV94+9=16-3+9 =757

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

Section 2.8

. F(6,0,—5) =17
__zm 2

FA. 0,3) = O+1D@B) 3

fla+h, b) =[(a+ h) + b)?

= a® + 2ab + 2ah + b* + 2bh + h?
fr+tr=@F+0*r-3°= r(t2—|—2rt—2r2)

(200)(200)
50

70 (1) (3)°
We must evaluate P(2,7) = ( ) (—) =

£(200, 200, 50) = = 800

251 \a) \a

7-6 (3% 7.30  7.30

A plane parallel to the x, z-plane has the form y =
constant. Because (0, 2, 0) lies on the plane, the
equation is y = 2.

A plane parallel to the y, z-plane has the form x =
constant. Because (—2, 0, 0) lies on the plane, the
equation is x = —2.

A plane parallel to the x, y-plane has the form z =
constant. Because (2, 7, 6) lies on the plane, the
equation is z = 6.

A plane parallel to the y, z-plane has the form x =
constant. Because (96, —2, 2) lies on the plane,
the equation is x = 96.
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20. 2x + y 4 2z = 6 can be put in the form

Ax 4+ By 4 Cz 4+ D = 0, so the graph is a plane.
The intercepts are (3, 0, 0), (0, 6, 0), and (0, 0, 3).

21. 3x + 6y + 2z = 12 can be put in the form
Ax + By + Cz 4+ D = 0, so the graph is a plane.

The intercepts are (4, 0, 0), (0, 2, 0), and (0, 0, 6).

22. 2x 4 3y 4 5z = 1 can be put in the form
Ax + By + Cz+ D = 0, so the graph is a plane.

1 1
The intercepts are (5, 0, 0), (0, - 0), and

3’
1
’ ’5 ’

w|—

W=

23.

24,

25.

26.

ISM: Introductory Mathematical Analysis

3x + y = 6 can be put in the form

Ax + By + Cz + D = 0, so the graph is a plane.
There are only two intercepts: (2,0, 0) and

(0, 6,0). The x, y-trace is 3x + y = 6, which is a
line. For any fixed value of z, we obtain the line

3x+y=6.

X

z=4—x2. The X, z-traceisz = 4 — x2, which is
a parabola. For any fixed value of y, we obtain the
parabola z = 4 — x?.

X

y = z2. The y, z-trace is y = z2, which is a

parabola. For any fixed value of x, we obtain the

parabola y = 7.
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27. x% +y? + 72 = 9. The x, y-trace is x> + y> = 9, 30. z = x> —?

Choose z = 1,4, and 9 for the curves.
which is a circle. The x, z-trace is 2+ = 9,
5 &+
which is a circle. The y, z-trace is y2 +22= 9, 1

which is a circle. The surface is a sphere.

Chapter 2 Review Problems

1. Denominator is 0 when

X —6x+5=0
x—Dx=5=0
x=1, 5
28. >+ 42 =1 Domain: all real numbers except 1 and 5.
The x, y-trace is 2+ 4y2 = 1, which is an 2. all real numbers
ellipse. For any fixed value of z, we obtain the
ellipse x* + 4y* = 1. 3. all real numbers

4. all real numbers

5. We require x in [2, 00) for the numerator to be
defined and x # 3 for the denominator to be
different from 0. The domain is [2, c0) — {3}.

6. s—5>0
s>5

Domain: all real numbers s such that s > 5.

7. fx) =202 = 3x + 5
f0) =2(0)2=3(0) +5=35
f(=2)=2(-2)2-3(-2) +5=8+6+5=19
f5)=2(5)2=3(5)+5=50—15+5 =40
fim) =27% =31 +5

