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Chapter 2
Limits

2.1 The Idea of Limits

2.1.1 The average velocity of the object between time ¢t = a and ¢ = b is the change in position divided by
s(b) — s(a)

the elapsed time: vy, = 5
—a

2.1.2 In order to compute the instantaneous velocity of the object at time ¢ = a, we compute the average
s() = s(0)
— 2 We

velocity over smaller and smaller time intervals of the form [a, ], using the formula: v,, = .
—a

t —_
let t approach a. If the quantity M approaches a limit as t — a, then that limit is called the
—a
instantaneous velocity of the object at time t = a.
—s(2
2.1.3 The average velocity is % — 156 — 136 = 20.
4) —s(1 144 -84 60
2.1.4 The average velocity is s(4) = s(1) = = — =20.
4-1 3 3
2.1.5
s(2)—s(0) 72-0
. = = 36.
a0 2
b s(1.5) — s(0) _ 66 — 0 _
1.5-0 1.5
s(1) —s(0) 52-0
. = = 52.
“ 10 1
s(.:5)—s(0) 30-0
d. = = 60.
H5—0 .5
2.1.6
o 5(2.5) — s(.5) _ 150 — 46 _ 5o,
25—-.5 2
2) — s(. 136 — 4
b s(2) 5(5): 36 6:60.
2—-.5 1.5
. s(1.5) — s(.5) _ 114 — 46 _ 68,
1.5—-.5 1
s(1) —s(.5) 84—46
d. = = 76.
1—-.5 )
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68 Chapter 2. Limits

s(1.01) — s(1) 5(1.001) — s(1) $(1.0001) — s(1)

2.1.7 = 47.84, whil = 47.984 and
, while an 0001

that the instantaneous velocity at ¢ = 1 is approximately 48.

= 47.9984. It appears

$(2.01) — s(2) $(2.001) — s(2) $(2.0001) — s(2)

2.1.8 = —4.16, whil = —4.016 and
, while an 0001

that the instantaneous velocity at t = 2 is approximately —4.

= —4.0016. It appears

2.1.9 The slope of the secant line between points (a, f(a)) and (b, f(b)) is the ratio of the differences f(b) —

b) —
f(a) and b — a. Thus mgee. = 7](( ) f(a).

b—a
2.1.10 In order to compute the slope of the tangent line to the graph of y = f(¢) at (a, f(a)), we compute
the slope of the secant line over smaller and smaller time intervals of the form [a,t]. Thus we consider
7t - f@)

t—a

line to the curve y = f(t) at t = a.

and let ¢ — a. If this quantity approaches a limit, then that limit is the slope of the tangent

2.1.11 Both problems involve the same mathematics, namely finding the limit as t — a of a quotient of
g(t) — g(a)

differences of the form for some function g.

2.1.12 Note that f(2) = 64.

0.5) = 28. So the slope of the secant line is %?57_6;1 = %?2 = 24.

1.9) &~ 63.84. So the slope of the secant line is about 631'%4:264 = 1.6.

I

i
iii. f(1.99) ~ 63.9984. So the slope of the secant line is about 83:2384-61 — (.16.

i

1.999) ~ 63.999984. So the slope of the secant line is about $2:999984-61 — (016,

~ e 63.99999984—64 _
v. f(1.9999) ~ 63.99999984. So the slope of the secant line is about >>57%5ee=2=>% = 0.0016.

a. i.

ii

iv

b. A good guess is that the limit is 0.

c. The slope of the tangent line is the limit of the slopes of the secant lines, so it is also 0.

2.1.13
s(4) —s(1) 256 — 112

. 1,4 h v = = 48.

a. Over [1,4], we have v, g 3 8
3) —s(1 240 — 112

b. Over [1, 3], we have v,, = 5(3) — s(1) = — 64.
3—1 2
2) —s(1 192 — 112

c. Over [1,2], we have v,, = s( ; i( ) = ) : = 80.

d. Over [1,1 + h], we have

Cs(1+h)—s(1)  —16(1+h)® +128(1 + h) — (112)  —16h — 32 + 128h

Vv =7 TR 1 h h

- w — 96 — 16h = 16(6 — h).
2.1.14
a. Over [0, 3], we have v,y = 8<3§ : (S)(O) = 65'93_ 20 _ 15.3.
b. Over [0,2], we have vy, = 8(2; : 8(0) = 60'42_ 20 _ 20.2.
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c. Over [0, 1], we have vy, =

d. Over [0, k], we have

s(1) — 5(0) _

45.1 — 20

=25.1.

