
Solutions for Operations Research An Introduction 10th Edition by Taha

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

CHAPTER 2

Modeling with Linear Programming

(a)
$$X_2 - X_1 \ge 1$$
 or $-X_1 + X_2 \ge 1$

(b) $X_1 + 2X_2 \ge 3$ and $X_1 + 2X_2 \le 6$

(c)
$$X_2 \ge X_1$$
 or $X_1 - X_2 \le 0$

(d) $X_1 + X_2 \ge 3$

(e)
$$\frac{x_{\ell}}{x_{\ell} + x_{\ell}} \leq .5 \text{ or } .5x_{\ell} - .5x_{\ell} \geqslant 0$$

(a) $(X_1, X_2) = (1, 4)$ $(X_1,X_2) \geq 0$ 6x1+4x4 = 22 < 24 $1x1+2x4 = 9 \pm 6$ infeasible

(b)
$$(X, X_1) = (2, 2)$$

 $(X_1, X_2) \ge 0$
 $6x2 + 4x2 = 20 < 24$
 $1x2 + 2x2 = 6 = 6$
 $-1x2 + 1x2 = 0 < 1$ feasible

Z = 5x2+4x2 = \$18

(c)
$$(x_1, x_2) = (3, 1.5)$$

 $x_1, x_2 \ge 0$
 $6x3 + 4x1.5 = 24 = 24$
 $1x3 + 2x1.5 = 6 = 6$ feasible
 $-1x3 + 1x1.5 = -1.5 < 1$
 $1x1.5 = 1.5 < 2$

 $Z = 5 \times 3 + 4 \times 1.5 = 21

Z = 5x2 + 4x1 = \$14

(e)
$$(x_1, x_2) = (27 - 1)$$

 $x_1 \ge 0, x_2 < 0, \text{ infearible}$

Conclusion: (c) gives the best feasible Solution

$$(X_1, X_2) = (2, 2)$$

 $det S_1$ and S_2 be the unused daily
amounts of M1 and M2.
For M1: $S_1 = 24 - (6X_1 + 4X_2) = 4$ for S_2/da

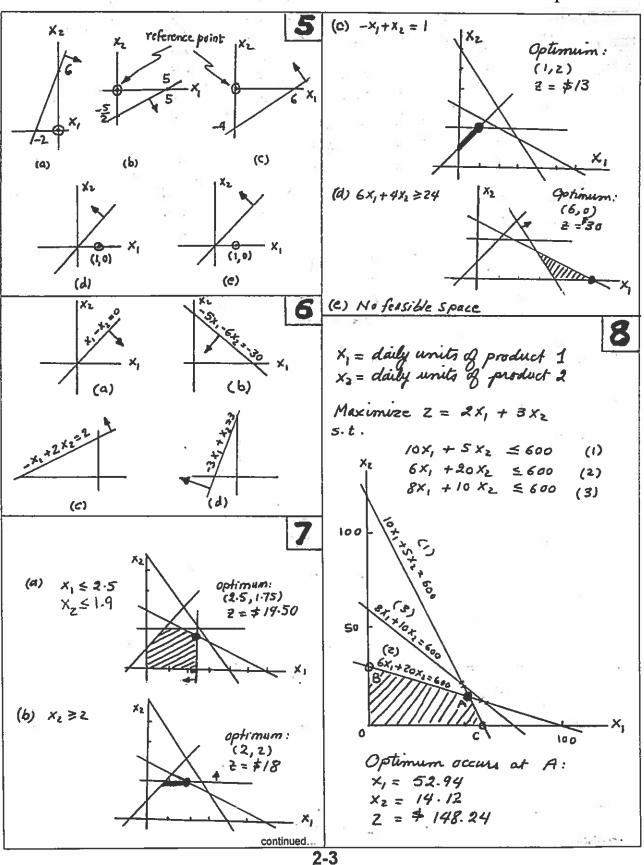
For M1: 5, = 24 - (6x, +4x) = 4 tons/day For M2: 52 = 6-(x1+2x2)

$$=6-(2+2xz)=0$$
 tons /day

Jollowing nonlinear objective function:

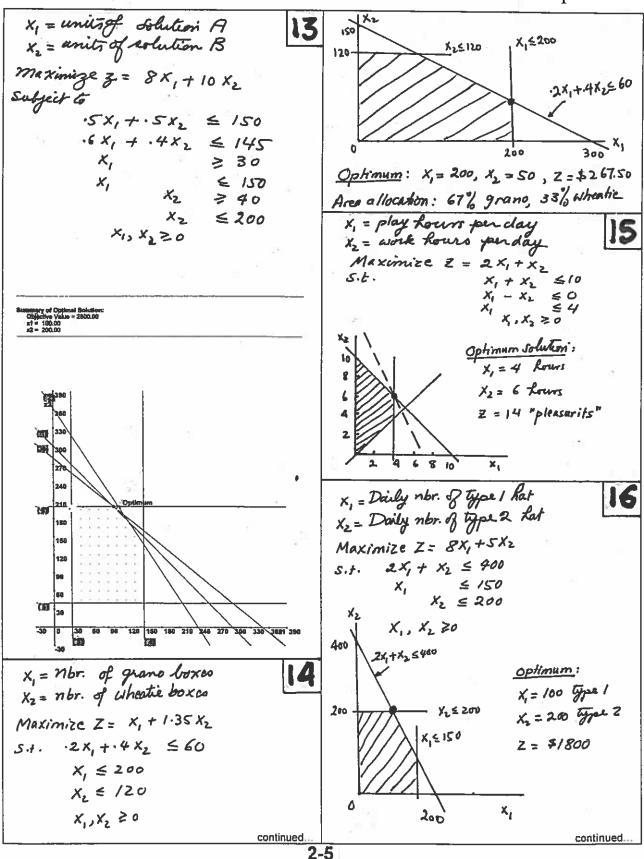
$$Z = \begin{cases} 5x_1 + 4x_2, & 0 \le x_1 \le 2 \\ 4.5x_1 + 4x_2, & x_1 > 2 \end{cases}$$

(X, X₁) = (2, 2)


(X, X₁) = (2, 2)


(X₁, X₂) \geq 0

(X₁, X₂) \geq 0

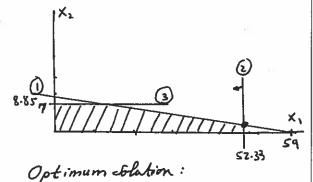

(X₂ + 4 x 2 = 20 < 24)

1 x 2 + 2 x 2 = 6 = 6 | feasible (Chapter 9).

X1 = radio minutes X2 = TV minutes Maximize Z = x, +25X2 S.t. 15x, +300x2 ≤ 10,000 $\frac{X_1}{X_2} \ge z$ or $-x_1 + zx_2 \le 0$ X, ≤ 400, X,, X, ≥0 Optimum occurs at A: X, = 60.61 minules x. = 30.3 minutes z = 8/8.18x, = tons of C, consumed per hour Xz = tons of Cz consumed per Rour

Maximize Z = 12000x, + 9000 Xz S.t. 1800 X, + 2100 X2 ≤ 2000 (X,+X2)

 $X_1 = tons$ of C_1 consumed per hour $X_2 = tons$ of C_2 consumed per hour


Maximize $Z = 12000X_1 + 9000X_2$ S.t. $1800X_1 + 2100X_2 \le 2000(X_1 + X_2)$ or $200X_1 + 100X_2 \le 0$ $2.1X_1 + .9X_2 \le 20$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$ $X_1, X_2 \ge 0$ $X_2 \ge 0$ $X_2 \ge 0$

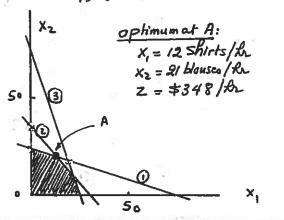
(a) Optimum occurs at A: $X_1 = 5.128$ tons per hour $X_2 = 10.256$ tons per hour Z = 153,846 16 of Steam Optimal ratio = $\frac{5.128}{10.256} = .5$ (b) $2.1X_1 + .9X_2 \le (20+1) = 21$ Optimum Z = 161538 16 of Steam $\Delta Z = 161538 - 153846 = 7692$ 16

 $X_1 = Nbr. of radio commercials$ beyond the first $X_2 = Nbr. of TV ads$ beyond the first

Maximize $Z = 2000X_1 + 3000X_2 + 5000 + 2000$ $5.t. 300(X_1+1) + 2000(X_2+1) \le 20,000$ $300(X_1+1) \le .8 \times 20,000$ $2000(X_2+1) \le .8 \times 20,000$ $X_1, X_2 \ge 0$

or Maximize $Z = 2000X_1 + 3000X_2 + 7000$ S.t. $300X_1 + 2000X_2 \le 17700$ ① $300X_1 \le 15700$ ② $2000X_2 \le 14000$ ③ $X_1, X_2 \ge 0$