89
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8. h(x) = 7; all function values are 7. 13. f(4)=4+16=20
Answer: 7,7,7,7 f(=2)=-3
f0)=-3
9. G(x) =v/x-3
) * (1) is not defined.
GB)=v3-3=v0=0
G(19) =J/19-3=4J16=2 14.f(_%)=_(_%)+1=%+1=%
Git+1)=J(t+1)-3=+1t-2
f0)=0*+1=1
GG = V=3 1 12 1 5
- - / (2) (2) tlEgriey
3(=1) +2 1
10. F(—-1) = ——— = — =1/6, 3
(-)-5 -6 f(5)=5%-99=125-99 =26
30)+2 2 — 63 _00 =716 _00 —
Foy=0+2_ 2 _ 55 f(6) = 6> —99 =216 —99 = 117
0)-5 =5
3(4) + 2 14 15. a. fx+h) =1-3x+h)=1-3x—3h
F(4) = (4) +5 =— =-14
@-5 - b S =) (1=3v-30)— (13
2 2 . =
Fe+2) = 3((x :2)) +5 _ 3x +38 _3hh h
* * = = =-3 forh#0
u-+4
11. h(u) = 16. a. fx+h) = 11(x+h)>+4
— 1142 2
") 5_}_4_\/5_3 = 11x* 4+ 22xh + 11h= + 4
> >0 p, [0+ B —f0)
h(—d) = —4+4_ 0 _ ) h
I (112 + 22xh + 1102 4+ 4) — (1122 + 4)
Vx+4 h
h(x) = 22xh + 1172
x = = 22x + 11h
vVu—4)+4
hu—dy = YU—H T4 Ju
u—4 u—4 17. a. fx+h) =3+ )2 + (x+h) —2
1—2)3 _
12. my = =2 b, ) —fx)
5 h
(—1—2) 27 3+ h)2+ (et h) —2—(Bx2 +x—2)
HeD="—5—="% B h
2 2 9 3,2
(0_2)3 g =3x + 6xh +3h°+ x4+ h—2-3x"—x+2
X X _ 6xh 430 +h
1_ _3 - h
H(2 =(3 ) =<3) = 6x+3h+1
3 5 5
_ [ 125\ (1) 25
S\ 27 )\s5) 27
2 3
-2
H(x2) — %

90
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7
(x+h)+1 x+h+1

18. a. f(x+ h) =

o, et h) ) _ T — o

h N h
7(x+1)—=7(x+h+1)
(x+h+1)(x+1)

h

—Th
x+hr+ D+ DA

-7
x+h+Dx+1)

19. fix) =3x—1,g(x) =2x+3

a. (f+g)x) =flx) + gx)
=0Cx—1D)+2x+3)=5x+2

b. (f+g@) =54 +2=22

¢ (f—g)x) =flx) —gx)
=0Bx—1)—-(2x+3)=x—4

d. (f)(x) = fix)g(x) = Bx—1)(2x + 3)
=6x2+7x—3

e. (fo)()=6(1)2=7(1)-3=10

j_f( ) = f(x) 3x—1
g 2x+3

g (fog)(x) =f(glx) =f2x + 3)
=302x+3)—1=06x+38

h. (fog)(5) = 6(5) + 8 = 38

i (goH)(x) = g(f(x)) =g(Bx—1)
=203x—1)+3=6x+1

20. a. (f+g)(x) =x>+2x+1
b. f—g)x) =x—2x—1
c. (f—g)(—=6)=—-216+12—1=—205

d () =x2x+1) =2+

Chapter 2 Review
f B 3
¢ g(x) 2+ 1
f. z(l) =1/3
8

g (fog)x)=x+ 13 =83+ 1222 +6x+1
h. (goH(x) =23 + 1

i (goHQ) =

21. fix) = =z g(x) =x+1

22. f(x) =

(fog)(x) =flg(x) =flx+ 1) = Gt

(0N = g(fx) = g (é) = S t1=

1+ x2
2

X

- -

2 1—2[
=

(goH) = g(flx) = \/7 \/x_

(fo)x) =flg(x) =

23. flx) = Vx + 2, g(x) = 3

(fo )() =flg) =flr’) = Va* +2
(80N = g(W) = g (VX +2) = (Vx+2)’
= (x+2)3/?

24, f(x) =2,gx) =3

25.