1-0

1

B h
h)(—4.9h + 30
:( I + ):—4.9h—|—30.
h
2.1.15
150
The slope of the secant line is given by
2) — (0. 136 — 4
100 s( ; g(g 5) _ 136 6 = 60. This represents
the avefage velocity of the object over the time
50 interval [0.5, 2].
00 05 10 15 20 '
2.1.16
)
10
The slope of the secant line is given by
0.8 D) — 1
M = — = 2. This represents the av-
0.6 0.5—-0 0.5
erage velocity of the object over the time interval
04 [0,0.5].
02
00 01 02 03 04 05 !
2.1.17 Time Interval [1,2] | [1,1.5] | [1,1.1] | [1,1.01] | [1,1.001]
Average Velocity 80 88 94.4 95.84 95.984
The instantaneous velocity appears to be 96 ft/s.
01.1g | Time Interval || [2,3] | [2,2.25] | [2,2.1] | [2,2.01] | [2,2.001]
Average Velocity 5.5 9.175 9.91 10.351 10.395
The instantaneous velocity appears to be 10.4 m/s.
2.1.19 Time Interval [2,3] | [2.9,3] | [2.99,3] | [2.999,3] | [2.9999,3] | [2.99999, 3]
Average Velocity 20 5.6 4.16 4.016 4.002 4.0002
The instantaneous velocity appears to be 4 ft/s.
2.1.20 Time Interval [n/2,7] | [7/2,n/2+4 1] | [7/2,7/24 .01] | [x/2,7/2+.001] | [n/2,7/2+ .0001]
Average Velocity || —1.90986 —0.149875 —0.0149999 —0.0015 —0.00015

The instantaneous velocity appears to be 0 ft/s.
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70 Chapter 2. Limits
2.1.91 Time Interval [3,3.1] | [3,3.01] | [3,3.001] | [3,3.0001]
Average Velocity || —17.6 | —16.16 | —16.016 | —16.002
The instantaneous velocity appears to be —16 ft/s.
2.1.92 Time Interval [7/2,7/2+ 1] | [7/2,7/2+ .01] | [7/2,7/2+.001] | [7/2,7/2+ .0001]
Average Velocity —19.9667 —19.9997 —20.0000 —20.0000
The instantaneous velocity appears to be —20 ft/s.
2.1.23 Time Interval [0,0.1] | [0,0.01] | [0,0.001] | [0,0.0001]
Average Velocity || 79.468 | 79.995 80.000 80.0000
The instantaneous velocity appears to be 80 ft/s.
2.1.94 Time Interval [0,1] [0,0.1] [0,0.01] | [0,0.001]
Average Velocity || —10 | —18.1818 | —19.802 | —19.98
The instantaneous velocity appears to be —20 ft/s.
2.1.25 x Interval [2,2.1] | [2,2.01] | [2,2.001] | [2,2.0001]
Slope of Secant Line 8.2 8.02 8.002 8.0002
The slope of the tangent line appears to be 8.
2.1.26 x Interval [7/2,7/24 1] | [7/2,7/2+4 .01] | [x/2,7/24 .001] | [x/2,7/2+ .0001]
Slope of Secant Line —2.995 —2.99995 —3.0000 —3.0000
The slope of the tangent line appears to be —3.
2.1.27 x Interval [0,0.1] | [0,0.01] | [0,0.001] | [0,0.0001]
Slope of the Secant Line || 1.05171 | 1.00502 1.0005 1.00005
The slope of the tangent line appears to be 1.
2.1.98 x Interval [1,1.1] | [1,1.01] | [1,1.001] | [1,1.0001]
Slope of the Secant Line 2.31 2.0301 2.003 2.0003
The slope of the tangent line appears to be 2.
2.1.29
\
a. Note that the graph is a parabola with ver- or
tex (2,-1). _
b. At (2,—1) the function has tangent line with of
slope 0.
1 v 4 '
. z Interval 2,2.1] | [2,2.01] | [2,2.001] | [2,2.0001]
Slope of the Secant Line 0.1 0.01 0.001 0.0001

The slope of the tangent line at (2, —1) appears to be 0.
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2.1.30

a. Note that the graph is a parabola with ver-
tex (0,4).

b. At (0,4) the function has a tangent line with !
slope 0.

c. This is true for this function — because the 2
function is symmetric about the y-axis and
we are taking pairs of points symmetrically
about the y axis. Thus f(0+h) =4— (0+ -2
h)? =4 — (—h)? = f(0 — h). So the slope of

4—h?—(4—h?
any such secant line is - (( 7 ) =
0

%:

0.

