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CHAPTER 2
Systems of Equations

EXERCISES 2.1 Gaussian Elimination

1 (a) Subtracting 5
2

times the first equation from the second equation yields 3
2
y = 3, or y = 2.

Substituting y = 2 into the first equation gives 2x− 3(2) = 2, or x = 4.
1 (b) Subtracting 2 times the first equation from the second equation yields −y = 3, or y = −3.

Substituting into the first equation gives x− 6 = −1, or x = 5.
1 (c) Subtracting −3 times the first equation from the second yields 7y = 21, or y = 3. Substi-

tuting into the first equation gives −x+ 3 = 2, or x = 1.

2 (a) [1, 1, 2]
2 (b) [1, 1, 1]
2 (c) [−1, 3, 2]

3 (a) 5z = 5 implies z = 1; 3y− 4(1) = −1 implies y = 1; 3x− 4(1) + 5(1) = 2 implies x = 1
3
.

3 (b) −3z = 3 implies z = −1; 4y−3(−1) = 1 implies y = −1
2
; x−2(−1

2
) + (−1) = 2 implies

x = 2.

4 (a) [1, 1/2,−1]
4 (b) [2, 1, 3]

5 If n increases to 3n, the approximate operation count changed from 2n3/3 to 2(3n)3/3 =
54n3/3, which will take 27 times as long.

6 Approximately 17 seconds.

7 It is given that (4000)2 operations require 0.002 seconds, corresponding to 500(4000)2 opera-
tions per second. Using the operation count 2n3/3, it will take about (2(9000)3/3)/(500(4000)2) ≈
61 seconds, to solve a general 9000× 9000 system.

8 400

COMPUTER PROBLEMS 2.1

1 (a) Putting together the code fragments from the text gives the program
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for j=1:n-1
for i=j+1:n

if abs(a(j,j))<eps; error(’zero pivot encountered’); end
mult = a(i,j)/a(j,j);
for k = j+1:n

a(i,k) = a(i,k) - mult*a(j,k);
end
b(i) = b(i) - mult*b(j);

end
end
for i = n:-1:1
for j = i+1:n

b(i) = b(i) - a(i,j)*x(j);
end
x(i) = b(i)/a(i,i);

end

Define the coefficient matrix a=[2 -2 -1;4 1 -2;-2 1 -1], b=[-2;1;-3] and ap-
ply the preceding MATLAB program. The result is x = [1, 1, 2].

1 (b) Proceed as in (a); the result of the MATLAB program is x = [1, 1, 1].
1 (c) Proceed as in (a); the result is x = [−1, 3, 2].

2 (a) [−2, 6]
2 (b) [5,−120, 630,−1120, 630]
2 (c) [−10, 990,−23760, 240240,−1261260, 3783780,−6726720, 7001280,−3938220, 923780]

EXERCISES 2.2 The LU Factorization

1 (a) Subtracting 3 times the top row from the second row yields the upper triangular matrix

U =

[
1 2
0 −2

]
. The matrix of multipliers is L =

[
1 0
3 1

]
. Check by multiplication:

LU =

[
1 0
3 1

] [
1 2
0 −2

]
=

[
1 2
3 4

]
.

1 (b) Subtracting 2 times the top row from the second row yields

U =

[
1 3
0 −4

]
and L =

[
1 0
2 1

]
.

Check by multiplication:

LU =

[
1 0
2 1

] [
1 3
0 −4

]
=

[
1 3
2 2

]
.
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1 (c) Subtracting −5

3
times the top row from the second row yields

U =

[
3 −4

0 −14
3

]
and L =

[
1 0

−5
3

1

]
.

Check by multiplication:

LU =

[
1 0

−5
3

1

][
3 −4

0 −14
3

]
=

[
3 −4
−5 2

]
.

2 (a)

 1 0 0
2 1 0
1 0 1

 3 1 2
0 1 0
0 0 3


2 (b)

 1 0 0
1 1 0
1
2

1
2

1

 4 2 0
0 2 2
0 0 2



2 (c)


1 0 0 0
0 1 0 0
1 2 1 0
0 1 0 1




1 −1 1 2
0 2 1 0
0 0 1 2
0 0 0 −1


3 (a) Subtracting 2 times the top row from the second row gives the factorization

LU =

[
1 0
2 1

] [
3 7
0 13

]
.

Solving Lc = b, or [
1 0
2 1

] [
c1
c2

]
=

[
1

−11

]
,

yields c1 = 1 and 2(1) + c2 = −11, or c2 = −13. Solving Ux = c, or[
3 7
0 −13

] [
x1
x2

]
=

[
1

−13

]
,

gives x2 = 1 and 3x1 + 7 = 1, or x1 = −2. Thus x = [−2, 1].

3 (b) Subtracting 2 times the top row from the second row gives the factorization

LU =

[
1 0
2 1

] [
2 3
0 1

]
.
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Solving Lc = b, or [
1 0
2 1

] [
c1
c2

]
=

[
1
3

]
,

yields c1 = 1 and 2(1) + c2 = 3, or c2 = 1. Solving Ux = c, or[
2 3
0 1

] [
x1
x2

]
=

[
1
1

]
,

gives x2 = 1 and 2x1 + 3(1) = 1, or x1 = −1. Thus x = [−1, 1].

4 (a) [−1, 1, 1]
4 (b) [1,−1, 2]

5 Since A is already factored as LU , only the back substitution is needed. Solving Lc = b, or
1 0 0 0
0 1 0 0
1 3 1 0
4 1 2 1



c1
c2
c3
c4

 =


1
1
2
0

 ,
yields c1 = 1, c2 = 1, c3 = −2, and c4 = −1. Solving Ux = c, or

2 1 0 0
0 1 2 0
0 0 −1 1
0 0 0 1



x1
x2
x3
x4

 =


1
1
−2
−1

 ,
yields x4 = −1, x3 = 1, x2 = −1, and x1 = 1. Thus x = [1,−1, 1,−1].

6 34 seconds

7 To solve 1000 upper-triangular 500× 500 systems requires 1000 back substitutions, or approx-
imately 1000(500)2 operations. To solve one full 5000× 5000 system requires approximately
2(5000)3/3 + 2(5000)2 ≈ 2(5000)3/3 operations. The number of seconds to solve the latter
is the ratio

2(5000)3/3

1000(500)2
=

1000

3
≈ 333 seconds,

or 5 minutes, 33 seconds (or 5 minutes, 34 seconds if the 2(5000)2 term is not neglected).

8 10 min., 40 sec.