(fo®)x) = flg(x) =£(3) =2
(80N = g(flv) = g(2) =3

Only intercept is (0, 0). (—y) = 2(—x) + (—x)3 is
equivalent to —y = —2x — x> is equivalent to

y = 2x + x> so symmetric about the origin (but
no other symmetries among those to be tested).
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x2y2 B
24y +1
Intercepts: If y = 0, then O = 4, which is
impossible; if x = 0, then 0 = 4, which is
impossible.
Testing for symmetry gives:
2=y
2+ (=y)2+1
x2y2
2 +yr+1
original equation.
(—0%?
(=02 +y2+1
x2y2
2 +yr+1
original equation.
(0 _
(=02 + (=) + 1
x2y2
X2H+y2 41
original equation.

26.

X-axis:

= 4, which is the

y-axis:

= 4, which is the

origin:
= 4, which is the

2b2

line y = x: (a, b) on graph, then
a

4a* +1
and b = %. (b, a) on graph,

a~—4

b2d?
then ——— =4 and
b +a*+1
4@+ 1)
T2

are both on the graph.

b? , 80 (a, b) and (b, a)

Answer: no intercepts; symmetry about x-axis,
y-axis, origin, and y = x.

27. y =44 x?

Intercepts: If y = 0,then 0 = 4 + x2, which is
never true.

Ifx=0,theny = 4.

Testing for symmetry gives:

X-axis: —y=4+x2
y=—4-— x2, which is not the original
equation.

y-axis: y =44 (—x)?
y=4+ x2, which is the original

A —
2+b2+1

ISM: Introductory Mathematical Analysis

equation.

origin:  —y =44 (—x)?
y = —4 — x?, which is not the original
equation.

line y = x: (a, b) on graph, then b = 4 + a* and
a=F+/b—4 7é4+b2forallb, SO
(b, a) is not on the graph.

Answer: (0, 4); symmetry about y-axis.

\/

28. y=3x—17

Intercepts: If y = 0,then 0 = 3x — 7, 0orx = %

Ifx=0,theny = —7.

Testing for symmetry gives:

X-axis: —y=3x—-7
y = —3x + 7, which is not the
original equation.

y-axis: y=3(—x)—7
y = —3x — 7, which is not the
original equation.

origin: —y=3(—x)—7
y = 3x + 7, which is not the
original equation.

line y = x: (a, b) on graph, then b = 3a — 7 and
1
a= §(b+7) = 3b — 17 for all b, so
(b, a) is not on the graph.

7
Answer: (0, —7), (§ O); no symmetry of the

given types
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29.

30.

31.

Gu) = Vu+4

If G(u) = 0, then 0 = /u + 4.
0=u+4,

u=—4

If u = 0, then G(u) = V4 = 2.
Intercepts: (0,2), (—4,0)
Domain: all real numbers u such that u > —4

Range: all real numbers > 0

1046®@

Domain is (—o0, 00); range is [—2, 00); intercepts
are (0,—-2), (—1,0) and (1, 0).

= 1) =
y =28 ]
2 . .
Ify=0,then 0 = m, which has no solution.
2 1
Iftr=0,theny = - = —.
4 2

1
Intercept: (0, E)

Domain: all real numbers ¢ such that ¢ # 4

Range: all real numbers > 0

93

32.

33.

34.

Chapter 2 Review

10 g(1)

10
v=¢u) = -u
If ¢(u) = 0, then 0 = /—u,
u=~0.

Ifu=0,¢@u) =0.
Intercept: (0, 0)
Domain: all reals <0
Range: all reals > 0

e(u)

Domain: all real numbers.
Range: all real numbers < g2

gt
T fx) =V
T —_——V
-./I“ x
I y=va—2-1

Copyright © 2017 Pearson Education, Inc. Publishing as Prentice Hall.
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35.

36.

37.

38.

39.

40.

From the graph of f(x) = x2, get the graph of
1
y = —Exz + 2 by shrinking the graph by a factor

of 1/2 towards the x-axis, reflecting the result in

the x-axis, and translating that result up by 2.
Mot 4
VT =2
1 1
\ 4
\
\

For 2006, t = 5. Hence
S = 150,000 + 3000(5) = $165,000.
S is a function of ¢.