2.1.31

a. Note that the graph is a parabola with ver-
tex (4, 448).

b. At (4,448) the function has tangent line with
slope 0, so a = 4. 100

z Interval [4,4.1] | [4,4.01] | [4,4.001] | [4,4.0001]
Slope of the Secant Line —1.6 —.16 —.016 —.0016

The slopes of the secant lines appear to be
approaching zero.

d. On the interval [0,4) the instantaneous ve-
locity of the projectile is positive.

e. On the interval (4,9] the instantaneous ve-
locity of the projectile is negative.

2.1.32

a. The rock strikes the water when s(t) = 96. This occurs when 16t% = 96, or t? = 6, whose only positive
solution is t = V6 ~ 2.45 seconds.

t Interval [V6 —.1,4/6] | [vV6—.01,4/6] | [V/6 —.001,/6] | [v6 — .0001,+/6]
Average Velocity 76.7837 78.2237 78.3677 78.3821

When the rock strikes the water, its instantaneous velocity is about 78.38 ft/s.

2.1.33 For line AD, we have

N Ve W R () D P

Tp— A T—(n/2)  7w/2

Copyright (© 2019 Pearson Education, Inc.
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Chapter 2. Limits

For line AC, we have

yo —ya _ f(n/2+.5)— f(m/2) _COS(7T/2+.5)

ro—xa (724 .5)—(7/2) 5

For line AB, we have

_YB—Ya _ f(m/24.05) — f(m/2) _ cos(m/2+.05)

~ 0.958851.

= = =~ 0.999583.
MAB = ea | (n/2+.05) — (1/2) 05
Computing one more slope of a secant line:
e — f(m/2+.01) = f(7/2) _ cos(m/2+ .01) ~ 0.999983.

(r/24.01) — (x/2) .01

Conjecture: The slope of the tangent line to the graph of f at z = 7 /2 is 1.

2.2 Definition of a Limit

2.2.1 Suppose the function f is defined for all x near a except possibly at
number L whenever z is sufficiently close to (but not equal to) a, then we

a. If f(z) is arbitrarily close to a
write lim f(x) = L.

T—a

2 if
2.2.2 False. For example, consider the function f(x) = " ite#£0
4 ifz=0.
Then lim f(z) =0, but f(0) = 4.
z—0
2.2.3 2.24
a. h(2) =5. a. g(0) =0
b. lim h(x) = 3.
T—2 b linbg( ):
c. h(4) does not exist. o
d. lim f(z) = 1. c. g(1) =2.
r—4
e. lim h(z) = 2. d. i% g(x) =
T—5
2.2.5 2.2.6
a. f(1)=-1. a. f(2)=2.
b. ;1_)ml flx)=1. b. ilian(l‘) =4.
c. f(0)=2. c. lim f(z) =4.
r—4
d. li =2.
ﬂﬁlg%)f(x) d. lim f(x) =2.
T—5
2.2.7
z 1.9 1199 | 1.999 | 1.9999 | 2.1 | 2.01 | 2.001 | 2.0001
a 2_4
f(z) = a;_ 5 3.9 | 3.99 | 3.999 | 3.9999 | 4.1 | 4.01 | 4.001 | 4.0001
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2.2. Definition of a Limit 73
2.2.8
x 0.9 0.99 0.999 | 0.9999 | 1.1 1.01 1.001 | 1.0001
a. 31
f(x) = 3;_1 2.71 | 2.9701 | 2.997 | 2.9997 | 3.31 | 3.30301 | 3.003 | 3.0003
3
b, lim &1 3
x—1 1 —
2.2.9
t 8.9 8.99 8.999 9.1 9.01 9.001
a. t—9
g(t) = N 5.98329 | 5.99833 | 5.99983 | 6.01662 | 6.00167 | 6.00017
b. lim t=9 =
t—9 \/f -3
2.2.10
a x 0.01 0.001 0.0001 | 0.00001
fx) = (1—|—x)1/‘” 2.70481 | 2.71692 | 2.71815 | 2.71827
T —0.01 | —0.001 | —0.0001 | —0.00001
f(x) = (1—|—x)1/‘” 2.732 | 2.71964 | 2.71842 2.71830
b. lim (1 + z)Y/® ~ 2.718.
x—0
c. im(1+2)/* =e.
x—0