Radio Commercials = 52.33+1 = 53.33 TV ads = 1+1 = 2

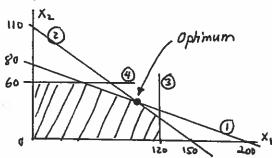

Z = 107666.67+7000 = 114666.67

X = number of shirts per hour X = number of blowses you hour

Maximize Z= 8x,+ 12x2 S.t.

$$20X_1 + 60X_2 \le 25 \times 60 = 1500$$
 (1)

$$70x_1 + 60x_2 \le 35 \times 60 = 2100$$
 (2)
 $12x_1 + 4x_2 \le 5 \times 60 = 300$ (3)
 $x_{1,3} x_1 \ge 0$


X, = Nbr. of desks per day
X2 = Nbr. of Chairs per day

MAXIMIZE Z = 50 X, + 100 X2

$$\frac{\chi_i}{2aa} + \frac{\chi_b}{8a} \le I \tag{1}$$

$$\frac{\chi_1}{150} + \frac{\chi_2}{10} \le 1$$

 $X_1 \le 120$, $X_2 \le 60$ (3,4)

Optimum:

20 X, = number of HiFi1 units
X= number of HiFi2 units

22

Constraints:

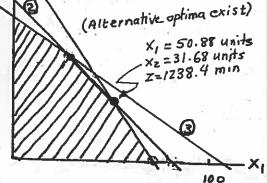
$$6x_1 + 4x_2 \le 480x \cdot 9 = 432$$

 $5x_1 + 5x_2 \le 480x \cdot 86 = 4/2 \cdot 8$
 $4x_1 + 6x_2 \le 480x \cdot 88 = 422 \cdot 4$

$$6x_1 + 4x_2 + 5_1 = 432$$

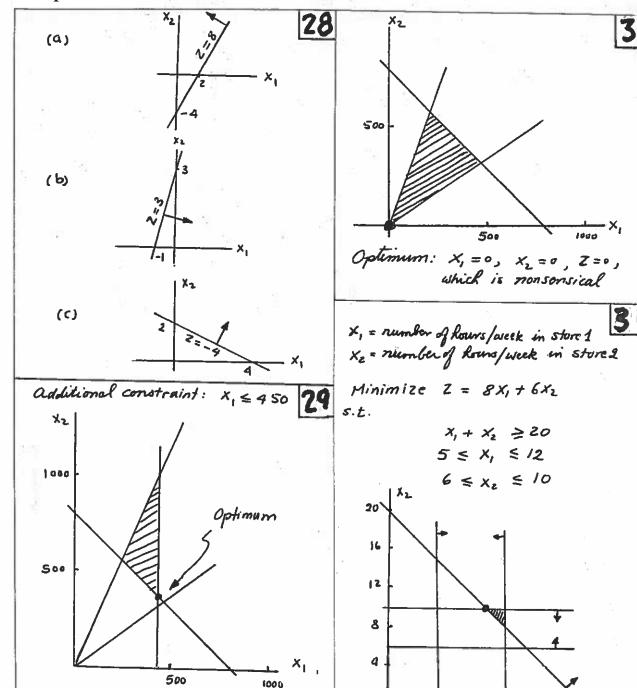
$$5x_1 + 5x_2 + 5z = 412.8$$

$$4x_1 + 6x_2 + 5z = 422.4$$


Objective function:

Minimize 5, +5, +53 = 1267.2-15x,-15x2

Than, min S,+Sz+S3 = max 15x,+15xz


Maximize Z = 15x,+15x2

	6x, +4 x2	<i>≤ 43</i> 2	0
1	X2 5x, +5x2	£412.8	@
	4X, +6X2 X, X2>0	€ 422.4	(3)
1	A X 1 X 5 S S		
1	10	entima exist)	

23

Corner point	(x_1,x_2)	Z
A	(0,0)	0
\boldsymbol{B}	(4,0)	20
C	(3, 1.5)	21 (OPTIMUM)
D	(2, 2)	18
\boldsymbol{E}	(1,2)	13
F	(0, 1)	4

Optimum Solwhon: x, = 450 16

continued...

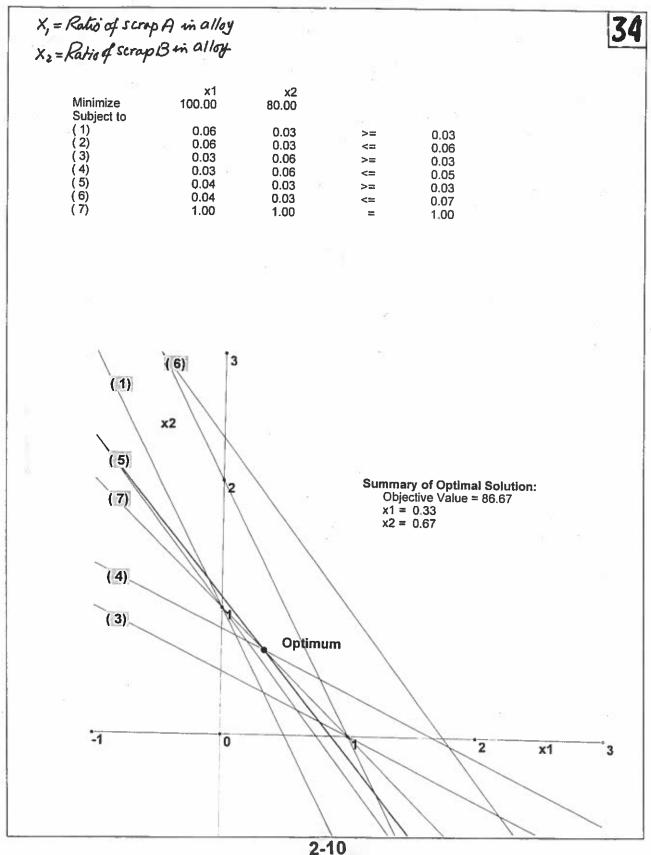
Optimum:

$$X_1 = 10$$
 hours
 $X_2 = 10$ hours
 $Z = 140$ stress index

32 L X₁ = 10 bb1/day from I ran

X₂ = 10 bb1/day from Dubai

X₂ = 10 bb1/day from Dubai


X₃ = 10 # invested in blue chip stock

X₄ = 10 # invested in bigh-tech stocks

Refinery capacily = X₁+X₂ 10 bb1/day

Minimize Z = X + X₄ Minimize $Z = X_1 + X_2$ Minimize $Z = X_1 + X_2$ Subject to Subject to .1x, +.25x2 ≥ 10 or $X_1 \ge .4(X_1 + X_2)$ $-.6X_1 + .4X_2 \le 0$ $.2X_1 + .1X_2 \ge 14$.6x, -.4 x2 ≥0 X1, X2 30 ·25x, + ·6x2 ≥ 30 TORA optimin solution: $.1X_{1} + .15X_{2} \ge 10$ $.15X_{1} + .1X_{2} \ge 8$ X, x, 20 Ophmum Solution from TORA: LINEAR PROGRAMMING - GRAPHICAL SOLUTION LINEAR PROGRAMMING - GRAPHICAL SOLUTION #1 = 55.00 #2 = 30.00 dir 110

100 110 120 130 140 150 160 170 160

(a) X = Undertaken portion of project i 40 Maximize $Z = 32.4x_1 + 35.8x_2 + 17.75x_3 + 14.8x_4 + 18.2x_5$ + 12-35 X6 Subject to 10.5x,+8.3x2+10.2x3+7.2x4+12.3x5+9.2x, ≤60 $14.4x_1 + 12.6x_2 + 14.2x_3 + 10.5x_4 + 10.1x_5 + 7.8x_6 \le 70$ 2.2x, + 9.5x, +5.6x, +7.5x, + 8.3x, + 6.9x, <35 2.4x, +3.1x2+4.2x3+5.0x4+6.3x5+5.1x6 = 20 0 5 x, 51, j=13,...,6 TORA optimum solution: $X_1 = X_2 = X_3 = X_4 = 1, Y_5 = .84, X_6 = 0, Z = 1/6.06$ (b) Add the constraint X, ≤ X6 TORA optimum Solution: $X_1 = X_2 = X_3 = X_4 = X_6 = 1, X_5 = .03, Z = 113.68$ (C) Let 5. be the unused funds at the end of year i and change the right-hand Sides of constraints 2, 3, and 4 to 70+5, 35+52, and 20+53, respectively. TORA optimum solution: $X_1 = X_2 = X_3 = X_4 = X_5 = 1$, $X_6 = .71$ Z = 127.72 (thousand) The Solution is interpreted as follows: Si Si-Si-1 Decision 4.96 7.62 +2.66 Don't borrow from yr 1 4.62 -3.00 Borrow \$3 from year 2 4 Borrow \$4.62 from yr 2 -4.62

The effect of availing excess money for use in later years is that the first five projected are completed and 71% of project 6 is undertaken. The total revenue increases from \$116,060 to 127,720.