From the vertical-line test, the graphs that
represent functions of x are (a) and (c).

a. 729

b. 359.43

)
/M
8
—0.67;0.34,1.73

A graph of f(x) = x*> 4+ x + 1 will suggest that

x> 4+ x4 1 = 0 has exactly one real root and
since f(—1) = —1 < 0and f(0) = 1 > 0, the
graph further suggests that the unique root, call it
r lies in the interval (—1, 0). Since

f(—-1/2) = —-1/8—1/2+1 =3/8 > 0, the same
reasoning suggests that 7 lies in the interval
(—1,—1/2). We chose —1/2 as the midpoint of
(—1,0). This leads us to investigate f(—3/4)
because —3/4 is the midpoint of (—1, —1/2). We
have f(—3/4) = —27/64—-3/44+1=15/64 > 0
So risin (—1,—3/4). Now

f(=7/8) = —279/512 < 0 So ris in
(=7/8,—=3/4) and next we check f(—13/16).
Clearly, we can continue this process until the test

41.

42.

43.

44.

94

ISM: Introductory Mathematical Analysis

interval has a length less than the desired degree
of accuracy. The process converges rapidly!

5
. [ﬁu N
=5
—1.50,-0.88,—0.11,1.09, 1.40
20
D
\
—20
(=00, 00)
20

—20
a. (—o0,00)

b. (1.92,0), (0, 7)

20
NIRA j/ 8
—20

a. —9.03

b. all real numbers > —9.03

c. —5,+2.

Copyright © 2017 Pearson Education, Inc. Publishing as Prentice Hall.
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45.

46.

ftx)

We note that if k is even then (—x)¥ = xX and if k
is odd then (—x)¥ = —xk. Assume & is even.
Replacing x by —x in y = x* + xX we get

y = (=x)* + (—x)F = x* + x* the original
equation. So for k even we get symmetry about
the y-axis. In this case we cannot get symmetry
about the origin because that would entail
symmetry about the x-axis which does not hold
for any function different from the function
constantly zero. Assume k is odd. Replacing x by
—x and y by —y in the equation produces

—y = (—x)* 4+ (—x)k = x* — x equivalently

y = —x* + xF which is not equivalent to the
original equation. So for k odd we get no
symmetries of the types under consideration.

X + 2y 4 3z = 6 can be put in the form
Ax + By + Cz + D = 0, so the graph is a plane.
Intercepts: (6, 0, 0), (0, 3, 0), (0, 0, 2)

95

Chapter 2 Review

47. 3x + y 4+ 5z = 10 can be put in the form
Ax + By + Cz+ D = 0, so the graph is a plane.

10
Intercepts: (? 0, 0), (0, 10, 0), (0,0, 2)

48. P =5x+Ty
Choose P = 2,4, and 6 for the curves.
Y,

49. C =2x+ 10y
Choose C = 5, 10, and 15 for the curves.

Yy

2x+10y =15
2x+10y =10

Copyright © 2017 Pearson Education, Inc. Publishing as Prentice Hall.
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Chapter ODbjectives

 To understand what functions and domains are.
 To introduce different types of functions.

 To introduce addition, subtraction, multiplication, division,
and multiplication by a constant.

« To introduce inverse functions and properties.
* To graph equations and functions.
* To study symmetry about the x- and y-axis.

* To be familiar with shapes of the graphs of six basic
functions.
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Chapter Outline

2.1) Functions

2.2) Special Functions

2.3) Combinations of Functions

2.4) Inverse Functions

2.5) Graphs in Rectangular Coordinates
2.6) Symmetry

2.7) Translations and Reflections
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2.1 Functions (1 ofs)

« Afunction assigns each input number to one output
number.

* The set of all input numbers is the domain of the function.

* The set of all output numbers is the range.

To say that two functions f, g: X — Y are equal, denoted f = g,

IS to say that
1. The domain of f is equal to the domain of g.
2. For every x inthe domain of f and g, f(x) = g(x).

Copyright © 2019 Pearson Canada Inc. All rights reserved. 2 -
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2.1 Functions @ ofs)

Example 1 — Determining Equality of Functions

Determine which of the following functions are equal.

a. f (x) = (X+2)(x-1)
(x-1)

D. g(X) =X+2

oro-[ 3]

o0+ (3

Copyright © 2019 Pearson Canada Inc. All rights reserved.
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2.1 Functions @3 ofs)

Example 1 — Continued

Solution: Observe that the domains of g, h, and k are
equal to each other, but that of f Is different. So by
requirement 1 for equality, f g, f #h and f = k.