9 The first problem Ax = b0 requires approximately 2n3/3 multiplications, while the 100

subsequent problems require 2n2 each. Setting the two equal gives the equation
2n3

3
= 200n2,

or n = 300.
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COMPUTER PROBLEMS 2.2

1 The elimination part of the code must be supplemented by filling in the entries of L and U . The
diagonal entries of L are ones, and the remaining entries are the multipliers from mult. It is
also necessary to change the k loop to go from j to n, in order to place a zero in the eliminated
location of U . MATLAB code follows:

l=diag(ones(n,1));
for j = 1:n-1

for i = j+1:n
if abs(a(j,j))<eps; error(’zero pivot encountered’); end
mult = a(i,j)/a(j,j);l(i,j)=mult;
for k = j:n

a(i,k) = a(i,k) - mult*a(j,k);
end

end
end
l
u=a

EXERCISES 2.3 Sources of Error

1 (a) The matrix infinity norm is the maximum of the absolute row sums, in this case the
maximum of 3 and 7. So ||A||∞ = 7.

1 (b) The maximum of the absolute row sums is |1|+ | − 7|+ |0| = 8.

2 (a) 21
2 (b) 2403
2 (c) does not exist

3 (a) The solution of the system[
1 1
1.0001 1

] [
x1
x2

]
=

[
2

2.0001

]
,

is [1, 1]. The forward error is ||[1, 1]− [−1, 3]||∞ = 2. The backward error is the infinity norm
of

b− Axc =

[
2

2.0001

]
−
[

1 1
1.0001 1

] [
−1

3

]
=

[
0

0.0002

]
,

which is 0.0002. The error magnification factor is the ratio of the relative forward and back-
ward errors, or (2/1)/(0.0002/2.0001) = 20001.

3 (b) The forward error is ||[1, 1]− [0, 2]|| = 1. The backward error is the infinity norm of

b− Axc =

[
2

2.0001

]
−
[

2
2

]
=

[
0

0.0001

]
,
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which is 0.0001. The error magnification factor is the ratio of the relative forward and back-
ward errors, or (1/1)/(0.0001/2.0001) = 20001.

3 (c) The calculation is similar to (a) and (b). The forward error is ||[1, 1] − [2, 2]|| = 1, the
backward error is ||[−2,−2.0001]|| = 2.0001, and the error magnification factor is
(1/1)/(2.0001/2.0001) = 1.

3 (d) Forward error is ||[1, 1]− [−2, 4]|| = 3, the backward error is ||[0, 0.0003]|| = 0.0003, and
the error magnification factor is (3/1)/(0.0003/2.0001) = 20001.

3 (e) Forward error is ||[1, 1]−[−2, 4.0001]|| = 3.0001, the backward error is ||[0.0001, 0.0002]|| =
0.0002, and the error magnification factor is (3.0001/1)/(0.0002/2.0001) = 30002.5.

4 (a) FE = 2, BE = 0.01, EMF = 400
4 (b) FE = 2, BE = 0.01, EMF = 400
4 (c) FE = 1, BE = 0.005, EMF = 400

5 (a) The solution of the system [
1 −2
3 −4

] [
x1
x2

]
=

[
3
7

]
,

is [1,−1]. The forward error is ||[1,−1] − [−2,−4]||∞ = 3, and the relative forward error is
3/||[1,−1]|| = 3. The backward error is the infinity norm of

b− Axc =

[
3
7

]
−
[

1 −2
3 −4

] [
−2
−4

]
=

[
−3
−3

]
,

and the relative backward error is is ||[−3,−3||/||[3, 7]|| = 3/7. The error magnification factor
is the ratio of the relative forward and backward errors, or 3/3

7
= 7.

5 (b) The forward error is ||[1,−1]− [−2,−3]||∞ = 3, and the relative forward error is 3/1 = 3.
The backward error is the infinity norm of

b− Axc =

[
3
7

]
−
[

1 −2
3 −4

] [
−2
−3

]
=

[
0
1

]
,

and the relative backward error is is ||[0, 1||/7 = 1/7. The error magnification factor is the
ratio 3/1

7
= 21.

5 (c) The forward error is ||[1,−1]−[0,−2]||∞ = 1, and the relative forward error is 1/1 = 1. The
backward error is the infinity norm of [−1,−1], and the relative backward error is is 1/7. The
error magnification factor is the ratio of the relative forward and backward errors, or 1/1

7
= 7.

5 (d) The forward error is ||[1,−1]− [−1,−1]||∞ = 2, and the relative forward error is 2/1 = 2.
The backward error is ||[3, 7] − [1, 1]||∞ = 6, and the relative backward error is is 6/7. The
error magnification factor is 2/6

7
= 7/3.

5 (e) The inverse matrix is

A−1 =

[
−2 1

−3
2

1
2

]
.
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The condition number of A is ||A|| · ||A−1|| = 7 · 3 = 21.

6 (a) FE = 11, BE = 0.324, EMF = 33.9
6 (b) FE = 101, BE = 0.418, EMF = 241.8
6 (c) FE = 601, BE = 1/6.01, EMF = 3612.01
6 (d) FE = 600, BE = 0.499168, EMF = 1202
6 (e) 3612.01

7 The maximum row of the 5 × 5 Hilbert matrix is the top row [1, 1
2
, 1
3
, 1
4
, 1
5
], and ||H||∞ =

1 + 1
2

+ 1
3

+ 1
4

+ 1
5

= 137
60

.

8 (a) 4/δ + 4 + δ
8 (b) 4/δ + 4 + δ

9 (a) The inverse is

A−1 =

 0 0 1
1 0 0
0 1 0

 .
The condition number is ||A||∞ · ||A−1||∞ = 1 · 1 = 1.

9 (b) The inverse D−1 is a diagonal matrix with entries d−11 , . . . , d−1n . The condition number is
||D||∞ · ||D−1||∞ = max |di| ·max 1/|di| = max |di|/min |di|.

10 (a) κ(A) = 36012.001.
10 (b) RFE = 6001. RBE = 1/6.001. EMF = 36012.001.

11 (a) The three properties that define a vector norm must be checked.
(i) ||x||∞ ≥ 0 is guaranteed by the definition ||x||∞ = max |xi|, and if ||x||∞ = 0, then all
components xi must be zero.
(ii) For a scalar α,

||αx||∞ = max{|αx1|, . . . , |αxn|}
= max{|α||x1|, . . . , |α||xn|}
= |α|max{|x1|, . . . , |xn|}
= |α| · ||x||∞.