(d) the elack S: in period i is.

Treated as an <u>unrestricted</u> variable.

TORA optimum solution: 2=*131.30

S; = 2.3, S2=.4, S3=-5, S4=-6.1

This means that additional funds are needed in years 3 and 4.

Increase in return = 131.30-116.06

= \$15.24

Ignoring the time value of money,

the amount borrowed 5+6.1-(2.3+.4)

=\$8.4. Thus,

rate 6) return = \frac{15.24-8.4}{8.4} \approx 81%

Xi= dollar investment in project

i, i=1, z, 3, 4

Y = dollar investment in bank in

year j, j=1, z, 3, 4, 5

Maximize Z = Y₅

Subject to

X, + x₂ + x₄ + y, ≤ 10,000

.5x, + .6x₂ - x₃ + .4x₄ + 1.065 y, -y₂ = 0

.3x, + .2x₂ + .8x₃ + .6x₄ + 1.065 y, -y₃ = 0

1.8x, + 1.5x₂ + 1.9x₃ + 1.8x₄ + 1.065 y, -y₅ = 0

1.2x, + 1.3x₂ + .8x₃ + .95 x₄ + 1.065 y, -y₅ = 0

All variables ≥ 0

Tora optimal solution:

x, = 0, x₂ = *10,000, x₃ = *6000, x₄ = 0

y = 0, y₂ = 0, y₃ = *6800, y₄ = *93,642

Z = \$53,628.73 at the start of year 5

continued.

Pi = fraction undertaken of project 42 6, L=1,2 Bi= million dollars borrowed in quarter j, j=1, 2, 3, 4 S; = surplus million dollars at the start of quarter j, j = 1, 2, 3, 4, 5 1+82 1+ B₃ 181+38 3-181+2-582 1-581-1-582 -1-681-1-182 -581-2-882 (a) Maximize Z = S5 Subject to P+3P2+5,-B, 3.1 P+2.5 B-1.025, +52+1.025 B, -B=1 1.5 P-1.5B-1.02 5,+5,+1.025 B2-B3=1 -1.8 P -1.8 P -1.02 53 + 54+1.025 B3 - B4 = 1 -5P-2.8 P2-1.02 S4+55+1.025B4 0 = P, = 1, 0 = P2 = 1 0 = Bj = 1, j = 1,2,3, 4 Optimim Solution: P= .7113 P= 0 7 = 5.8366 million dollars B, = 0, B2 = .9104 million dollars B3 = 1 million dollars, B4 = 0 (b) B,=0, S, = . 2887 million\$ B2=.9104, 52=0 B3=1, S3=0 B4=0, S4 = 1.2553 The solution shows that Bi. Si = 0, meaning Hat you can't forrow and also end up with surplus in any quarter. The result makes sense fecause He coat of borrowing (2.5%) is higher then the return on surplus funds (2%)

Assume that the investment program ends at the start of year 11.

This, the 6-year bond option can be exercised in years 1, 2, 3, 4, and 5 only. Similarly, the 9-year bond can be used in years 1 and 2 only. Hence, from year 6 on, the only option available is moured savings at 7.5%.

Let

Ii = insured savings in roelments in year i, i=1,2,...,10

Gi = 6-year bond investment in year i, i=1,2,...,5

Mi = 9-year bond investment in year i, i=1,2

The objective is to maximize total accumulation at the end of year 10;

that is, maximize $Z = 1.075 I_{10} + 1.079 G_5 + 1.085 M_2$ The constraints represent the balance equation for each year's cash flow.

 $I_{1} + .98G_{1} + 1.02M_{1} = 2$ $I_{2} + .98G_{2} + 1.02M_{2}$ $= 2 + 1.075I_{1} + .079G_{1} + .085M_{1}$ $I_{3} + .98G_{3}$ $= 2.5 + 1.075I_{2} + .079(G_{1} + G_{2})$ $+ .085(M_{1} + M_{2})$ $I_{4} + .98G_{4} = 2.5 + 1.075I_{3} + .079(G_{1} + G_{2} + G_{3}) + .085(M_{1} + M_{2})$ $I_{5} + .98G_{5} = 3 + 1.075I_{4} + .079(G_{1} + G_{2} + G_{3} + G_{4}) + .085(M_{1} + M_{2})$

 $I_6 = 3.5 + 1.075 I_5$ + $.079(G_1 + G_2 + G_3 + G_4 + G_5)$ + $.685(M_1 + M_2)$

continued.

 $I_7 = 3.5 + 1.075 I_6 + 1.079 G_1$ +.079 (G2+G3+G4+G5) +.085 (M,+M2) $I_8 = 4+1.075 I_7 + 1.079 G_2$ +.079 (G3+G4+G5) +.085 (M,+M2) $I_9 = 4+1.075 I_8 + 1.079 G_3$ +.079 (G4+G5) +.085 (M,+M2) $I_{10} = 5+1.075 I_9 + 1.079 G_9$ $+.079 G_5 + 1.085 M_1 + .085 M_2$ All variables ≥ 0

Title: Problem Final iteration	Zóa-14	************		
Objective value	(max) = 46.85	00		
Veriable	Value	Obj Coeff	Obj Val Contrib	•••
at 11	0,0000	0.0000	0 0000	***

************			on) Aut Fouthth
at 11	0.0000	0.0000	0.0000
75 15	0.0000	0.0000	0.0000
rg 12	0.0000	0.0000	0.0000
n6 16	0,0000	0.0000	0.0000
x5 15	0.0000	0.0000	0.0000
xá lá	4.6331	0.0000	0.0000
x7 17	9.6137	0.0000	0.0000
x8 18	15.467B	0.0000	0.0000
x9 19	24.6663	0.0000	0.0000
×10 110	37.5201	1.0750	40.3341
x11 61	0.0000	0.0000	0.0000
x12 62	0.0000	0.0000	
x13 G3	2,9053	0.0000	0.0000
x14 64	3,1395	0.0000	0.0000
x15 65	3,9028	1.0790	0.0000
±16 H1	1.9608	0.0000	4-2111
x17 H2	2.1242	1.0850	0.0000
**************		1.0030	2.3047
Constraint	RHS		
	*==********	\$lack(-)/\$	arptust(+)
1 (=)	2,0000	0.000	
2 (+)	2.0000	0.000	
3 (=)	2,5000	0.000	
4 (=)	2.5000	8.0000	
5 (*)	3,0000	0.0000	
6 (=)	3.5000	0.0000	
7 (=)	3.5000	0.0000	
8 (*)	4,0000	0.0000	
9 (=)	4.0000		
10 (=)	5.0000	0.0000	
	2+0000	0.0000	

Year	Recommendation
1	Invest all in 9-yr bond
2	Invest all in 9-yr. bond
3	Sowest all in 6-yr bond
4	Investall in 6-yr bond
5	Invest all in 6-yr bond
7	Invest all in insured savings
8	Invest all in incured savings
9	Invest all in incured sames
10	Survest all in mound savings

 $X_{iA} = amount invested in yeari, QQ plan A(1000$)$ $X_{i:B} = amount invested in yeari, plan B(1000$)$ $Maximizc Z = 3 X_{2B} + 1.7 X_{3A}$ Subject to $X_{1A} + X_{1B}$ $= 1.7 X_{1A} + X_{2B} = 0$ $= 3 X_{1B} - 1.7 X_{2A} + X_{3A} = 0$ $X_{1A} + X_{1B} \ge 0$ for i = 1, 2, 3

Title: Problem ? Final iteration Objective value => ALTERNATIVE	1.6e-15 No: 4	od et x3	И ЗДРИДУ •••
Veriable	Value	Obj Coeff	Obj Val Contrib
21 218 22 218 22 22 22 22 22 22 22 22 22 22 22 22 22	100.0000 0.0000 0.0000 170.0000 0.0000	0.0000 0.0000 0.0000 3.0000 1.7000	0.0000 0.0000 0.0000 510.0000 0.0000
Constraint	RHS	Slack(-)	/Surplus(+)
1 (4) 2 (4) 3 (4)	100.0000 0.0000 0.0000	0.0	000- 000- 900-

Optimum solution: Invest \$100,000 in A in yr I and \$170,000 in B in yr 2.

Alternative optimum: Invest \$100,000 in B in yr I and \$300,000 in A in yr 3.