By definition, g(x) = h(x) = k(x) for all x 1.

Note that g(1) =3, h(1)=0, and k(1) = 3.
We conclude that g=k and g = h (and h = k).

Copyright © 2019 Pearson Canada Inc. All rights reserved.
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2.1 Functions (@ ofs)

Example 3 — Finding Domain and Function Values

Let g(x) =3x* —x+5. Note that the domain of g is all real numbers.
a. Find g(z).
Solution: g(z)=3z"-z+5
b. Find g(r?).
Solution: g(r*)=3(r*)*-=r*+5=3r"—r* +5
c. Find g(x+h).
Solution: g(x+h)=3(x+h)>=(x+h)+5
=3(x* +2xh+h*)—=x—h+5
=3x* +6xh+3h*—x—h+5

Copyright © 2019 Pearson Canada Inc. All rights reserved. 2-7
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2.1 Functions ofs)

Example 5 — Demand Function

Suppose that the equation p =100/ g describes the relationship
between the price per unit p of a certain product and the number
of units g of the product that consumers will buy (that is, demand)
per week at the stated price. This equation is called a demand
equation for the product. If g is an input, then to each value of ¢
there is assigned at most one output p :

100
q>—=p.
q

This function is called a demand function.
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2.2 Special Functions ( of 4)
Example 1 — Constant Function

Let h:(—o0,00) = (0,0) be given by h(x) =2. The domain of
h is (—w,), the set of all real numbers. All function values
are 2. For example, h(10) =2, h(-387) =2, h(x+3) =2.

We call h a constant function. More generally, a function

of the form h(x) =c, where c is a constant, is called a
constant function.

Copyright © 2019 Pearson Canada Inc. All rights reserved.


https://testbanks.ac/product/9780134141107-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

2.2 Special Functions (2 of 4)

Example 3 — Rational Functions

X° —6X

a. f(0=""¢

denominator are each polynomials.

IS a rational function, since the numerator and

b. g(x)=2x+3Is a rational function, since 2x+3= 2X1+3.

Example 5 — Absolute-Value Function

The function f (x) =|x| is called the absolute-value function.

X 1Ifx>0
‘X‘:{—x if X <0

Copyright © 2019 Pearson Canada Inc. All rights reserved. 2 -
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2.2 Special Functions 3 of 4)

The symbol r!, with r a positive integer, is read "r factorial".
It represents the product of the first r positive integers:
r=1.2-3---r

We also define 0!=1.

Copyright © 2019 Pearson Canada Inc. All rights reserved. 2 -
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2.2 Special Functions (ot 4)

Example 7 — Genetics

Suppose two black guinea pigs are bred and produce exactly
five offspring. Under certain conditions, it can be shown that
the probability P that exactly r of the offspring will be brown
and the others black is a function of r, P = P(r), where

o()(2)
P(r) = 4) \4 r=01 2, ..., 5

r'(5-r)!

Find the probability that exactly three guinea pigs will be brown.

Solution: We want to find P(3). We have

o ) 2]

31 21 6(2) 512

Copyright © 2019 Pearson Canada Inc. All rights reserved.
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2.3 Combinations of Functions (1 ofs)

In general, for any functions f, g: X — (—0,x), we define the
sum f + g, the difference f — g, the product fg, and the

. f
guotient — as follows:
g

(T +9)(x) = T(x)+9(x)
(T =9)(x) = 1(x) -9(x)
(19)(x) = 1(x)-g(x)

f f (X)

—(X)=——= for g(x) =0
g g(x)

Copyright © 2019 Pearson Canada Inc. All rights reserved. 2-13
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2.3 Combinations of Functions @ ofs)

Example 1 — Combining Functions

If f (x) =3x-1and g(x) = x* +3x, find a. (f +g)(x),

b. (f-9g)(x), c. (fg)(x), d. %(x), e. (A/2)f)(x)

Solution
a. (f+9)X)=f(X)+g(x)=@x-1)+(x*+3x)=x"+6x-1
b. (f-g)X)=f(X)—g(x)=Bx-1)—-(x*+3x)=-1-X%"

Copyright © 2019 Pearson Canada Inc. All rights reserved.
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2.3 Combinations of Functions @3ofs)

Example 1 — Continued

Solution, continued

c. (fg)(x)= f(x)g(x)=(3x—-1)(x* +3x) = 3x> +8x* — 3x
f(x) 3x-1

g(x) x*+3x

e. ((1/2)F)(x) = (1/2)(f (X)) = (1/ 2)(3x 1)

d. i(x):
g

« We can also combine two functions by first applying one
function to an input and then applying the other function to
the output of the first.

e This is called composition.