(iii)

||x+ y||∞ = max{|x1 + y1|, . . . , |xn + yn|}
≤ max{|x1|+ |y1|, . . . , |xn|+ |yn|}
≤ max{|x1|, . . . , |xn|}+ max{|y1|, . . . , |yn|}
= ||x||∞ + ||y||∞

c©2018 Pearson Education, Inc.
37

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134696454-SOLUTIONS-5/


11 (b) The three properties:
(i) ||x||1 ≥ 0 is guaranteed by the definition ||x||1 = |x1| + . . . + |xn|, and if ||x||1 = 0, all
components xi must be zero.
(ii) For a scalar α,

||αx||1 = |αx1|+ . . .+ |αxn|
= |α|(|x1|+ . . .+ |xn|)
= |α| · ||x||1

(iii) The triangle inequality is

||x+ y||1 = |x1 + y1|+ . . .+ |xn + yn|
≤ |x1|+ |y1|+ . . .+ |xn|+ |yn|
= ||x||1 + ||y||1

13 For a matrix A, the operator norm of the vector infinity norm is

max
||Ax||∞
||x||∞

where the maximum is taken over all vectors x. By property (ii) of vector norms, this is equal
to the maximum ||Ax||∞, where the maximum is taken over all unit vectors x in the infinity
norm, or

max ||Ax||∞ = max{a11x1 + . . .+ a1nxn, . . . , an1x1 + . . .+ annxn}

where |x1|, . . . , |xn| ≤ 1. In fact, the maximum is reached when all xi are +1 or −1, where
the sign of xi is chosen to match the sign of ai1. Here i denotes the largest row in the sense of
the infinity vector norm. Therefore

||A||∞ = maximum absolute row sum of A = max
||x||=1

||Ax|| = max
x

||Ax||∞
||x||∞

.

15 (a) The unit vector that maximizes ||Ax||∞ is x = [1, 1], so that

Ax =

[
1 2
3 4

] [
1
1

]
=

[
3
7

]
.

Note that ||x||∞ = 1, ||Ax||∞ = 7, and ||A||∞ = 7. Any scalar multiple of x will work as
well.
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15 (b) The unit vector that maximizes ||Ax||∞ is x = [1,−1, 1]. The signs are chosen to
maximize row 3 of Ax. Since

Ax =

 1 5 1
−1 2 −3

1 −7 0

 1
−1

1

 =

 −3
−6

8

 ,
we have ||x||∞ = 1, ||Ax||∞ = 8, and ||A||∞ = 8. Any scalar multiple of x will also work.

16 (a) [0, 1]
16 (b) [0, 1, 0]

17 Applying Gaussian elimination yields the matrices 10 20 1
1 1.99 6
0 50 1

 −→
 10 20 1

0 −0.01 5.9
0 50 1

 −→
 10 20 1

0 −0.01 5.9
0 0 29501


where the last multiplier is l32 = −5000. The LU-factorization is

LU =

 1 0 0
0.1 1 0
0 −5000 1

 10 20 1
0 −0.01 5.9
0 0 29501

 ,
and the largest magnitude multiplier is −5000.

COMPUTER PROBLEMS 2.3

1 (a) Since the answers depend on rounding errors, they will vary slightly with the exact sequence
of operations used. For example, using the naive Gaussian elimination code of Computer
Problem 2.1.1 gives the forward error ||x − xc||∞ ≈ 6.6 × 10−10 and error magnification
factor ≈ 4.6 × 106, while the MATLAB backslash command, a more sophisticated algorithm,
returns forward error≈ 5.4×10−10 and error magnification factor≈ 3.7×106. The condition
number of A is approximately 7× 107.

1 (b) The MATLAB code of Computer Problem 2.1.1 gives forward error ||x−xc||∞ ≈ 1.5×10−3

and error magnification factor ≈ 6.2 × 1012, while the MATLAB backslash command returns
forward error≈ 1.1×10−3 and error magnification factor≈ 9.1×1012. The condition number
of A is approximately 1.3× 1014.

2
n FE EMF cond(A)

(a) 6 8.88× 10−16 5.83 8.61
(b) 10 1.11× 10−15 9.33 11.26
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3 Using naive Gaussian elimination as in Computer Problem 2.1.1, the results are:
n FE EMF cond (A)

100 5.3× 10−11 1.2× 103 1.0× 104

200 5.8× 10−10 6.3× 103 4.0× 104

300 3.0× 10−9 8.7× 103 9.0× 104

400 4.5× 10−9 7.0× 103 1.6× 105

500 9.6× 10−9 4.8× 104 2.5× 105

The MATLAB backslash command is slightly more efficient, yielding the results:
n FE EMF cond (A)

100 5.7× 10−12 6.3× 103 1.0× 104

200 3.4× 10−11 1.9× 104 4.0× 104

300 6.2× 10−11 3.2× 104 9.0× 104

400 1.8× 10−10 9.6× 104 1.6× 105

500 2.6× 10−10 1.1× 105 2.5× 105

4

n FE EMF cond (A)

100 4.29× 10−9 5.87× 106 6.18× 107

200 7.61× 10−7 4.18× 108 1.29× 1010

300 1.61× 10−4 8.30× 1010 6.20× 1011

400 0.00830 3.04× 1012 1.48× 1013

500 0.0578 2.07× 1013 2.28× 1014

5 The exact n depends slightly on the code, as in Computer Problem 1. Using the naive Gaussian
elimination code of Computer Problem 2.1.1, the solution for n = 11 rounds to the correct
solution x = [1.0, . . . , 1.0] within one correct decimal place, while the solution for n = 12
does not. If the MATLAB backslash command is used, the n = 12 solution rounds correctly to
one decimal place and n = 13 does not.

EXERCISES 2.4 The PA=LU Factorization

1 (a)

[
1 3
2 3

]
−→

P =

[
0 1
1 0

]
exchange rows 1 and 2 −→

[
2 3
1 3

]
−→

sub 1
2

x row 1
from row 2 −→

[
2 3
1
2�
��

3
2

]
[

0 1
1 0

] [
1 3
2 3

]
= PA = LU =

[
1 0
1
2

1

][
2 3

0 3
2

]
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1 (b)

[
2 4
1 3

]
−→

subtract 1
2

x row 1
from row 2 −→

[
2 4
1
2�
��

1

]
[

1 0
0 1

] [
2 4
1 3

]
= PA = LU =

[
1 0
1
2

1

][
2 4
0 1

]
1 (c)

[
1 5
5 12

]
−→

P =

[
0 1
1 0

]
exchange rows 1 and 2 −→

[
5 12
1 5

]
−→

sub 1
5

x row 1
from row 2 −→

[
5 12
1
5�
��

13
5

]
[

0 1
1 0

] [
1 5
5 12

]
= PA = LU =

[
1 0
1
5

1

][
5 12

0 13
5

]
1 (d)

[
0 1
1 0

]
−→

P =

[
0 1
1 0

]
exchange rows 1 and 2 −→

[
1 0
0 1

]
[

0 1
1 0

] [
0 1
1 0

]
= PA = LU =

[
1 0
0 1

] [
1 0
0 1

]

2 (a)

 0 1 0
0 0 1
1 0 0

 1 1 0
2 1 −1
−1 1 −1

 =

 1 0 0

−1
2

1 0
1
2

1
3

1


 2 1 −1

0 3
2
−3

2

0 0 1


2 (b)

 0 1 0
1 0 0
0 0 1

 0 1 3
2 1 1
−1 −1 2

 =

 1 0 0
0 1 0

−1
2
−1

2
1

 2 1 1
0 1 3
0 0 4


2 (c)