Xi = dollars allocated to choice i, i = 1, 2, 3, 4 y = minimum return (-3x1+4x2-7x3+1)

Maximize $Z = min \begin{cases} -3x_1 + 4x_2 - 7x_3 + 15x_4 \\ 5x_1 - 3x_2 + 9x_3 + 4x_4 \\ 3x_1 - 9x_2 + 10x_3 - 8x_4 \end{cases}$

 $X_1 + X_2 + X_3 + X_4 \le 500$ $X_1, X_2, X_3, X_4 \ge 0$ The problem can be converted to a linear program as

continued

Subjec	mize Z = y
U	
	$(1 + 4x_2 - 7x_3 + 15x_4 \ge y)$ $1 - 3x_2 + 9x_3 + 4x_4 \ge y$
	$-9x_{2}+10x_{3}-8x_{4} \geq y$
***************************************	$+ X_2 + X_3 + X_4 \leq 500$
×,	1, X2, X3, X4 >0
y	*** OPTIMUM SOLUTION SUMMARY ***

Objective value (max) = 1175.0000

Variable	Value	Obj Coeff	Obj Val Contrib
x1	0.0000	0.0000	0.0000
x2	0.0000	0.0000	0.0000
x3	287.5000	0.0000	0.0000
x4	212.5000	0.0000	0.0000
х5 у	1175.0000	1.0000	1175.0000
0			

Constraint	RHS	Slack(-)/Surplus(
1 (>)	0.0000	0.0000+
2 (>)	0.0000	2262.5000+
3 (>)	0.0000	0.0000+
4 (<)	500.0000	0.0000-
4(~)	0000.000	0.0000-

Allocate \$287.50 to choice 3 and \$ 212.50 to choice 4. Return = \$1175.00

Xit = Deposit in plani at start of month t

$$t = \begin{cases} 1, 2, \dots, 12 & \text{if } i = 1 \\ 1, 2, \dots, 10 & \text{if } i = 2 \\ 1, 2, \dots, 7 & \text{if } i = 3 \end{cases}$$

$$y' = \text{initial amount on kand to}$$

$$\text{insure a feasible Solution}$$

$$y' = \text{interest rate for plan } i = 1, 2, 3$$

$$J' = \begin{cases} 12, i = 1 \\ 10, i = 2 \\ 7, i = 3 \end{cases}$$
continued

$$J_{i} = \begin{cases} 10, & i=2\\ 7, & i=3 \end{cases}$$

continued

	$P_{i} = \begin{cases} 1, & i=1 \\ 3, & i=2 \end{cases} d_{t} = $demand for period t$
-	Maximize Z = \(\sum_{t=1} \sum_{i=1} \cdot \cdot \cdot \cdot \) t-P;>0
	$y_1 - x_{11} - x_{21} - x_{31} \ge dI_3$
	$1000 + \sum_{i=1}^{3} (1+r_i) X_{i, t-p_i} - \sum_{i=1}^{5} X_{i, t} \ge d_t, t=2, \dots, t$ $t \le I_i$
I	V. 4 > 4

Xit , y, ≥0 Solution: (see file ampl 2-46.txt)

J = \$1200, Z = -1136.29

Interest amount = 1200-1136.29 = 63.71

Deposits: 200 286.48 313.53 587.43 0 314.37 Z89.30 734-69 0 98.20 294.60 848.16 10 11 12

Xw1 = # wrenches /wk using regular time XW2 = # wrenches /wk using overtime.
XW3 = # wrenches /wk using subcontracting XC1 = # Chesilo/Wk using regular time Xc2 = # chesils/wk using overtime Kc = # chiels/wh using subcontracting Minimize Z = 2x, +2.8x, +3x, +2.1x, + 3.2 XC2 + 4.2 XC3 Subject to XW, \$550 , XWZ \$250 Xc, ≤620, Xc, ≤280 Xc, + Xc2 + Xc3 > 2 XWI + XWZ + XW3 2 Xw, +2 Xwz +2 Xw3 - xc, -xc2 - xc2 = 0 XWI+ XWZ + XW3 = 1500 $X_{C_1} + X_{C_2} + X_{C_3} \ge 1200$ all variables 20 (a) Optimum from TORA: XWI = 550, XWI = 250, XW3 = 700 Xc, = 620, Xc1 = 280, Xc3 = 2100 Z = #14,918(b) Increasing marginal cost ensures Kat regular time capacity is used before that of occitime, and that overtime capacity is used before that of subcontracting. If the

marginal cost function is not

satisfied.

monotonically increasing, additional constraints are needed to ensure that the capacity restriction is

 $X_j = number of unity - produced of product j, j=1,2,3,4$ Profit per unit:

Product $l = 75 - 2 \times 10 - 3 \times 5 - 7 \times 4 = 12$ Product $2 = 70 - 3 \times 10 - 2 \times 5 - 3 \times 4 = 18$ Product $3 = 55 - 4 \times 10 - 1 \times 5 - 2 \times 4 = 18$ Product $4 = 45 - 2 \times 10 - 2 \times 5 - 1 \times 4 = 11$ Maximize $Z = 12 \times 1 + 18 \times 2 + 2 \times 3 + 1 \times 4 = 11$ S.t. $2 \times 1 + 3 \times 2 + 4 \times 3 + 2 \times 4 \leq 380$ $3 \times 1 + 2 \times 2 + 2 \times 3 + 2 \times 4 \leq 450$ $3 \times 1 + 3 \times 2 + 2 \times 3 + 2 \times 4 \leq 450$ TORA Solution: 1 = 0, 133.33, 13 = 0, 14 = 50 1 = 135.33

X; = number of units of model;

49

Maximize $Z = 30X_1 + 20X_2 + 50X_3$ Subject to

- ① $2x_1 + 3x_2 + 5x_3 \le 4000$
- ① $4x_1 + 2x_2 + 7x_3 \le 6000$ ③ $x_1 + .5x_2 + \frac{1}{3}x_3 \le 1500$
- $\frac{X_1}{3} = \frac{X_2}{2}, \text{ of } 2X_1 3X_2 = 0$
- (s) $\frac{X_2}{2} = \frac{X_3}{5}$, or $5X_2 2X_3 = 0$ $X_1 \ge 200$, $X_2 \ge 200$, $X_3 \ge 150$

POP OPTIMUM SOLUTION SUPPLIES ***

Variable	Value	Obj Coeff	Obj Val Contrib
x1	324,3243	30,0000	9729.7305
-2	216.2162	20,0000	4324.3242
x3	540.5405	50.0000	27027.0273
Constraint	RHS	Slack(-)	/Surplus(+)
(<)	4000,0000		800-
2 (4)	6000,0000	486.4	
3 (4)	1500,0000	887.3	
(4)	0.0000		800
5 (=)	0.0000		000
l#-at	200,0000	124.3	
LB-x2	200,0000		162+
LB-x3	150.0000	390.5	

continued...

X; ; = Nbr. Cartons in month i from supplier j 50 Xij = Qby of product i in morsh j, Ii = End inventory in period i , I = 0 I is = End inventory of product i in month i Cij = Price per unit of xij Minimize Z = 30 (x1+x2+x3)+28(x2+x21+x23) h = Holding cost/unit/month C = Supplier capacity/month $+ \cdot 9(I_{11} + I_{12} + I_{13}) + \cdot 7s(I_{11} + I_{23})$ $(X_{jj}/1.75) + X_{2j} \le \begin{cases} 3000, & j=1\\ 3500, & j=2\\ 3000, & j=3 \end{cases}$ $d_i = Demand$ for month i i = 1, 2, 3, j = 1, 2 $I_{j,j-1} + X_{j,j} - I_{i,j} = \begin{cases} 500, j=1 \\ 5000, j=2 \\ 750, j=3 \end{cases}$ $I_{z,j-1} + X_{z,j} - I_{z,j} = \begin{cases} 1000, j=1 \\ 1200, j=2 \\ 1200, j=2 \\ 1200, j=3 \end{cases}$ $\times_{c,j}, I_{i,j} \ge 0$ Minimize Z= Z Z Gi; Xij + $\frac{h}{2} \left(\sum_{j=1}^{3} (\sum_{j=1}^{5} \chi_{ij} + I_{i-1} + I_{i}) \right)$ S.t. Xij & C, all i and j $\sum_{j=1}^{c} x_{ij} + I_{i-1} - I_{i} = d_{i}, \text{ all } i$ Optimum whitien: Cost = \$284,050 Product 1: Optimum solution: Product 2: Sio 753 400 400 200 Total cost = \$167,450. Xi = Production amount in quarter i 51