2.2.11 Suppose the function f is defined for all  near a but greater than a. If f(z) is arbitrarily close to
L for z sufficiently close to (but strictly greater than) a, then we write lim+ flx) = L.
r—a
2.2.12 Suppose the function f is defined for all z near a but less than a. If f(x) is arbitrarily close to L for
x sufficiently close to (but strictly less than) a, then we write lim f(x)= L.
r—a—

2.2.13 It must be true that L = M.

2.2.14
x 1.9 1.99 1.999 1.9999
a.
glx) = 212 | 0.92625 | 0.99251 | -0.99925 | -0.99993
T 2.1 2.01 2.001 2.0001
g(x) = &=4 | 1.07625 | 1.00751 | 1.00075 | 1.00008
b. lim g(x) =—1. lim g(z) = 1. lim g(z) does not exist.
z—2~ z—2t z—2
2.2.15
a. f(1)=0. b. ng{l_ fz) =1 c. ff{i f(z)=0.

d. lim1 f(x) does not exist, since the two one-sided limits aren’t equal.
T—

2.2.16 Because graphing utilities generally just plot a sampling of points and “connect the dots,” they can

sometimes mislead the user investigating the subtleties of limits.

Copyright (© 2019 Pearson Education, Inc.
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2.2.17

a. (1) =3. b Jlip fle) =2 o i, (=)=

i —9. _ £ i =

d. lim f(z) =2 e f(3)=2. Jim f()

g. xllféi fz) =1 h. ilgé f(z) does not exist. i f(2) =

il —3. k. li -3 T _

jo lim f(z) =3 Jlim f(z) =3 L lim f(z)
2.2.18

a. g(2) = 3. b. wlg;lﬁ g(z) = 2. c. xlg& g(x) =3.

d. li d t exist. — £ 1 =3

lim g(z) does not exis . g(3)=2. Jlim g(z)

g lim g(z) =2. h. g(4) = 3. i lim g(z) = 3.

2.2.19
y=f)
1k
-2 -1 0 1 =

f(-1)=2, lim f(z)=2, lm f(z)=3, 1_i>m_1 f(z) does not exist.

r——1— rz——11

2.2.20

y=fx)

)

f(2) is undefined. lim f(x) =1, lim f(z) =1, and lim f(z) = 1.
r—2+ x—2

r—2~

Copyright (© 2019 Pearson Education, Inc.
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2.2.21

y=f()

f(4)=3, lim f(z)=2, lim f(x) =25, lim f(x) does not exist.
r—4+ T—4

T4~

2.2.22

f(5) does not exist. lim f(z) =10, lim f(z)= 10, lim f(z) = 10.
z—5+ r—5

r—5~

Copyright (© 2019 Pearson Education, Inc.
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2.2.24

20 40 60 80 100 120

100) d t exist. i =20, i =20, li = 20.
f(100) does ot exist. lim f(z)=20, lim f(z)=20, lim f(z)

2.2.25

f(1) does not exist. lim f(z) =3, lim f(x)=3, lim f(z) = 3.
z—1+ r—1

r—1-

Copyright (© 2019 Pearson Education, Inc.
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2.2.26

f(1) does not exist. lim f(z) =—-2, lim f(z)=-2, lim f(z) = —2.
r—1+ r—1

r—1—

2.2.27
4
3 y=f)
| :
i 2 X
—
4
-5
T 1.99 1.999 1.9999
f(x):ﬁ 0.0021715 | 0.00014476 | 0.000010857
x 2.0001 2.001 2.01
f(x):ﬁ —0.000010857 | —0.00014476 | —0.0021715

From the graph and the table, the limit appears to be 0.