 0 1 0
0 0 1
1 0 0

 1 2 −3
2 4 2
−1 0 3

 =

 1 0 0

−1
2

1 0
1
2

0 1


 2 4 2

0 2 4
0 0 −4


2 (d)

 0 0 1
1 0 0
0 1 0

 0 1 0
1 0 2
−2 1 0

 =

 1 0 0
0 1 0

−1
2

1
2

1

 −2 1 0
0 1 0
0 0 2


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3 (a)

[
3 7
6 1

]
−→

P =

[
0 1
1 0

]
exchange rows 1 and 2 −→

[
6 1
3 7

]
−→

sub 1
2

x row 1
from row 2 −→

[
6 1
1
2�
��

13
2

]
[

0 1
1 0

] [
3 7
6 1

]
= PA = LU =

[
1 0
1
2

1

][
6 1

0 13
2

]
Lc = Pb: [

1 0
1
2

1

] [
c1
c2

]
=

[
0 1
1 0

] [
1

−11

]
=

[
−11

1

]
Solving from the top,

c1 = −11

1

2
(−11) + c2 = 1⇒ c2 =

13

2

Ux = c: [
6 1

0 13
2

] [
x1
x2

]
=

[
−11

13
2

]
From the bottom,

13

2
x2 =

13

2
⇒ x2 = 1

6x1 + 1(1) = −11⇒ x1 = −2

The solution is x = [−2, 1].
3 (b)

 3 1 2
6 3 4
3 1 5

 −→
P =

 0 1 0
1 0 0
0 0 1


exchange rows 1 and 2 −→

 6 3 4
3 1 2
3 1 5



−→
subtract 1

2
x row 1

from row 2 −→

 6 3 4
1
2�
��
−1

2
0

3 1 5


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−→
subtract 1

2
x row 1

from row 3 −→

 6 3 4
1
2�
��
−1

2
0

1
2�
��
−1

2
3

 −→
subtract 1 x row 2

from row 3 −→

 6 3 4
1
2�
��
−1

2
0

1
2�
��

1�
��
3


 0 1 0

1 0 0
0 0 1

 3 1 2
6 3 4
3 1 5

 = PA = LU =

 1 0 0
1
2

1 0
1
2

1 1


 6 3 4

0 −1
2

0

0 0 3


Solve Lc = Pb:  1 0 0

1
2

1 0
1
2

1 1


 c1
c2
c3

 =

 0 1 0
1 0 0
0 0 1

 0
1
3

 =

 1
0
3


Starting at the top,

c1 = 1

1

2
(1) + c2 = 0⇒ c2 = −1

2
1

2
(1) + 1(−1

2
) + c3 = 3⇒ c3 = 3

Solve Ux = c:  6 3 4

0 −1
2

0

0 0 3

 x1
x2
x3

 =

 1

−1
2

3


Starting at the bottom,

3x3 = 3 ⇒ x3 = 1

−1

2
x2 = −1

2
⇒ x2 = 1

6x1 + 3(1) + 4(1) = 1 ⇒ x1 = −1

Therefore the solution is x = [−1, 1, 1].

4 (a) [1,−1, 2]
4 (b) [5, 4, 3]

5 According to Theorem 2.8, simply exchange rows 2 and 5 of the identity matrix.

P =


1 0 0 0 0
0 0 0 0 1
0 0 1 0 0
0 0 0 1 0
0 1 0 0 0


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6 (a)


1 0 0 0
0 0 0 1
0 0 1 0
0 1 0 0


6 (b) The second and fourth columns will be exchanged.

7 The matrix has been changed by moving row 1 to row 4, row 4 to row 3, and row 3 to row
1. According to Theorem 2.8, this can be done by multiplying on the left with a permutation
matrix constructed by applying the same changes to the identity matrix. Therefore the leftmost
matrix is 

0 0 1 0
0 1 0 0
0 0 0 1
1 0 0 0

 .

8

 1 0 0
0 0 1
0 1 0

 10 20 1
1 1.99 6
0 50 1

 =

 1 0 0
0 1 0

1/10 − 1
5000

1

 10 20 1
0 50 1
0 0 5.9002

.

Largest multiplier is 1/10.

9 (a) 
1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

 −→


1 0 0 1
−1�
��

1 0 2

−1�
��
−1 1 2

−1�
��
−1 −1 2



−→


1 0 0 1
−1�
��

1 0 2

−1�
��
−1�
��

1 4

−1�
��
−1�
��
−1 4

 −→


1 0 0 1
−1�
��

1 0 2

−1�
��
−1�
��

1 4

−1�
��
−1�
��
−1�
��

8


The PA=LU factorization is

1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 1




1 0 0 1
−1 1 0 1
−1 −1 1 1
−1 −1 −1 1

 =


1 0 0 0
−1 1 0 0
−1 −1 1 0
−1 −1 −1 1




1 0 0 1
0 1 0 2
0 0 1 4
0 0 0 8


9 (b) Following the pattern in (a), P = I , since partial pivoting results in no row exchanges. The

entries of L are 1 on the main diagonal, and −1 in all lower triangular locations. The matrix
U is the identity matrix except for column n, which is [20, 21, 22, . . . , 2n−1]T .
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10 (a) Under partial pivoting, all multipliers are less than one in absolute value. During the
elimination of column k, each entry aij is changed by the addition of at most the largest entry
of the matrix A. Therefore the largest entry of the matrix can at most double in absolute value
during elimination of each column k. There are n − 1 columns to eliminate, so the largest
entry of U is at most 2n−1.

10 (b) The analogous fact is that the ratio max{|uij|}/max{|aij|} ≤ 2n−1.

EXERCISES 2.5 Iterative Methods

1 (a) The Jacobi equations are

uk+1 =
5 + vk

3

vk+1 =
4 + uk

2

Starting with [u0, v0] = [0, 0], the first two steps are[
u1
v1

]
=

[
5
3

2

]
,

[
u2
v2

]
=

[
7
3
17
6

]
.

The Gauss-Seidel equations are

uk+1 =
5 + vk

3

vk+1 =
4 + uk+1

2

Starting with [u0, v0] = [0, 0], the first two steps are[
u1
v1

]
=

[
5/3

17/6

]
,

[
u2
v2

]
=

[
47
18
119
36

]
.