Ii = End inventory for quarter i Xij = Qty by operation i in month j 1=1,2, 1=1,2,3 Minimize Z=-2 = Ij+. 4 = Izj + 10 x,+ 12x,2 Minimize Z = 20x, + 22x, +24x3+26x4+ + 114,3+ 15 x2, + 18 x22 + 16 x23 $3.5(I_1+I_2+I_3)$ Optimum solution: ILO = 0, 1=1,2 Solution: Cost = \$39,720 X= 350 400 400 250 Total cost = \$32,250

 $X_{j} = Unito d_{j}$ peroduct j, j = 1, 2 $y_{-}^{-} = Unused hours of machine i$ $y_{+}^{+} = Unitime hou$

h = Regular pay form 55	Solution: Z = 32 volunteers
8-hr pay = 8h	X=9, X=2, Xy=6, X1=2, X2=4, X1=6x=8
12-hr pay = 12h+4h=14h	
	Same formulation as in Problem 2 57
Xi = Nbr 8-hr bruces starting in penal i' Zi = Nbr. 912-hr buses starting in period i	Optimum solution remains the same
Minimize 7 1/0 6	Xi=Nbr. g casuals starting on days 58
Minimize $Z = h(8 \sum_{i=1}^{6} x_i + 14 \sum_{i=1}^{6} y_i)$ S.4.	(sunday)
x, x2 x3 x4 x5 x6 y, y2 y3 y4 y5 y6	Minimize 7 - V
1 1 1 1 24	Set $I = X_1 + X_2 + X_3 + X_4 + X_5 + X_6 + X_7$ $X_1 \times_2 \times_3 \times_4 \times_5 \times_6 \times_7$ $M = I = I = I = I = I = I$ $M = I = I = I = I = I$ $M = I = I = I = I = I$ $M = I = I = I = I = I$ $M = I = I = I = I = I$ $M = I = I = I = I$ $M = I = I = I = I$ $M = I = I = I = I$ $M = I = I = I = I$ $M $
// / / / 28	M / / / / 20
11 111 >7	7 1 1 1
≥/2 > ¢	₩ / 1 / 1 ≥ 10
241	Th / 1 1 1 1 ≥15
Solution: Z = 196h	Su ! ! ! ! >18
	1.7 th
73 = 6, 7, = 7, = 34 = 75 = 36 = 0	<u> </u>
For 8-hr only buses, Solution is	Solution: Z = 20 workers
Z = 208h	$X_1 = 8$, $X_4 = 6$, $X_5 = 4$, $X_6 = 1$, $X_7 = 1$
(8-hr + 12-hr) buses in cheaper.	$X_i=Nbr. Students starting at hour i$ $i=1(8:01), i=9(4:01), x_5=0$
Xi = Nbr. of volunteers Starting in Lour i 56	L=1(8:01), L=9(4:01), X ₅ =0
Minimize $Z = \sum_{i=1}^{14} X_i$	Minimize $Z = X_1 + X_2 + X_3 + X_4 + X_6 + X_7 + X_8 + X_9$ S.1.
3.7.	X, X2 X3 X4 X6 X7 X8 X9
(8:00) x_1 (9:00) $x_1 + x_2$ ≥ 4	8:ol ≥Z
$(loio) X_1 + X_2 + X_3 \ge 4$	9:01 1 22
(II:00) $X_1 + X_2 + X_3$ (I2:00) $X_1 + X_2 + X_4$	local 1
3,74,3	11:0(1 1 1 34
$ (2:a_1) x_5 + x_6 + x_7 \ge 6$	12:01
(310°) X ₆ +× ₇ + ½ ≥ 6	1:01 1 ≥3 2:4
1	3:01
(6)00) $x_4 + x_{10} + x_{11} \ge 6$ (7:01) $x_{10} + x_{11} + x_{12} \ge 6$	4:61
$\begin{array}{cccc} (8:00) & & & & & & \\ (8:00) & & & & & & \\ (9:00) & & & & & & \\ \end{array}$	Solution: Z=9 students
All X; ≥0 continued	x,=2, x3=1, x4=3, x7=3

Let $x_i = Nbr$, starting on day i and lasting for 7 days

 y_{ij} = Nbr. starting shift on day i and starting their 2 days off on day j, $i\neq j$

Thus, of the x_1 workers who start on Monday, y_{12} will take T and W off, y_{13} will take W and Th off, and so on, as the following table shows.

	x_l	x_2	<i>x</i> ₃	x_4	<i>x</i> ₅	<i>x</i> ₆	x_7
1	siart on Mon	<i>y</i> 12	<i>y</i> 12 ⁺ <i>y</i> 13	<i>y</i> 13 [†] <i>y</i> 14	Y14 ⁺ Y15	Y15 ⁺ Y16	<i>Y</i> 16
2	y27		y23	y23+y24	y24+y25	y25+y26	y26+y27
3	y31+y37	y31	Wed-	y34	y34+y35	y35+y36	y36+y37
4	y41+y47	y41+y42	y42	in/	y45	y45+y46	y46+y47
5	y51+y57	y51+y52	y52+y53	y53	Fri	y:56	y56+y57
6	y61+y67	y61+y62	y62+y63	y63+y64	y64	Sat .	y67
7	y71	y71+y72	y:72+y:73	y73+y74	y74+y75	y75	Su 🛼

Minimize $z = x_1 + x_2 + x_3 + x_4 + x_5 + x_6 + x_7$

Each employee has 2 days off: $x_i = \text{sum}\{j \text{ in } 1...7, j \neq i\} y_{ij}$

Mon (1) constraint: s - (y27 + y31 + y37 + y41 + y47 + y51 + y57 + y61 + y67 + y71) >= 12

Tue (2) constraint: $s - (y_{12} + y_{31} + y_{41} + y_{42} + y_{51} + y_{52} + y_{61} + y_{62} + y_{71} + y_{72} = 18$

Wed (3) constraint: s-(y12+y13 + y23 + y42 + y52+y53 + y62+y63 + y72+y73>= 20

Th (4) constraint: $s - (y_{13} + y_{14} + y_{23} + y_{24} + y_{24} + y_{53} + y_{63} + y_{64} + y_{73} + y_{74} = 28$

Fri (5) constraint: s - (y14 + y15 + y24 + y25 + y34 + y35 + y45 + y64 + y74 + y75 >= 32

Sat(6) constraint: s - (y15 + y16 + y25 + y26 + y35 + y36 + y45 + y46 + y56 + y75 >= 40

Sun(7) constraint: s - (y16 + y26 + y27 + y36 + y37 + y46 + y47 + y56 + y57 + y67) >= 40

continued

Solution: 4	2 em	ployee	S		-			
Starting		Nbr off						
On	Nbr	М	Tu	Wed	Th	Fri	Sat	Sun
М	16		16	16			W E	
Ти	8	12			8	8		
Wed	8	8	8					
Th	0							
Fri	6	2305 5		6	6			
Sat	2	2	34 14 17					2
Sun	2		t _r =			_2	2	
Nbr off		10	24	22	14	10	2	2
Nbr at work		32	18	20	28	32	40	40
Surplus above minimum		20	0	0	0	0	0	0

61 X = Nor. of efficiency apartments Xd = Nbr. of duplexes X5 = Nbr. of engle-family homes
X5 = hetalspace in ft = Maximize Z = 600 Xc + 750 X + 1200 X + 100 X S.t. X, < 500, X1 = 300, X, < 250 X, = 10xe + 15xd + 18Xs X < 10000 $X_d \ge \frac{X_c + X_s}{2}$ Xe, Xd, Xs, Xn ≥0 Optimal solution: Z = 1,595,714.29 Xe = 207.14, Xd = 228.57 $X_S = 250$, $X_D = 10,000$ LP does not guarantee integer Soution. Use rounded dolution or appely integer LP algorithm (Chapter 9).

X: = Acquired portion of property i

Each site is represented by a separate LP.

The site that yields the smaller objective value is selected.

Site 1 LP:

Minimize Z = 25 + X; + 2.1 X; + 2.35 X; + 1.85 X; + 2.95 X;

S.t. Xy ≥ .75, all X; \(\delta \), i=1, z, ..., 5

20X; + 50 X; + 50 X; + 30 X; + 60 X; \(\delta \) 200

Optimum: Z = 34.6625 million \$

X; = .875, X; = X; = 1, X; = .75, X; = 1

Site 2 LP:

Minimize Z = 27 + 2.8 X; + 1.9 X; + 2.8 X; + 2.5 X;

S.t. X; ≥ .5, X; × 2, X; × 3, X; \(\delta \) 200

Optimum: Z = 34.35 million \$

X; = X; = 1, X; = .5

Select Site 2.