Copyright (© 2019 Pearson Education, Inc.
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2.2.28

/ e

x —0.1 —0.01 | —0.001 | 0.001 0.01 0.1
f(z) | 1.8731 | 1.98673 | 1.9987 | 2.0013 | 2.0134 | 2.1403
From both the graph and the table, the limit appears to be 2.
2.2.29

1 0 1

x 0.9 0.99 0.999 1.001 1.01 1.1
f(z) | 1.993342 | 1.999933 | 1.999999 | 1.999999 | 1.999933 | 1.993342
From both the graph and the table, the limit appears to be 2.
2.2.30

Copyright (© 2019 Pearson Education, Inc.
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T —-0.1 | —0.01 | —0.001 | 0.001 0.01 0.1
f(z) | 2.8951 | 2.99 2.999 | 3.001 | 3.0099 | 3.0949

From both the graph and the table, the limit appears to be 3.

2.2.31

x —-1.1 —1.01 —1.001 —0.999 —-0.99 -0.9
f(z) | —0.9983342 | —0.9999833 | —0.9999998 | 0.9999998 | 0.9999833 | 0.9983342

From both the graph and the table, it appears that the limit does not exist.

2.2.32

18

12

6
y=f)
1 2 3 4 !

s \

T 2.9 2.99 2.999 3.001 3.01 3.1

g(z) | —5.51 | —5.9501 | —5.995001 | 6.005001 | 6.0501 | 6.51

From both the graph and the table, it appears that the limit does not exist.

2.2.33
2

a. False. In fact lim x
r—3 T —

= lim (z + 3) = 6.
r—3
2 if 0:
b. False. For example, if f(z) = x* ifx#0;
5 ifx=0

and if a = 0 then f(a) =5 but ligl f(z)=0.

c. False. For example, the limit in part a of this problem exists, even though the corresponding function

is undefined at a = 3.
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d. False. It is true that the limit of \/z as x approaches zero from the right is zero, but because the
domain of v/ does not include any numbers to the left of zero, the two-sided limit doesn’t exist.
cosz 0

e. True. Note that lim cosxz =0 and lim sinz=1,s0 lim — =-=0.
T—7/2 z—7/2 z—7/2 Sinx 1

2.2.34

a. Note that H is piecewise constant. osh

b. lim H(z) = 0, lim H(z) = 1, and so o
z—0~ z—07+
lim H(x) does not exist.
—0

L n L .
~10 -05 05 10

2.2.35

]7
a. Note that the function is piecewise constant.

b. whﬁn213f(w) =.89.

c. lim f(w) = 1.1 corresponds to the fact 0.89¢ o——
w—3+

that for any piece of mail that weighs slightly 068l

over 3 ounces, the postage will cost $1.1

cents. lim f(w) = $0.89 corresponds to 047
w—3~ .

the fact tﬁz;t for any piece of mail that weighs
slightly less than 3 ounces, the postage will
cost 89 cents. Because the two one-sided lim-
its are not equal, iiglg f(w) does not exist.

2.2.36

h 0.01 0.001 | 0.0001 | —0.0001 | —0.001 | —0.01
Q2™ 1 0.48535 | 0.498504 | 0.49985 | 0.50015 | 0.501504 | 0.515367

(1+2n)r 1

W et T3
2.2.37
T 1.37 1.47 1.57 1.58 1.68 1.78
cot3z | 344773 | 3.10016 | 3.00001 | 3.0008 | 3.11834 | 3.49316

cot 3z

im
z—7/2 COSXT

2.2.38
z 0.9 0.99 | 0999 | 1.001 | 1.01 1.1
War—st U | 9.29222 | 2.02691 | 2.00267 | 1.99734 | 1.97357 | 1.75541

lim B2 1)

=2.
z—1 3 —1
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2.2.39
x 0.99 0.999 0.9999 | 1.0001 1.001 1.01
% 15.5803 | 15.9574 | 15.9957 | 16.0043 | 16.0427 | 16.4339
Q1 — 4 _ 3
i V22— =V e
r—1 1 — 3/4
2.2.40
x —0.01 —0.001 | —0.0001 | 0.0001 0.001 0.01
=3~ 1 0.24614 | 0.249639 | 0.249964 | 0.250036 | 0.250362 | 0.25364
1m 69”—31'_1
=0 zlnl6 4
2.2.41
h 0.01 0.001 | 0.0001 | —0.0001 | —0.001 | —0.01
M 0.995033 | 0.9995 | 0.99995 | 1.00005 | 1.0005 | 1.00503
1
fi AR
h—0 h
2.2.42
h 0.01 0.001 0.0001 | —0.0001 | —0.001 | —0.01
h‘_
m 1.99954 | 1.99994 | 1.99999 | 2.00001 | 2.00006 | 2.00067
4h —1
= 9.