1 (b) The Jacobi equations are

uk+1 =
vk
2

vk+1 =
uk + wk + 2

2

wk+1 =
vk
2
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Starting with [u0, v0, w0] = [0, 0, 0], the first two steps are u1
v1
w1

 =

 0
1
0

 ,
 u2

v2
w2

 =

 1
2

1
1
2

 .
The Gauss-Seidel equations are

uk+1 =
vk
2

vk+1 =
uk+1 + wk + 2

2

wk+1 =
vk+1

2

Starting with [u0, v0, w0] = [0, 0, 0], the first two steps are u1
v1
w1

 =

 0
1
1
2

 ,
 u2

v2
w2

 =

 1/2

3/2

3/4

 .
1 (c) The Jacobi equations are

uk+1 =
6− vk − wk

3

vk+1 =
3− uk − wk

3

wk+1 =
5− uk − vk

3

Starting with [u0, v0, w0] = [0, 0, 0], the first two steps are u1
v1
w1

 =

 2
1
5
3

 ,
 u2

v2
w2

 =

 10/9

−2/9

2/3

 .
The Gauss-Seidel equations are

uk+1 =
6− vk − wk

3

vk+1 =
3− uk+1 − wk

3

wk+1 =
5− uk+1 − vk+1

3
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Starting with [u0, v0, w0] = [0, 0, 0], the first two steps are u1
v1
w1

 =

 2
1
3
8
9

 ,
 u2

v2
w2

 =


43
27
14
81
262
243

 .
2 (a) Jacobi [u2, v2] = [22/15,−11/15] Gauss-Seidel [u2, v2] = [134/75,−209/225]
2 (b) Jacobi [u2, v2, w2] = [−39/40,−49/120, 23/24]

Gauss-Seidel [u2, v2, w2] = [−191/180,−361/720, 89/80]
2 (c) Jacobi [u2, v2, w2] = [−3/4, 5/4, 3/8] Gauss-Seidel [u2, v2, w2] = [−9/32, 169/128, 87/256]

3 (a) The SOR equations are

uk+1 = (1− ω)uk + ω
5 + vk

3

vk+1 = (1− ω)vk + ω
4 + uk+1

2

where ω = 1.5. Starting with [u0, v0] = [0, 0], the first two steps are

u1 = −1

2
u0 +

3(5 + v0)

6
=

5

2

v1 = −1

2
v0 +

3(4 + u1)

4
=

39

8

and

u2 = −1

2
u1 +

3(5 + v1)

6
=

59

16

v2 = −1

2
v1 +

3(4 + u2)

4
=

213

64

3 (b) The SOR equations are

uk+1 = (1− ω)uk + ω
vk
2

vk+1 = (1− ω)vk + ω
uk+1 + wk + 2

2

wk+1 = (1− ω)wk + ω
vk+1

2

where ω = 1.5. Starting with [u0, v0, w0] = [0, 0, 0], the first two steps are [u1, v1, w1] =
[0, 3

2
, 9
8
] and [u2, v2, w2] = [9

8
, 39
16
, 81
64

].
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3 (c) The SOR equations are

uk+1 = (1− ω)uk + ω
6− vk − wk

3

vk+1 = (1− ω)vk + ω
3− uk+1 − wk

3

wk+1 = (1− ω)wk + ω
5− uk+1 − vk+1

3

where ω = 1.5. Starting with [u0, v0, w0] = [0, 0, 0], the first two steps are [u1, v1, w1] =
[3, 0, 1] and [u2, v2, w2] = [1, 1

2
, 5
4
]

4 (a) ω = 1, [u2, v2] = [134/75,−209/225]; ω = 1.2, [u2, v2] = [2.089,−1.040]
4 (b) ω = 1, [u2, v2, w2] = [−191/180,−361/720, 89/80];

ω = 1.2, [u2, v2, w2] = [−1.235,−0.646, 1.168]
4 (c) ω = 1, [u2, v2, w2] = [−9/32, 169/128, 87/256]; ω = 1.2, [u2, v2, w2] = [−0.27, 1.281, 0.371]

5 (a) By dividing an eigenvector v associated to λ by its largest magnitude entry, we can find
an eigenvector whose largest magnitude entry vm is exactly 1. The mth row of the eigenvalue
equation Av = λv is therefore

Am1v1 + . . .+ Am,m−1vm−1 + Amm + Am,m+1vm+1 + . . .+ Amnvn = λ.

Since |vi| ≤ 1 for all 1 ≤ i ≤ n, it follows that

|Amm − λ| = |Am1v1 + . . .+ Am,m−1vm−1 + Am,m+1vm+1 + . . .+ Amnvn|

≤
∑
j 6=m

|Amj|.

5 (b) If λ = 0 is an eigenvalue of A, then by the Gerschgorin Circle Theorem there exists an m
such that |Amm| ≤

∑
j 6=m

|Amj|, which contradicts strict diagonal dominance.

COMPUTER PROBLEMS 2.5

1 The MATLAB program jacobi.m can be used to solve the system after defining A and b with
an altered version of sparsesetup.m. The initial vector is set to [0, . . . , 0]. By checking
the infinity norm error of the solution x, say by the command norm(x-1,inf), the Jacobi
method can be iterated until the error is less than 0.5 × 10−6. For n = 100, 36 Jacobi steps
are required. For n = 100000, 36 steps are required. In both cases, the backward error is
approximately 4.6× 10−7.

2 16209 steps, BE = 4.84× 10−7

3 The Gauss-Seidel method can be coded in MATLAB as follows:
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% Gauss-Seidel
% Inputs: sparse matrix a, r.h.s b,
% d = diagonal of a, r = rest of a,
% numsteps = number of Jacobi iterations
% Output: solution x
function x = gaussseidel(a,b,k)
n=length(b); % find n
d=diag(diag(a)); u=triu(a,1);l=tril(a,-1);
x=zeros(n,1); % Initialize vector x
for j=1:k % loop for GS iteration

b1=b-u*x;
for i=1:n

x(i)=(b1(i)-l(i,:)*x)/d(i,i);
end

end

5 Using the code from Computer Problem 3, 21 steps of Gauss-Seidel iteration, starting from x =
[0, . . . , 0], are needed to converge to the correct solution within 6 decimal places. Using the
code from Computer Problem 4, 16 steps of SOR with ω = 1.2, starting from x = [0, . . . , 0],
are needed to converge to the correct solution within 6 decimal places.

6 (a) 8110 steps, BE = 4.82× 10−7

6 (b) 2699 steps, BE = 4.86× 10−7

7 The results will depend on the computer. Using the sparse matrix capability of MATLAB and the
Gauss-Seidel code from Computer Problem 3, typical results for one second of computation
are given in the table.

n steps forward error

400 50 1.1× 10−8

800 15 1.7× 10−3

1200 7 2.5× 10−2

EXERCISES 2.6 Methods for Symmetric Positive-Definite Matrices

1 (a) For x = [x1, x2] 6= 0,

xTAx =
[
x1 x2

] [ 1 0
0 3

] [
x1
x2

]
= x21 + 3x22 > 0.

1 (b) For x = [x1, x2] 6= 0,

xTAx =
[
x1 x2

] [ 1 3
3 10

] [
x1
x2

]
= x21 + 6x1x2 + 10x22 = (x1 + 3x2)

2 + x22 > 0.
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1 (c) For x = [x1, x2, x3] 6= 0,

xTAx =
[
x1 x2 x3

]  1 0 0
0 2 0
0 0 3

 x1
x2
x3

 = x21 + 2x22 + 3x23 > 0.