Xi = portion of project i completed in year | 63 Maximize $Z = .05(4X_u + 3X_1 + 2X_1) +$ ·07(3x22+2x23+X24)+ ·15(4x31+3x32+2x33+x34)+ ·02(2 Xaz + Xau) 5./. $\sum_{i,j=1}^{\infty} X_{ij} = 1$.28 = \(\sum_{j=2}^{\infty} \times_{z_j} \le 1 \), \(25 \le \sum_{j=1}^{\infty} \times_{z_j} \le 1 \) $5 \times_{11} + 15 \times_{31} \le 3$ 5x12+8x22+15x3> = 6 5x13+8x23+15x33+1.2x42 =7 8x24+15x34+1.2x44 £7 8 x25 + 15 x35 £7 Optimum: Z = \$523,750 $x_{11} = .6, x_{12} = .4$ $x_{24} = .225$, $x_{25} = .025$ $x_{32} = .267$, $x_{33} = .387$, $x_{34} = .346$ 62 Xg = Nbr. 87 low income units 64

 $x_m = Nbr. d_s$ middle income units $x_u = Nbr. d_s$ upper income units $x_p = Nbr. d_s$ public housing units $x_s = Nbr. d_s$ school rooms $x_n = Nbr. d_s$ retail units $x_s = Nbr. d_s$ condemned homes

Maximize $2 = 7x_0 + 12x_m + 20x_u + 5x_p + 15x_m$ $-10x_s - 7x_c$ 5.t. $100 \le x_s \le 200$, $12s \le x_m \le 190$ $7s \le x_u \le 260$, $300 \le x_p \le 600$ $0 \le x_s \le 2/045$ $0 \le x_s \le 2/045$ $0 \le x_s + 07x_m + 03x_u + 025x_p + 045x_s + 11x_s \le 85(50 + 25x_c)$ $x_n \ge 023x_0 + 034x_m + 046x_0 + 023x_p + 046x_0 + 023x_p + 034x_s$

continued...

25x5 > 1.3 x, +1.2xm +.5x4 + 1.4xp Optimum: Z = 8290.30 thousand \$ X1 = 100, Xm = 125, Xu = 227.04 xp= 300, xs= 32.54, x2= 25 X_ = 0

65 X = Nbr. of single-family hornes X2= Nbr. of double-family homes X3 = Nbr. of triple family homes X4 = Nbr. of recreation areas Maximize Z = 10,000 X, + 12000 X2 + 15000 X3 S.F. $2x_1 + 3x_2 + 4x_3 + x_4 \le .85 \times 800$ X₁ ×₁ ×₂ ×₃ ≥ · 5 or · SX₁ -· 5X₂ -· 5X₃ ≥ 0 purchase of the new acreage is not recommended. $x_4 \ge \frac{x_1 + 2x_3 + 3x_3}{200}$ or $200x_9 - x_7 - 2x_2 - 3x_3 \ge 0$ 1600X, +1200X,+1400X,+800X4 ≥ 100,000 400 X, +600 X2 + 840 X3 +450 X4 5 200,000 $X_1, X_2, X_3, X_4 \geqslant 0$

New land use constraint: 2 x, + 3x2+4x3+ x4 5.85 (800+100) New Ophimum Solution: z = \$3815461.35 X, = 381.54 homes X2 = X3 = 0 X4 = 1.91 areas $\Delta Z = 3.815,461.35 - 3.391,521.20$ = \$423,940.35 DZ < 450,000, de purchasing cost of 100 acres. Hence, the

 $X_2 = 0$ $\chi_3 = 0$ X4 = 1.69 areas Z = 339/521.20

X = 339.15 homes

Optimum solution:

Xs = tono A strawberry / day 67	X5= 1607 ecreus pupackage 68
×g = tons of grapes / day	Xb = 16 of bolto per package
×a = tono of apples /day	Xn = 16 of mute per package
	I'm = 10 of wasters per package
Xe = cano of do it Plant Each can	Minamije Z = 1.1 X + 1.5 X + 70 X + 20 X w
Xq = cans of drink A / day Each can Xg = cans of drink B / day holds one 16 Xc = cans of drink C / day	S.t. Y = Xs + Xb + Xn + Xw
XSA = 16 A strawberry need in drink A / day	
X= = 1h of strouberry weed in drink B/day	$X_{s} \ge \cdot 1Y$ $X \Rightarrow \cdot 2SY X_{b} < X$
Xan= 1 of grapes used in arinte 1/any	$X_b \ge .25 Y, \frac{X_b}{50} \le X_W, \frac{X_b}{10} \le X_n$ $X_n \le .15 Y$
Y - In a granges maid in drink Blacky	Xw = 17
I - IL A MAARIN LLERED AN VOLUME OF HIM	1
The state of the s	Gel : Il an nonnegative
XaB = 16 of apples used in drink C/day	all variables are nonnegative
Maximize Z = 1.15x + 1.25x +1.2x - 200xs	Optimum dolution:
5.7100×g-90×a	Y=1, Xs=.5, Xb=.25, Xb=.15, Xw=.1
Xs = 200, Xg = 100, Xa = 150	$Coat = \pm 1.12$
X5A+X5B = 1500 X5	X = 16 of outs in cereals A,B,C 69
×94+ ×98+ ×9 c= 1200×9	$X_{r,}(A,C) = 16 d$ raisins in cereals A, C
Xa8 + XaC = 1000Xa	
$X_A = X_{SA} + X_{SA}$	c, (B, C)
XB = XSB + X9B + X0B	X c, (B, C) = 16 of coconuts in cereals B, C X a, (A, B, C) = 16 of almost in cereals A, B, C
Xc = Xgc + Xac	l
X _{SA} = X _{GA} ,	V = X0A + X0B + X0C
X58 = X98, X98 = .5 X48	Yr = XrA + XrC
3x9c = 2xac	Yc = XcB + XcC
all variables ≥ ° Optimum solution:	$Y_a = X_{aA} + X_{aB} + X_{aC}$
XA = 90,000 cans, Xg = 300,000 cans, Xc = 0	
	WA = XA + XA + XAA
\times_{ij} : j	$W_{B} = X_{0B} + X_{0B} + X_{0B}$
i A B C	4C = XOC + XC + XC + XOC
S 45,000 75,000 0	
i A B C S 45,000 75,000 0 9 45,000 75,000 0	Maximize $Z = \frac{1}{5} \left(2W_A + 2.5W_B + 3W_C \right)$
90000 300,000	- 1 (100 Yo + 120 Y + 110 Y + 200 Y)
$X_S = 80 \text{ tens}, X_g = 100 \text{ tens}, X_a = 150 \text{ tens}$	·
	5.t. WA & 500 X5 = 2500 WB & 600 X5 = 3000
z = \$439,000/day	hh < 500x5 = 4000
	continued

```
Y = 5x2000 = 10,000
                                                  XAI = XBI, XA = . 5 X , XAI = . 25 XDI
   1/2 £ 2 x 2000 = 4,000
   Y & 1 x 2000 = Z,000
                                                  X_{Az} = X_{Bz}, X_{Az} = 2X_{Cz}, X_{Az} = \frac{2}{3}X_{Dz}
   Y < 1 × 2000 = 2,000
                                                  YA = 1000, YB = 1200, Y = 900, Y = 1500
                                                 F > 200, F > 400
   XOA = 50 X,A, XOA = 50 X AA
                                               Optimum delution: Z = $ 495,416.67
   X_{0B} = \frac{60}{2} X_{CB}, X_{B} = \frac{60}{3} X_{CB}
                                                YA = 958.33 bbl/day
YB = 958.33 bbl/day
   X_{0C} = \frac{60}{3} X_{,C}, X_{0C} = \frac{60}{4} X_{,C}, X_{,C} = \frac{60}{2} X_{,C}
  all variables are nonnegative.
                                                Y = 516.67 bbl/day
YD = 1500 bbl/day
Optimum Solution: Z = $5384.84/day
  Wa = 2500 16 or 500 boxes / day
                                                F1 = 200 161/day
 Wa = 3000 lb or 600 boxes
                                                F = 3733.33 661/day
 W = 5793.4516 or ~1158 boxes
  X = 10,000 16 or 5 tom / day
                                               A = bbl of crude A /day
 X = 471.19 16 or .236 ton
                                               B = bll of crude B/day
 X = 428.16 16 or . 214 ton
                                               R = 661 of regular gasoline /day
 Xa = 394.11 16 or .197 ton
                                               P- bbl of premum gasoline / day
X = bb1 of gasoline A si fuel i

X = bb1 of gasoline B si fuel i

X = bb1 of gasoline C in fuel i

Ci

X = bb1 of gasoline D in fuel i

X = bb1 of gasoline D in fuel i
                                         70 J = bbl of jet gasoline /day
                                               Maximize Z = 50(R - R^{\dagger}) + 70(P - P^{\dagger})
                                                   + 120(J-J+)- (10R+15P+20J)
                                                   -(2R^{+}+3P^{+}+4T^{+})-(30A+40B)
                                               5.E. A < 2500, B < 3000
                                                   R=.2A+.25B, R+R-R=500
Y_{\alpha} = X_{AI} + X_{AZ}
                                                  P= 1A+.3B, P+p-p+ = 700
J= .25A+.1B, J+J-J+ = 400
YR = XR, + XBZ
Y = X + X CZ
                                                 All variables = 0
Yn = XDI + XDZ
                                               Optimum dolution:
                                                  Z = $21,852.94
F. = XAI+ XBI+ XCI+ XDI
                                                  A=1176.47 bb1/day
F= XAZ+XBZ+XCZ+XDZ
                                                 B = 1058.82 661/day
R = 500 661/day
Maximize Z = 200 F1 + 250 F2
                                                 P=435.29 661/day
       - (120 / +90 / +100 / +150 /)
                                                 J = 400 661/day
```