lim ———
0 hin(h + 2)

2.2.43
T 2 2 2 2 2 | _2
a. T 3 51 s ki 117
fle)=sin(l/z) | 1| -1 1 | -1] 1 | -1
If 2, = ﬁ, then f(z,) = (—1)" where n is a non-negative integer.

b. As x — 0, 1/x — oc0. So the values of f(z) oscillate dramatically between —1 and 1.

c. lim sin(1/z) does not exist.
z—0

2.2.44
N 12 | 12 [ 12 | 12 | 12 | 12
a. iy 31 5% réid 9 117
flz)=tan(3/z) | 1 | -1| 1 | -1 | 1 | —1

We have alternating 1’s and —1’s.

infinitely \¥

tan3x alternates between 1 and —1
b. many times on (0, h) for any h > 0. \
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c. lim tan(3/z) does not exist.
z—0

2.2.45
A
y=f®)
3
2k
I+ °
. . . .
0 I 2 3
2.2.46 2.2.47
y
" A
7t
6}
st y= 1) i *
I [ ]
3 Y=g
2\ g * 3 4 5 6 71
1}
I 7 3 4 5 6 71 o °
-1 1l
2l
—3
—4 -2t .
2.2.48 2.2.49
y
s
[o S ——
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2.2.50

a. Note that f(z) = % is undefined at 0, and v =)
lim f(z) =—-1and lim f(z)=1.
z—0~ z—0*t
b. lin% f(z) does not exist, since the two one- -2 -1 1
Tr—
side limits aren’t equal.
o)
2.2.51
a. lim |z|=-2, lim |z|]=-1, lim |z] =1, lim |z| = 2.
x—>—1*|" J a:—>—1+|" J x—>2*L J ;zc—>2+|~ J
b. I =2, [ =2, li =2.
z—)lggf LxJ ’ 'r—gn?fr I'xJ ’ x—l)rg?)l'xJ
c. In general, for an integer a, lim |2] =a—1and lim |z] = a.
T—a~ z—at
d. In general, if @ is not an integer, lim |z] = lim |z| = |a].
z—a~ z—at
e. lim |z] exists and is equal to |a| for non-integers a.
r—a
2.2.52
y
A
3k O—
L. . 2t O——e
a. Note that the graph is piecewise constant.
. . . l ﬁ
b. xl_lg{ [2] =2, 3,13% [2] =2, Ilg{15 [2] = 2. | ,\ y:,f(x) |
z = 2
c. lim[z] exists and is equal to [a] for non- : : : -
{E*}U. O — l -
mtegers a.
oL
3L
—4L

2.2.53

a. Because of the symmetry about the y axis, we must have Hm+ f(z) =8.
r——2

b. Because of the symmetry about the y axis, we must have lim f(x)=>5.
r——2"
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2.2.54
a. Because of the symmetry about the origin, we must have lim+ g(z) = —8.
r——2
b. Because of the symmetry about the origin, we must have lim g(z) = —5.
r——2"
2.2.55

tan 2z tan 3z
lim —; =2 lim — =
z—0 SInx z—0 SInxT

tan(px
b. It appears that lim ﬁ =p
z—0 sinz
1

tan 4x
lim — =
z—0 sinx

Copyright (© 2019 Pearson Education, Inc.


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

2.2. Definition of a Limit

85

2.2.56

[\
T

(W]
T

sin 3x

lim
x—0 x

sin(pz)
=

b. It appears that lim
z—0
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2.2.57

For p = 8 and ¢ = 2, it appears that the limit is 4. |

For p =12 and g = 3, it appears that the limit is 4.

For p =4 and ¢ = 16, it appears that the limit is 1/4.
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For p = 100 and ¢ = 50, it appears that the limit is 2.

)

sin px
Conjecture: lim — T _ B.
z—=0singr ¢

2.3 Techniques for Computing Limits

2.3.1 If p(z) = apa™ + an_12" ' +--- + a1x + ag, then lim p(z) = lim (@, 2" + ap_ 12"+ + a1z + ap)
r—a r—a

= a,(lim 2)" + a,_1(lim 2)"' +--- + a; lim = + lim ag

= apa" +a,_ 10"+ - 4 ara + ag. = pla).