Copyright © 2019 Pearson Canada Inc. All rights reserved. 2-15
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2.3 Combinations of Functions @ ofs)

For functions g: X —» Y and f:Y — Z, the composite of
f with g is the function f - g : X — Z defined by

(feg)x)= f(g(x))

Where the domain of f o g is the set of all those x in the
domain of g such that g(x) is in the domain of f.

Copyright © 2019 Pearson Canada Inc. All rights reserved.
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2.3 Combinations of Functions ofs)

Example 3 — Composition
IfF(p):p2 +4p-3, G(p)=2p+1, and H(p):’p|, find

a. F(G(p))
b. F(G(H(p)))

c. G(F(1))

Solution:

a. FQp+)=Qp+1)’+4Q2p+1)-3=4p’ +12p+2

b. F(GH(p))=(Feo(GoH))(p)=(F-G)oH))p)
=(FoG)(H(p))=(F°G)(p)=4|p|" +12|p|+2

c. G(F(1)=G(1*+4-1-3)=G(2)=2-2+1=5

Copyright © 2019 Pearson Canada Inc. All rights reserved.
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2.4 Inverse Functions @ of 4

A function that satisfies, for all a and b,
if f(a)=f(b) thena=Dh,
IS called a one-to-one function.

A function has an inverse, written f ~*(x), precisely if it is one-to-one.
In general,

f(f (x)) = x for all x in the domain of f
and

f(f(y)) =y forally in the range of f

Note that the range of f can be different from the domain of f.

Copyright © 2019 Pearson Canada Inc. All rights reserved. 2-18


https://testbanks.ac/product/9780134141107-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

2.4 Inverse Functions ¢ of 4

Example 1 — Inverses of Linear Functions

Show that a linear function (a function of the form f (x) = ax+Db,

where a # 0) is one-to-one. Find the inverse of f (x) and show that it is also linear).

Solution: Assume that f (u) = f(v), thatis, au+b=av+h.
This gives au = av, and since a = 0, it follows that u =v.
Thus, f(x) is one-to-one.

Consider g(x) = X—_b We have
a

(fog)(X) = f(g(x))=a%+b=(x—b)+b=x

and (go f)(x):g(f(x)): (aX-i-b)—b _ ax

a
It follows that g is the inverse of f.
Since g(x) = f (x) _x-b :£x+_—b, we conclude that f *(x) is linear.
a a a

Copyright © 2019 Pearson Canada Inc. All rights reserved.
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2.4 Inverse Functions zof4)

Example 3 — Inverses Used to Solve Equations

Many eqguations take the form f (x) =0, where f is a function.

If f is a one-to-one function, then the equation has x = f *(0)
as its unique solution:

f(x)=0

f*(f(x))=f*(0) (applying f *(x) to both sides)
x=f7(0) (f *(f(x))=x by definition of the inverse)
Therefore x = f 7*(0) is the only possible solution.

Copyright © 2019 Pearson Canada Inc. All rights reserved. 2 -
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2.4 Inverse Functions @ of 4

Example 5 — Finding the Inverse of a Function

To find the inverse of a one-to-one function f, solve the equation
y = f(x) for x in terms of y, obtaining x = g(y).
Then f7(x) = g(x). Find f (x) if f (x) = (x-1), for x >1.

Solution: Lety =(x-1)?, forx>1. Then x—1=\/§ and hence,
x =,y +1. It follows that f *(x) = +/x +1.

Copyright © 2019 Pearson Canada Inc. All rights reserved. 2-21
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2.5 Graphs in Rectangular Coordinates @ ofs)

« Arectangular coordinate system allows us to specify
and locate points in a plane. It also provides a geometric
way to graph equations in two variables.