2-24

NR = bb /day of nophta word in regular Maximize Z = 150 x, +200 x2 + 230x2 +35x NP= bliftey of naphta used in premium X4 4 4000 x . 1 N.T = 661/day of raphta weed mi Jet X4 = 400 LR = bb1/day of light used in regular LP = bb1/day of light used in premium $x_1 + \left(\frac{x_2 + \frac{x_3}{.95}}{.95}\right) \le .3 \times 4000$ LJ = bbi /day of light need in jet Using the other notation in Problem 5, $.76 \times_{1} + .95 \times_{2} + \times_{3} \leq 9/2$ Maximize Z = 50(R-R)+70(P-P)+12(J-J) $X_1 \ge 25$, $X_2 \ge 25$ -(10R+15P+20J)-(2R+3P+4J+) x 3 ≥ 25 , xy ≥ 0 - (30A+40B) Optimum Solution from TORA: 5.4. A < 2500, B < 3000 x, = 25 tons per week X, = 25 tons for week R+R-R+ = 500 x3 = 869.25 tons per week P+P-P+ = 700 Z = \$222,677.50 J+ J- T = 400 ·35A+.45B=NR+NP+NJ A = 661/An of Stock A 74 · 6 A + · 5 B = LR + LP + LJ B= 64/ Re of stock B YAi = bblfh of A used in gosdini i ? i=1, Z.
YBi = bbl/h of B word in gostini i] i=1, Z. R=NR+LR P=NP+LP T = NJ + LTMaximize Z = 7(1/4,+1/2,)+10(1/Az+1/82) all variables are nonnegative 5.4. A = YAI + YAZ , A < 450 B=/B1+YB2, B = 700 Ophmum dolution: 2 = \$71,473.68 984A,+894, > 91 (4,+1/61) A=1684.21 , B=0 R= 500, P=700, J=400 98 / + 89 / = 93 (YAZ + YBZ) X1 = Tons of brown sugar per week 73 10/A1+8 YB, = 12(YA1+YBI) X3 = tons of white sugar per check 10 YAz + 8 YB, = 12 (YAz+YBZ) X3 = tons of powdered angar per week X4 = tons of molasses per week all variables are nonnegative Optimum dolution: Z = \$10,675 A= 450 661/2 B=700 661/2 Gusdini 1 production = 1 Ai + 181 = 61.11+213-89=275bb/h Gasdine 2 production = YAZ+1BZ = 388.89+486.11=875 6d/hr continued.

S = tons of steel scrap/day 75	76
A = tono of alum. scrap /day	
C = tons of Cast non scrap /day	Xi; = tons of ore i allocated to alloy & Wk = tons of alloy & produced
Ab = tono of alum. briguettes /day	
Sb = tono silicon briquettes /day	Maximize Z = 200 WA + 300 WB
a = tons of alum. I day	-30(X _{1A} +X _{1B})
g = tone of graphite /day	-40(X _{2A} +X _{2B}) -50(X _{3A} +X _{3B})
S = tono of vilicon / day	Subject to
QI = tons of alum in ingot I / day	
gI - tons of graphitin ingot I /day	Specification constraints:
gI = tone of graphite in ingot II /day	.2 ×1A + · 1 ×2A + · 05 ×3A ≤ · 8 WA 1
DI = tono of Selvien in ingot I / day	.1 X1A + .2 X2A + .05 X3A ≤ .3 WA (2)
dil = tono of Silican in ingot I /day	·3 X,A +·3 X2A +·2 X3A ≥ ·5 WA 3
I = tons of mgst I / day	1 x18 + ·2 x28 + ·05 x38 ≥ ·4 W8 (4)
Iz= tons of ingot II/day.	1 1 ×18 + · Z X28 + · 05 X38 & .6 W2 (3)
Minimize Z = 100 S+150 A+75 C+900 Ab+380 Sb	13 X18 + .3 X18 +.7 X38 > .3 Wb 6
s.f. S \(\langle \) \(\langl	·3 X _{IB} + ·3 X _{2B} + ·2 X _{3B} ≤ ·7 W _B (7)
a = .15+.95A+Ab 3 = .055+.01A+.15C	Ore constraints.
\$ = .445+.02A+.08 C+ 36	X _{IA} + X _{IB} ≤ 1000
$I_{j} = q_{I} + g_{I} + g_{I}$	
$I_{2} = QII + gII + SII$ $Q_{I} + Q_{II} \leq 25, SI + SI \leq 5, JI + gI \leq J$	X2A + X2B ≤ 2000
$.081 I_{1} \leq aI \leq .108 I_{1}$	X3A + K3B ≤ 3000
·015 I, ≤ 8 I ≤ ·03 I,	Title: Problem Zda-17 Final Iteration No: 12
·025I.≤8I<∞	Dojective value (max) =400000.0000
$0.062 I_{2} \leq \alpha I \leq 0.089 I_{2}$ $0.04 I_{2} \leq \beta I \leq \alpha$	## A 1799 9999 200.0000 359999.9688
·028I2 = 8I = .04/12	A3 A1A 1000.0000 300.0000 3000000.0312 A4 A1B 0.0000 -30.0000 -30.000
I, ≥ 130, I2 ≥ 250	#5 #28
Optimum solution:	AB x38
	1 (<) 0.000 1070.0000-2 (<) 0.0000 7070.0000-
Z = \$ 117,435.65	3 (>) 0.0000 0.0000+ 4 (>) 0.0000 0.0000+ 5 (4) 0.0000
S=0, A=38.2, C=1489.41	0 (*) 0.0000 300.0002+ 7 (*) 0.0000 100.0000- 8 (*) 1000.0000
Ab = Sb = 0	9 (4) 2000,0000 0.0000- 10 (4) 3000,0000 0.0000-
$I_1 = 130$, $I_2 = 250$	Solution:
a = 36.29, g = 223.79, 8= 119.92	Produce 1800 tons of alloy A
	and 1000 tons of alloy B.
	S. S