2 (a) [1, 1]
2 (b) [2,−1]
2 (c) [0, 1]
2 (d) [0, 1, 0]

3 (a) Clearly RTR =

[ √
1 0

0
√

3

][ √
1 0

0
√

3

]
is a Cholesky factorization; alternatively, R

can be chosen to be the negative of this matrix.

3 (b) The top row of R is R11 =
√
a11 = 1, followed by R12 = u =

[3]
√
a11

= 3. Subtracting

the outer product uuT from the lower principal submatrix [10] leaves 10 − 3 = 1. Repeat-
ing the factorization step for the remaining 1 × 1 matrix yields R22 =

√
1 = 1. Therefore

R =

[
1 3
0 1

]
satisfies RTR =

[
1 0
3 1

] [
1 3
0 1

]
=

[
1 3
3 10

]
.

3 (c) Clearly RTR =


√

1 0 0

0
√

2 0

0 0
√

3



√

1 0 0

0
√

2 0

0 0
√

3

 is a Cholesky factorization; alter-

natively, R can be chosen to be the negative of this matrix.

5 (a) The top row of R is R11 =
√
a11 = 1, followed by R12 = u =

[2]
√
a11

= 2. Subtracting the

outer product uuT from the lower principal submatrix [8] leaves 8− 4 = 4. Repeating the fac-

torization step for the remaining 1× 1 matrix yields R22 =
√

4 = 2. Therefore R =

[
1 2
0 2

]
satisfies RTR =

[
1 0
2 2

] [
1 2
0 2

]
=

[
1 2
2 8

]
.

5 (b) The top row of R is R11 =
√
a11 = 2, followed by R12 = u =

[−2]
√
a11

= −1. Subtracting the

outer product uuT from the lower principal submatrix [5/4] leaves 5/4− 1 = 1/4. Repeating
the factorization step for the remaining 1 × 1 matrix yields R22 =

√
1/4 = 1/2. Therefore

R =

[
2 −1

0 1/2

]
satisfies RTR =

[
2 0

−1 1/2

] [
2 −1

0 1/2

]
=

[
4 −2

−2 5/4

]
.

5 (c) The top row of R is R11 =
√
a11 = 5, followed by R12 = u =

[5]
√
a11

= 1. Subtracting

the outer product uuT from the lower principal submatrix [26] leaves 26 − 1 = 25. Repeat-
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ing the factorization step for the remaining 1 × 1 matrix yields R22 =
√

25 = 5. Therefore

R =

[
5 1
0 5

]
satisfies RTR =

[
5 0
1 5

] [
5 1
0 5

]
=

[
25 5
5 26

]
.

5 (d) The top row of R is R11 =
√
a11 = 1, followed by R12 = u =

[−2]
√
a11

= −2. Subtracting

the outer product uuT from the lower principal submatrix [8] leaves 5 − (−2)(−2) = 1. Re-
peating the factorization step for the remaining 1× 1 matrix yields R22 =

√
1 = 1. Therefore

R =

[
1 −2
0 1

]
satisfies RTR =

[
1 0
−2 1

] [
1 −2
0 1

]
=

[
1 −2
−2 5

]
.

6 (a) R =

 2 −1 0
0 1 −3
0 0 1


6 (b) R =

 1 2 0
0 1 2
0 0 1


6 (c) R =

 1 1 1
0 1 1
0 0 1


6 (d) R =

 1 −1 −1
0 1 0
0 0 1


7 (a) The Cholesky factorization is RTR =

[
1 0
−1 2

] [
1 −1
0 2

]
.

The two-part back substitution is RT c = b followed by Rx = c.

The solution of
[

1 0
−1 2

] [
c1
c2

]
=

[
3
−7

]
is c =

[
3
−2

]
,

and the solution of
[

1 −1
0 2

] [
x1
x2

]
=

[
3
−2

]
is x =

[
2
−1

]
.

7 (b) The Cholesky factorization is RTR =

[
2 0
−1 3

] [
2 −1
0 3

]
.

The two-part back substitution is RT c = b followed by Rx = c.

The solution of
[

2 0
−1 3

] [
c1
c2

]
=

[
10
4

]
is c =

[
5
3

]
,

and the solution of
[

2 −1
0 3

] [
x1
x2

]
=

[
5
3

]
is x =

[
3
1

]
.

8 (a) x =

 1
2
0


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8 (b) x =

 1
2
−1


9 Multiply out xTAx =

[
x1 x2

] [ 1 2
2 d

] [
x1
x2

]
= x21 + 4x1x2 + dx22 > 0 and complete the

square as (x1 + 2x2)
2 + (d− 4)x22. If d > 4, then xTAx is expressed as a sum of squares and

is positive for all x 6= 0.

10 A is positive definite if d > 4.

11 We attempt to find the Cholesky factorization. The matrix A is positive-definite exactly when
the diagonal entries of R are positive. The top row of R is R11 =

√
a11 = 1, followed by

[R12 R13] = u =
[−1 0]
√
a11

= [−1 0]. Subtracting the outer product uuT =

[
1 0
0 0

]
from the

lower principal submatrix uuT =

[
2 1
1 d

]
leaves uuT =

[
1 1
1 d

]
. Repeating the factoriza-

tion step for the remaining 2×2 matrix yieldsR22 =
√

1 = 1, followed byR23 = u =
[1]
√
a22

= 1.

Subtracting the outer product uuT from the lower principal submatrix [d] leaves d − 1. The
R33 entry will be the square root of d− 1. The matrix is positive-definite if and only if d > 1.

13 (a) Following the Conjugate Gradient Method pseudocode:

x0 =

[
0
0

]
, r0 = d0 =

[
1
1

]

α0 =

[
1
1

]T [
1
1

]
[

1
1

]T [
2 2
2 5

] [
1
1

] =
2

10
=

1

5

x1 =

[
0
0

]
+

1

5

[
1
1

]
=

[
1/5

1/5

]

r1 =

[
1
1

]
− 1

5

[
3
7

]
=

[
0.4
−0.4

]
β0 =

rT1 r1
rT0 r0

= 0.16
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d1 = 12

[
0.4
−0.4

]
+ 0.16

[
1
1

]
=

[
0.56
−0.24

]

α1 =

[
0.4
−0.4

]T [
0.4
−0.4

]
[

0.56
−0.24

]T [
1 2
2 5

] [
0.56
−0.24

] = 5

x2 =

[
1/5

1/5

]
+ 5

[
0.56
−0.24

]
=

[
3
−1

]

r2 =

[
0.4
−0.4

]
− 5

[
1 2
2 5

] [
0.56
−0.24

]
=

[
0
0

]
13 (b)

x0 =

[
0
0

]
, r0 = d0 =

[
1
3

]

α0 =

[
1
3

]T [
1
3

]
[

1
3

]T [
1 2
2 5

] [
1
3

] =
10

58
=

5

29

x1 =

[
0
0

]
+

5

29

[
1
3

]
=

[
5/29

15/29

]

r1 =

[
1
3

]
− 5

29

[
7
17

]
=

[
−6/29

2/29

]

β0 =
rT1 r1
rT0 r0

=
4

(29)2

d1 = 12

[
−6/29

2/29

]
+

4

(29)2

[
1
3

]
=

 − 170
(29)2

70
(29)2


c©2018 Pearson Education, Inc.