An x-intercept of the graph of an
equation in x and y is a point where

the graph intersects the x-axis.

A y-intercept is a point where the
graph intersects the y-axis.
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2.5 Graphs in Rectangular Coordinates (ofs)

Example 1 — Intercepts of a Graph

Find the x- and y-intercepts of the graph of y =2x+3,
and sketch the graph.
Solution: Ify =0,

then 0=2x+3 so that x = —%

Thus, the x-intercept is (—g Oj.

If x=0, then
y =2(0)+3=3, so the y-intercept is (0, 3).
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2.5 Graphs in Rectangular Coordinates (ofs)

Example 3 — Intercepts of a Graph

Determine the intercepts of the graph x =3, and
sketch the graph.

Solution: We can write x=3 as x =3+0y.

Here y can be any value, but x must be 3.

The x-intercept is (3, 0),

and there is no y-intercept

because x cannot be 0.

Copyright © 2019 Pearson Canada Inc. All rights reserved.
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2.5 Graphs in Rectangular Coordinates (ofs)

Example 5 — Graph of the Absolute-Value Function

Graph p=G(q) =|q].

Solution: We use the independent variable g to label the
horizontal axis. The function-value axis can be labeled
either G(qg) or p. Note the sharp corner at the origin.

Copyright © 2019 Pearson Canada Inc. All rights reserved. 2-25
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2.5 Graphs in Rectangular Coordinates (s ofs)

Example 7 — Graph of a Case-Defined Function

Graph the case-defined function

-

X 1f0<x<3
f(X)=4x-1 1f3<x<5
4 if5<x<7

.

Solution:
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2.6 Symmetry @ ofs)

A graph is symmetric about the y-axis if and only if (—a, b)
lies on the graph when (a, b) does.

Example 1 — y-axis Symmetry

Use the preceding definition to show

that the graph of y = x* is symmetric

about the y-axis.

Solution: Suppose (a, b) is any

point on the graph of y = x°.

Then b = a®. Moreover, consider the point (-a, b):(-a)’ =a° =b.
This shows that (—a, b) is also on the graph.
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2.6 Symmetry @ ofs)

A graph is symmetric about the x-axis if and only if (x, —)
lies on the graph when (x, y) does.

A graph is symmetric about the origin if and only if (=x, —Y)
lies on the graph when (x, y) does.
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2.6 Symmetry @ofs)

Example 3 — Graphing with Intercepts and Symmetry

Testy = f(x) =1-x" for symmetry about the x-axis, the y-axis, and
the origin. Then find the intercepts and sketch the graph.
Solution - Symmetry:

x-axis: Replacingy by —y iny=1-x" gives —y =1-x*, equivalently,

y = -1+ x* which is not equivalent to the given equation. The graph is

not symmetric about the x-axis.

y-axis: Replacing x by —x iny=1-x" gives y =1—(-x)*, equivalently,

y =1—x" which is the given equation. The graph is symmetric about the y-axis.
Origin: Replacing x by —x andy by —y iny=1-x* gives —y =1—(-x)*,
equivalently, y = -1+ x* which is not equivalent to the given equation.

The graph is not symmetric about the origin.
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2.6 Symmetry @ofs)

Example 3 — Continued

Solution - Intercepts:
We sety=0iny=1-x".
Then1-x"=0
(1-x*)1+x*)=0

(1- X)L+ X)L+ x*) =0
Xx=1orx=-1.

The x-intercepts are therefore (1, 0) and (-1, 0).
We set x=0, theny =1, so (0, 1) is the only y-intercept.
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2.6 Symmetry ofs)

A graph is symmetric about theline y = x if and only if (b, a)
lies on the graph when (a, b) does.

Example 5 — Symmetry about the Liney = x

Use the preceding definition to show that x* + y* =1 is symmetric
about the line y = x.