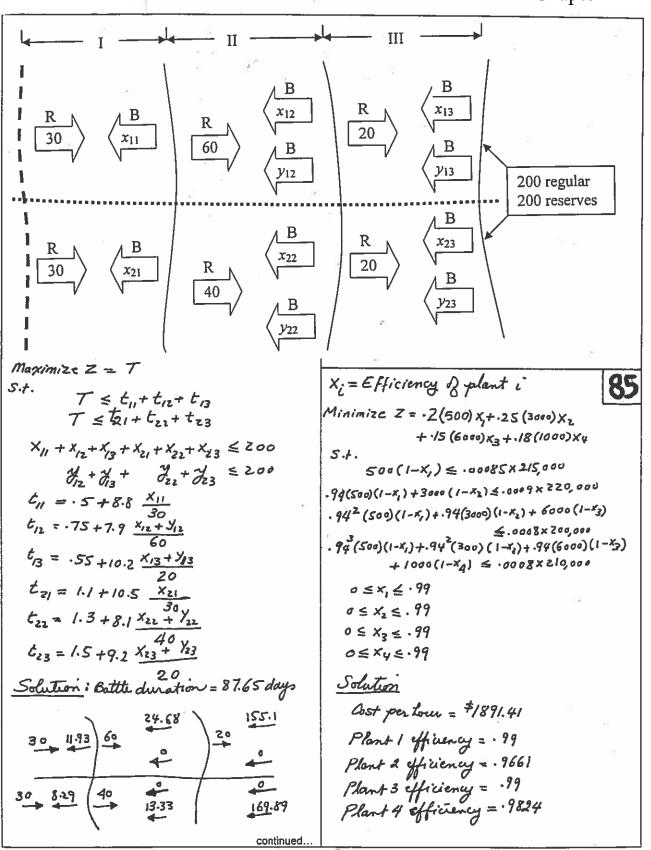
X:= Nbr. of ads for issue i, i= 1234 78 Minimize Z = 5, + 5, + 5, + 5, + 54 (-30,000+60000+30,000)X,+ 5,- 5, = -51x400,000 (10,000+30,000-45,000) X2+5-5+=·SIX 400,000 (40,000+10,000) X3+53-5+=·SIX 400,000 (90,000 -25,000) xy +5--5+=-51 x 400,000 $1500(X_1+X_2+X_2+X_4) \le 100,000$ $X_1, X_2, X_3, X_4 \geqslant 0$ Solution: $X_1 = 3.4$, $X_2 = 3.14$, $X_3 = 4.08$, $X_4 = 3.14$ X = Units of part i produced by department i, i=1,2 j=1,2,3 Maximize Z = min { X11+ 121 , X12+ 122 , X13+ 123 } Maximize Z = > 5.4. 7 = X1 + X21 7 = X12+ X22 7 = X13 + X23 $\frac{X_{11}}{R} + \frac{X_{12}}{C} + \frac{X_{13}}{10} \le 100$ $\frac{X_{21}}{6} + \frac{X_{12}}{12} + \frac{X_{23}}{4} \le 80$ Solution: Nbr. of assembly units = y = 556.2 ~ 557 $x_{11} = 354.78, x_{21} = 201.79$ $x_{12} = 0$, $x_{21} = 556.52$ $x_{.13} = 556.52$, $x_{23} = 0$ Xi = tons of coal i', i'= 1,2,3 Minimize z = 30X1+35X2+33X3 5.4. $2500 \times_1 + 1500 \times_2 + 1600 \times_3 \le 2000 (X_1 + X_2 + X_3)$ $X_1 \le 30$, $X_2 \le 30$, $X_3 \le 30$ X,+X2+X3 ≥ 50 Solution: Z= \$1361.11 x, = 27.22 tono, X2 = 0, X3 = 27.78 tons.

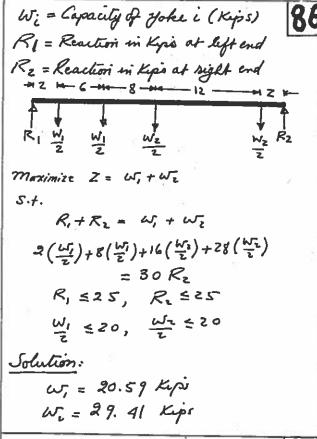
 $X_{i} = Space(in^{2})$ allocated to cereal cMaximize $z = 1.1X_{i} + 1.3X_{5} + 1.08X_{3} + 1.25X_{4} + 1.2X_{5}$ s.t. $16X_{i} + 2YX_{k} + 18X_{3} + 22X_{4} + 20X_{5} \leq 5000$ $X_{i} \leq 10^{0}, X_{2} \leq 85, X_{3} \leq 140, X_{4} \leq 80, X_{5} \leq 90$ $X_{i} \geq 0$ for all c = 1,2,...,5Solution: $Z = \frac{4}{3} \frac{314}{day}$ $X_{i} = 100, X_{3} = 140, X_{5} = 44$

 $X_2 = X_4 = 0$

2-27

ti = Green time in secs for highway i, 81 Cost (\$) per cubic yd: $M_{AXIMIZE} Z = 3\left(\frac{500}{3660}\right)t_1 + 4\left(\frac{600}{3600}\right)t_2 + 5\left(\frac{400}{3600}\right)t_3$ $\left(\frac{560}{3600}\right) t_1 + \left(\frac{600}{3600}\right) t_2 + \left(\frac{400}{3600}\right) t_3 \le \frac{510}{3600} \left(2.2 \times 60 - 3 \times 10\right)$ Solution: Z = \$58.04/L t, = 25, t2 = 43.6, t3 = 33.4 Sec H:= observation i Define Straight line as Fr = a +b, a,b unrestricted Minimize $Z = \sum_{i} y_{i} - \hat{y}_{i}$ = \(\frac{1}{2} \ \ \gamma_i - ai - b \) det di = | 7, - ai - b| Minimize $Z = d_1 + d_2 + \cdots + d_{10}$ 7. - ai - b ≤ di y.-ai-b ≥-di a, b, unrestricted Solution: 2 = 2.85714 i + 6.42857


(1) A1 / .2+2x.15=.50 .20+7x.15=1.25 (2) A3 \ .20+2x-15=.50 t, + t, +t, +3×10 ≤ 2.2×60, t, ≥ 25, t (4) P3 \ 2.10+7x.15=3.15 2.10+2x.15=2.40 Using the corde A1=1, A3=2, P1=3, P2=4, 82 AZ = 5, A4 = 6, let xij = 103 7d3 from source i to destination j i = 1,2,3,4, j = 5,6 Minimize Z = 1000 (.5 X = +1.25 X + .5 X = + .65 X24 + 2.15 X35 + 2.9 X36 + 3.15 X43 2.4X S.t. X₁₅ + X₁₆ ≤ 1760 X₃₅ + X₃₆ ≤ 20,000 X₂₅ + X₂₆ ≤ 1760 X₄₅ + X₄₆ ≤ 15,000 x15 + x25 + x35 + x45 ≥ 3520 X16+X26+X36+X46 = 3520 Al-AZ: XIS = 1760 (1000 CuYd) Al-A4: XI6 = 0 A3->A2: ×25 = 0 A3 - A4: X26 = 1760 PI - A2: X35 = 1760 Pl-A4: X36 = 0 $P2 \rightarrow A2 : \times_{45} = 0$ $P2 \rightarrow A4 : \times_{46} = 1760$ Coot = 10,032,000


Al = 2x1760x10x50 = 1760 (thousand) Yd A2 = 3520, A3 = 1760, A4 = 3520 Distances (center to center) in miles:

Xij = Blue regulars on front i in' defence line j, i= Hij = Blee reserves on front i in defense line j. tij = Delay days on front i mi defense line s: Maximize Z = min { t,+ t,+ ta, t,+ t,+ tz, }

continued...

83

Xi = Nor. fancraft of type i	7
allocated to route j (i=1,2,3,4, j=1,2,3,4)	
S; = Nbr. of passengers not servedon route j, j=1,2,3,4	
Minimize $Z = 1000(3x_{11}) + 1100(2x_{12}) + 1200(2x_{13}) + 1500(x_{14}) + 800(4x_{21}) + 900(3x_{22})$	
+ 1000 (3 x23) + 1000 (2 x24) + 600 (5 x31) + 800 (5 x32)	
+ 800 (4 x33) + 900 (2 x34) +405, +5052 + 4553 + 7054	
Subject to $x_{2j} \le 8$, $x_{3j} \le 10$	
50 (3 x11) + 30 (4 x21) + 20 (5 x31) + 51 = 100	0
$50(2x_{12}) + 30(3x_{22}) + 20(5x_{32}) + 5_2 = 200$ $50(2x_{13}) + 30(3x_{23}) + 20(4x_{33}) + 5_3 = 90$	0
$50(x_{14}) + 30(2x_{24}) + 20(2x_{34}) + 5y = /20$	0
All x_{ij} and $x_{ij} \ge 0$ continued.	- 2

	solution detect		*************	
eriable 	Value	Obj Coeff	Obj Yal Contrib	
1 x11	5.0000	3000.0000	14999,9990	
2 712	0.0000	2200,0000	0.0000	
3 x13	0.0000	2400,0000	0.0000	
6 x14	0.0000	1500.0000	0.0000	
5 x21	0.0000		0.0000	
6 x22	0.0000		0.0000	
7 x23	0,000	3000.0000	0.0000	
# <u>#24</u>	8.0000	2000,0000	15999.9990	
<u>। स्टा</u>	2.5000	3000.0000	7500.0015	
10 <u>x32</u>	7.5000	4000,0000	29999.9980	
11 233	0.0000	3200,0000	0.0000	
12 x34	0.0000	1800.0000	0.0000	
13 s1 '	0,0000	40.0000	0.0000	
14 =2	1250.0000	50.0000	62500.0000	
15 a3	899.9998	45.0000	40499.9922	
16 =4	720,0001	70.0000	50400.0078	
onstraint	RHS	Sleck(-)	/Surplus(+)	
(<)	5.0000	0.0	000-	
(<)	8.0000	0.0000-		
(∢)	18.0000	0.0000-		
{ - }	1000,0000	0.0000		
(=)	2000.0000	0,0000		
(=)	900.0000	0.0000		
(=)	1200,0000	0.0	000	

Aircraf Type	Route	Nbr. aircraft
1	ı	5
Z	4	8
3	{	2.5
3	2	7.5

Fractional solution must be rounded. Coet = \$ 221,900