53

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134696454-SOLUTIONS-5/


α1 =

[
−6/29

2/29

]T [
−6/29

2/29

]
1

(29)4

[
−170

70

]T [
1 2
2 5

] [
−170

70

] = 5.8

x2 =

[
5/29

15/29

]
+ 5.8

[
−170/(29)2

70/(29)2

]
=

[
−1

1

]

r2 =

[
−6/29

2/29

]
− 5.8

[
1 2
2 5

][
−170/(29)2

70/(29)2

]
=

[
0
0

]
14 (a) [1, 1]
14 (b) [−1, 1]

15 α0 = 1/A, x1 = b/A, r1 = b− Ab/A = 0

COMPUTER PROBLEMS 2.6

1 (a) The Conjugate Gradient loop written in pseudocode in the textbook can be coded as follows.

function x=cg(a,b,n)
% Inputs: symm. pos. def. matrix a, right-hand side b, number of steps n
% Output: solution x
x=zeros(n,1);
r=b-a*x;
d=r;d1(:,1)=d;r1(:,1)=r;
for i=1:n

if max(abs(r))<eps break; end
alf=d’*r/(d’*a*d);
x=x+alf*d;
rold=r;
r=rold-alf*a*d;
beta=r’*r/(rold’*rold);
d=r+beta*d;d1(:,i+1)=d;r1(:,i+1)=r;

end

The test for r equal to zero uses eps, the machine epsilon. The MATLAB command

>> x=cg([1 0;0 2],[2;4],2)

returns the solution x = [2, 2].
1 (b) Applying the code from part (a) returns the solution x = [3,−1].

2 (a) [1, 1, 1]
2 (b) [2,−1, 1]
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3 (a) The Conjugate Gradient code from Computer Problem 1 can be used with a = hilb(4)
and b = ones(4,1) to yield the solution x = [−4, 60,−180, 140] after 4 steps.

3 (b) The exact solution x = [−8, 504,−7560, 46200,−138600, 216216,−168168, 51480]. is
approached after more than 20 steps of Conjugate Gradient.

4 (a) [1, . . . , 1]
4 (b) [1, . . . , 1]

5 Use Program 2.1, sparsesetup.m to define the matrix a and right-hand side (b). For
n = 100, Conjugate Gradient runs 34 steps before the residual r is smaller than machine
epsilon in the infinity norm. The final residual is r ≈ 9.76 × 10−17. For n = 1000, only 35
steps are needed to make the residual r ≈ 7.12× 10−17. For n = 10000, 35 steps are needed
to make the residual r ≈ 7.17× 10−17.

6 Part (a) shows the output of MATLAB spy command on the matrix A. Part (b) shows the error
as a function of step number for no preconditioner (circles), Jacobi preconditioner (squares),
and Gauss-Seidel preconditioner (diamonds).

0 200 400 600 800 1000

0

200

400

600

800

1000
nz = 4994
(a)

0 10 20 30 40
10−15

10−10

10−5

100

Step Number

Er
ro

r

(b)

7 Part (a) shows the output of MATLAB spy command on the matrix A. The code shown in
the answer to Computer Problem 1(a) above can be slightly modified to carry out the Precon-
ditioned Conjugate Gradient Method outlined in pseudocode in the textbook. Applying this
code to the A and b defined in the problem result in Part (b), showing the error as a function of
step number for no preconditioner (circles), Jacobi preconditioner (squares), and Gauss-Seidel
preconditioner (diamonds).
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8 Part (a) shows the output of MATLAB spy command on the matrix A. Part (b) shows the error
as a function of step number for no preconditioner and Jacobi preconditioner (circles), and
Gauss-Seidel preconditioner (diamonds).
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9 Part (a) shows the output of MATLAB spy command on the matrix A. Applying the code as
described in the answer to Computer Problem 7 to the A and b defined in the problem result in
Part (b), showing the error as a function of step number for no preconditioner (circles), Jacobi
preconditioner (squares), and Gauss-Seidel preconditioner (diamonds).
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10 Part (a) shows the output of MATLAB spy command on the matrix A. Part (b) shows the
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error as a function of step number for no preconditioner and Jacobi preconditioner (circles),
and Gauss-Seidel preconditioner (diamonds).
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EXERCISES 2.7 Nonlinear Systems of Equations

1 (a) DF (u, v) =

[
3u2 0

v3 3uv2

]

1 (b) DF (u, v) =

[
v cosuv u cosuv
veuv ueuv

]
1 (c) DF (u, v) =

[
2u 2v

2(u− 1) 2v

]

1 (d) DF (u, v, w) =

 2u 1 −2w
vw cosuvw uw cosuvw uv cosuvw

vw4 uw4 4uvw3


2 (a)

[
2 + u+ 2v
u+ v

]

2 (b)

[
2 + 2(u− 1)− (v − 1)

3 + 2(u− 1) + (v − 1)

]

3 (a) The curves are circles with radius 1 centered at (u, v) = (0, 0) and (1, 0), respectively.
Solving the first equation for v2 and substituting into the second yields (u− 1)2 + 1− u2 = 1

or −2u+ 1 = 0, so u = 1
2
. The two solutions are (u, v) = (1

2
,
√
3
2

) and (1
2
,−
√
3
2

).
3 (b) The curves are ellipses with semimajor axes 1 and 2 centered at zero and aligned with the

x and y axes. Solving by substitution gives the four solutions (u, v) = (± 2√
5
,± 2√

5
).

3 (c) The curves are a hyperbola and a circle that intersects one half of the hyperbola in two
points. Solving by substitution gives the two solutions (u, v) = (4

5
(1 +

√
6),±1

5

√
3 + 8

√
6).
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4 (a) x2 = [1/2, 7/8]
4 (b) x2 = [161/180, 161/180]
4 (c) x2 = [2269/388, 651/388]

5 (a) Given initial values A0 = I and x0 = [1, 1]T , set F
[
u
v

]
=

[
u2 + v2 − 1

(u− 1)2 + v2 − 1

]
.