2.3.2 liml(a:3+3x2—3x—|—1):1—|—3—3—|—1:2.
r—

2.3.3 For a rational function r(z), we have lim r(x) = r(a) exactly for those numbers a which are in the
r—ra

domain of 7. (Which are those for which the denominator isn’t zero.)

2.3.4 lim

r—4

2 —4x —1 _16-16-1 1
3z —1 o 12—-1 11
2.3.5 Because “”2_;_7”;12 = ($72)_(§74) =1x —4 (for  # 3), we can see that the graphs of these two functions
are the same except that one is undefined at £ = 3 and the other is a straight line that is defined everywhere.
2
Thus the function % is a straight line except that it has a “hole” at (3, —1). The two functions have
2
— Tz +12
TR (e —4) = —1.
r—3 r—3

the same limit as  — 3, namely lim
z—3

2 - J—
2.3.6 lim 2 —100 _, A@-5)(@@+5)

=5 T —D5H z—5 r—D5 :zh—>mS4($+5) = 40.

2.3.7 lim1 4f(x) =4 lim1 f(z) =4-8=32. This follows from the Constant Multiple Law.
z— z—

Jim (%) ASEAN: 4. This follows from the Q L
2.3.8 lim =Z = — = 4. This follows from the Quotient Law.
a—1 h(xz)  lim h(z) 2

rz—1

2.3.9 lim(f(z) —g(x)) = :11_>ml flz) — il_}ml g(xz) =8 — 3 =5. This follows from the Difference Law.

r—1

2.3.10 lim f(x)h(z) = lim f(x) - lim h(z) = 8 -2 = 16. This follows from the Product Law.
z—1 x—1 z—1

lim f(x) lim f(x)
. f(z) z—1 z—1 8 .
2.3.11 lim = — = — - = = 8. This follows from the
eolg(z) —h(z)  lim[g(z) = h(z)]  lim g(z) — lim A(z) 3 -2

Quotient and Difference Laws.

Copyright (© 2019 Pearson Education, Inc.


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

88 Chapter 2. Limits

2.3.12 lim /f(x)g(x) +3 = \s/m(f(x)g(x) +3) = f/ii_}ml f(@) - lim g(z) + lim 3 = V8343 = V27 =

3. This follows form the Root, Product, Sum and Constant Laws.

2/

3
2.3.13 lim1 f(x)?? = (lim1 f(x)) = 8%/3 = 22 = 4. This follows from the Root and Power Laws.

2.3.14 If p(x) is a polynomial, then lim p(z) = lim p(z) = p(a).

T—a— z—a™t

2.3.15 lim g(z) = lim (2 + 1) = 1, while g(0) = 5.
z—0 z—0

2.3.16 lim f(z)= lim 4=4, and lim f(z)= lim (z +2) = 5. Because the two one-sided limits differ,
r—3— r—3— r—3t r—3t
the two-sided limit doesn’t exist.

_ z—0

px) _ B )
2.3.17 If p and ¢ are polynomials then lim = = = . Because this quantity is given to be
z—0 g(x)  limg(x) ¢(0

z—0

—~|—~
8

equal to 10, we have @ =10, so p(0) = 20.
2.3.18 By a direct application of the squeeze theorem, lim2 g(x) = 5.
xr—r
2.3.19 1im(3x—7) =3llmex—-—7=3-4—-7=035.
z—4 z—4
2.3.20 1im(—2x+5) = 2llmx+5=-2-1+5=3.
rz—1 r—1
2.3.21 lim (bz) =5 lim z=5--9 = —45.
rx——9 rx——9

2.3.22 lim 4 = 4.
r—6

2.3.23 lim (22° —32% +42+5) = lim 22° — lim 32% 4 lim 42+ lim 5 = 2(lim x)® —3(lim z)?+4(lim z)+5 =
rz—1 rz—1 rz—1 rz—1 rz—1 rz—1 x—1 rz—1
2(1)% =3(1)* +4-1+5=38.