Solution: Interchanging the roles of x and y produces x° +y* =1,
which is equivalent to x* + y* =1. Thus x* + y* =1 is symmetric
about the line y = x.
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2.7 Translations and Reflections @ of3)

 Some functions and
their associated
graphs occur so
frequently that we
find it worthwhile to
memorize them.
Below are six such
basic functions.
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2.7 Translations and Reflections 2 of3)

* The table below gives a list of basic types of
transformations:

Table 2.2 Transformations,c >0

Equation How to Transform Graph of y =f(x) to Obtain
Graph of Equation

y=f(x)+c shift ¢ units upward

y=f(x)-c shift ¢ units downward

y=f(x-c) shift ¢ units to right

y=f(x+c) shift ¢ units to left

y = =f(x) reflect about x-axis

y =f(-x) reflect about y-axis

y=cf(x) c>1 vertically stretch away from x-axis by a factor of ¢

y=cf(x) c<l1 vertically shrink toward x-axis by a factor of c
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2.7 Translations and Reflections @of3)

Example 1 — Horizontal Translation
Sketch the graph of y = (x —1)°.

Solution: We observe that

X Is replaced with x —1.

Thus, this function has the
formy = f(x-c), where c =1.
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2.8 Functions of Several Variables (o7

For sets X and Y we can construct the new set X xY whose elements
are ordered pairs (x, y) withxinX andyiny.,

A function f : X xY — Z Is a rule that assigns to each element (x, y)
in X xY at most one element of Z, denoted by f ((Xx, y)). We agree to write f (X, V).

In general, a function f : X, x X, x---x X_ —Y provides the notion of a
Y -valued function of n-variables. An element of the domain of f is
an ordered n-tuple (x, X,, ..., X,), withx. in X, fori=1, 2, ..., n, for
which f (x;, X,, ..., X.) is defined.

The graph of f is the set of all ordered n+1-tuples of the form
(X, Xyy ooy Xy TOX, X5, ooy X)), Where (X, X,, ..., X,) IS in the domain of f.
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2.8 Functions of Several Variables o7
Example 1 — Functions of Two Variables

a. a(x, y) =x+y is a function of two variables. Some function values are
all, )=1+1=2
a(2, 3y=2+3=5
We have a: (-, ) x (-0, 0) = (-0, ).

b. m(x, y)=xy is a function of two variables. Some function values are
m(2, 2)=2-2=4
m(3, 2)=3-2=6
The domain of both a and m is all of (—0, ©)x (-0, ).
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2.8 Functions of Several Variables 3of7)

Example 3 — Temperature-Humidity Index

On hot and humid days, many people tend to feel uncomfortable. In the
United States, the degree of discomfort is numerically given by the
temperature-humidity index, THI, which is a function of two variables,
t,andt, : THI= f(t,,t,)=15+0.4(t, + t,) wheret, is the dry-bulb
temperature and t,, is the wet-bulb temperature of the air. Evaluate

the THI when t, =90 and t, =80.

Solution: We want to find f (90, 80):
f (90, 80)=15+0.4(90+80) =15+ 68 =83.
A similar measurement, called the Humidex, is used in Canada.
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2.8 Functions of Several Variables @ of7)

The set of all ordered triples of real numbers can be pictured as
providing a 3-dimensional rectangular coordinate system.

The three mutually perpendicular real-number lines are called the
X-, y-, and z-axes, and their point of intersection is called the
origin of the system.
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2.8 Functions of Several Variables o7

A "coordinate plane" is a plane containing two coordinate axes.
For example, the plane determined by the x- and y-axes is the x, y-plane.

Below are some sketches of planes parallel to coordinate planes.
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2.8 Functions of Several Variables ¢ of7)

Example 5 — Sketching a Surface

Sketch the surface 2x+z =4.

Solution: This equation has the

form of a plane. The x- and z-intercepts
are (2, 0, 0) and (0, 0O, 4), and

there is no y-intercept.

Setting y =0 gives the x,

Z-trace 2x+z =4,

which is a line in the X, z-plane.

The plane appears to the right.
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2.8 Functions of Several Variables 7 o7

Example 7 — Sketching a Surface

Sketch the surface x* + y* +z° = 25.

Solution: Setting z =0 gives the
X, y-trace x° + y° = 25, which is a
circle of radius 5. Similarly, the
y,Z- and x, z-traces are the circles

y? +12° =25 and x° + z° = 25 respectively.

The surface appears to the right; it is a sphere.
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