According to Broyden’s Method,

x1 = x0 − A−10 F (x0) =

[
1
1

]
−
[

1
0

]
=

[
0
1

]
∆1 = F (x1)− F (x0) = F

[
0
1

]
− F

[
1
1

]
=

[
0
1

]
−
[

1
0

] [
−1

1

]
δ1 = x1 − x0 =

[
−1

0

]

A1 = A0 +
(∆1 − A0δ1)δ

T
1

δT1 δ1
=

[
1 0
0 1

]
+

[
0
1

] [
−1 0

]
[
−1 0

] [ −1
0

] =

[
1 0
0 1

]

x2 = x1 − A−11 F (x1) =

[
0
1

]
−
[

0
1

]
=

[
0
0

]

5 (b) Proceed as in (a), with F
[
u
v

]
=

[
u2 + 4v2 − 4

4u2 + v2 − 4

]
. According to Broyden’s Method,

x1 = x0 − A−10 F (x0) =

[
1
1

]
−
[

1
1

]
=

[
0
0

]
∆1 = F (x1)− F (x0) = F

[
0
0

]
− F

[
1
1

]
=

[
−4
−4

]
−
[

1
1

]
=

[
−5
−5

]
δ1 = x1 − x0 =

[
−1
−1

]

A1 = A0 +
(∆1 − A0δ1)δ

T
1

δT1 δ1
=

[
1 0
0 1

]
+

[
−4
−4

] [
−1 −1

]
[
−1 −1

] [ −1
−1

] =

[
3 2
2 3

]

x2 = x1 − A−11 F (x1) =

[
0
0

]
−
[

3 2
2 3

]−1 [ −4
−4

]
=

[
0.8
0.8

]
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5 (c) Proceed as in (a), with F
[
u
v

]
=

[
u2 − 4v2 − 4

(u− 1)2 + v2 − 4

]
.According to Broyden’s Method,

x1 = x0 − A−10 F (x0) =

[
1
1

]
−
[
−7
−3

]
=

[
8
4

]
∆1 = F (x1)− F (x0) = F

[
8
4

]
− F

[
1
1

]
=

[
−4
61

]
−
[
−7
−3

]
=

[
3

64

]
δ1 = x1 − x0 =

[
7
3

]

A1 = A0 +
(∆1 − A0δ1)δ

T
1

δT1 δ1
=

[
1 0
0 1

]
+

[
−4
61

] [
7 3

]
[

7 3
] [ 7

3

] =

[
0.5172 −0.2069
7.3621 4.1552

]

x2 = x1 − A−11 F (x1) =

[
8
4

]
− A−11

[
−4
61

]
=

[
9.0892

−12.6103

]
6 (a) x1 = [0, 1], x2 = [0, 0]
6 (b) x1 = [0, 0], x2 = [0.8, 0.8]
6 (c) x1 = [8, 4], x2 ≈ [9.0892,−12.6103]

COMPUTER PROBLEMS 2.7

1 (a) For the function F
(
u
v

)
=

[
u2 + v2 − 1

(u− 1)2 + v2 − 1

]
,

the Jacobian is DF (u, v) =

[
2u 2v

2(u− 1) 2v

]
.

Multivariate Newton’s Method from p. 131 of the textbook with appropriate initial vectors
converges to the roots shown in the Exercise 3(a) solution above.

1 (b) Similar to (a); check solutions with Exercise 3(b).
1 (c) Similar to (a); check solutions with Exercise 3(c).

2 [1, 1], [0.865939, 0.462168], [0.886809,−0.294007]

3 Given the multivariate function F
(
u
v

)
=

[
u3 − v3 + u

u2 + v2 − 1

]
,

the Jacobian is DF (u, v) =

[
3u2 + 1 −3v2

2u 2v

]
.

c©2018 Pearson Education, Inc.
59

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134696454-SOLUTIONS-5/


Using the initial vector [1, 1], Newton’s Method converges to [0.50799200, 0.86136179]. Using
the initial vector [−1,−1], Newton’s Method converges to root [−0.50799200,−0.86136179].

4 The two solutions are [2, 1,−1] and ≈ [1.0960,−1.1592,−0.2611].

5 (a) Points that lie on all three spheres satisfy

(u− 1)2 + (v − 1)2 + w2 − 1 = 0

(u− 1)2 + v2 + (w − 1)2 − 1 = 0

u2 + (v − 1)2 + (w − 1)2 − 1 = 0.

The Jacobian isDF =

 2(u− 1) 2(v − 1) 2w

2(u− 1) 2v 2(w − 1)

2u 2(v − 1) 2(w − 1)

 .Under the Newton iteration (2.51),

initial guesses near each of the roots [1, 1, 1] and [1/3, 1/3, 1/3] converge to them.
5 (b) Points that lie on all three spheres satisfy

(u− 1)2 + (v + 2)2 + w2 − 25 = 0

(u+ 2)2 + (v − 2)2 + (w + 1)2 − 25 = 0

(u− 4)2 + (v + 2)2 + (w − 3)2 − 25 = 0.

The Jacobian isDF =

 2(u− 1) 2(v + 2) 2w

2(u+ 2) 2(v − 2) 2(w + 1)

2(u− 4) 2(v + 2) 2(w − 3)

 .Under the Newton iteration (2.51),

initial guesses near each of the roots [17/9, 22/9, 19/9] and [1, 2, 3] converge to them.

6 Newton’s Method converges linearly to the double root [1, 2, 3].

7 (a) Broyden I can be used to compute the root with initial vector [1, 1]. Convergence occurs
within 15 decimal places to the root (1/2,

√
3/2) after about 11 steps.

7 (b) Similar to (a). Broyden I converges within 15 decimal places to the root (2/
√

5, 2/
√

5)
after about 13 steps.

7 (c) Similar to (a). Broyden I converges to the root (4(1 +
√

6)/5,
√

3 + 8
√

6/5) within 15
decimal places after about 14 steps.

8 (a) The MATLAB code broyden2 can be used to compute the root with initial vectors [1, 1]
and [1, 2]. Broyden II converges within 15 decimal places to the root (1/2,

√
3/2) after about

11 steps.
8 (b) Similar to (a). Broyden II converges within 15 decimal places to the root (2/

√
5, 2/
√

5)
after about 13 steps.

8 (c) Similar to (a). Broyden II converges to the root (4(1 +
√

6)/5,
√

3 + 8
√

6/5) within 15
decimal places after about 14 steps.
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9 (a) Applying Broyden I with initial matrix A0 = I and initial guesses near each of the roots
[1, 1, 1] and [1/3, 1/3, 1/3] converge to them.

9 (b) Applying Broyden I with initial matrix A0 = I and initial guesses near each of the roots
[17/9, 22/9, 19/9] and [1, 2, 3] converge to them.

10 Broyden I converges linearly to [1, 2, 3].

11 (a) Applying Broyden II with initial matrix B0 = I and initial guesses near each of the roots
[1, 1, 1] and [1/3, 1/3, 1/3] converge to them.

11 (b) Applying Broyden II with initial matrix B0 = I and initial guesses near each of the roots
[17/9, 22/9, 19/9] and [1, 2, 3] converge to them.

12 Broyden II converges linearly to [1, 2, 3].
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