2
2.3.24 lim (t*45t+7) = lim t*+ lim 5t+ lim 7 = (lim t) +5 lim t4+7= (=2 +5-(-2)+7=1.
t——2 t——2 t——2 t——2 t——2 t——2

. 2 . 2 . .
502 + 62 + 1 :iﬂ(Sx +6x+1) _5(:}:131135) +6iﬂx+iﬂl C5(1)246-141 _

2.3.25 li - - 3.
i 8z —4 Tim (82 — 4) 81im 2 — lim 4 8- 1—4
rz—1 z—1 z—1
2
. 3/19 _ . 2 _ - 2 T _ 3 . _ _ 3 7 __
2.3.26 lim {/¢2 — 10 g/%gr:l))(t 10) = ¢/lim 2~ iy 10 (tlg t) 10=¢/(32-10= -1
2.3.27 lim —F = s - St = 52 = 0 3
T2 Ap T -1 lim(VAp+1—1)  limy/4p+1—lim 1 lim(dp+1)—1 3—-1
p—2 p—2 p—2 p—2
5 5
2.3.28 lim (a2 — 2)° = (hm (22 — m)) - (lim 2% — lim x) = (4-2)°=32.
r—2 r—2 r—2 r—2
lim —5x =5 lim x
) : 1
2.3.29 lim ———0 _ — a3 = 228 53 B ___
v=3  \/Ar—3  lim vAz -3 lim (4 — 3) 4limz — lim3 ~ V4:-3-3
r—3 r—3 rz—3 r—3
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2.3.30
lim 5 = o = 5 = 5
h—0 /16 + 3h + 4 lim(v16—|—3h—|—4) /1im(16+3h)—|—1im4 /lim 16 + lim 3h + 4
h—0 h—0 h—0 h—0 h—0
3 3 3

T VI6+3.0+4 4+4 8
2.3.31 lim (52 —6)%2 = (5.2 6)>2 =432 =2% =3,

r—2
100 100 100
2.3.32 i = = — =100.
Bo0 (10— D1 +2 () +2 1
21 (z—1
2.3.33 lim * % i EFYVEZD a1y 2o,
z—1 r—1 r—1 x—1 r—1
2 _op — - 1
2.3.34 lim &2 =3y, BZE@ED iy —a
r—3 r—3 r—3 r—3 r—3
2?2 —16 . (z+4)(z—-4)
2.3.35 ilg}l 1= 733}1 i oy —ilg}l[f(:chll)] = -8.
2 — Tt + 2 t—2)(3t—1
2.3.36 lim o — "t 2 EZDGD g1y = s,
t—2 2—t t—2 —(t — 2) t—2
50 50 49
—b)%0 — — b))% — (2 — - — b9 —1
2.3.37 lim G0 —oHb o @b @ob) g 0@ =T
z—b r—>b T—b r—>b z—b r—b
lim[(z — b)* — 1] = 1.
z—b
7 10 6 9 6 9
2.3.38 lim (@+b)"+(@+b)" lim (@+b)((z+b)°"+(@+0)°) lim (z+b)°+(@+b)” 0
T——b 4(x + b) T——b 4(x +b) T——b 4
2.3.39
12— 1 _
lim 2z —1)*-9 — lim (2 —1-3)(2x —1+3)
r——1 T + 1 r——1 T + 1
2z — 2)2(z + 1
=g 2@ 22EED g9y —a(m3) — —12
r——1 T + 1 r——1
2.3.40
di-t (&) 56+
lim 22 — lim
h—0 h h—0 h-5-(5+h)
— lmm_hm_L_ lim—;——i
~ h—0 Bh(5+h) ko0 S5h(5+h) ko0 5(5+h) 25
2.3.41 lim Ve =3 = lim (vz = 3)(vz +3) = lim z—9 = lim L :1.
=9 1 —9 =9 (x—9)(vx +3) =9 (x —9)(Vr+3) 2-9x+3 6
1 1 1 1— 1
2.3.42 lim (——— - —— ) = lim —— 2 ) = lim ——— = — lim — = —1.
wol \w? —w  w— wol \w(w—1) w(w-—1) w1 w(w — 1) w1 w
2.3.43

e (t2—411t—5 - 6(t1—5)> :tlﬂ<(t—5)l(t+1) - 6(t1—5))

_ 6 t+1
= jin <6(t—5)(t+1) a 6(t—5)(t+1)>

. 55—t . 1 1
=lim———— =

—lm—=
15 6(t—5)(t+1)  ts56(t+1) 36
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90
2.3.44 Expanding gives
2(6 +t —t%)
. A 42 1 2y
}1_1)1}))((# t_3>(6+t t)) }5%<4t(6+t t%) 3 )
. 23—=1t)(241)
—_— — 2 _—_—
_tlg%<4t(6+t ) P .
Now because t —3 = —(3 — t), we have
lim (4t(6+t —t*) +2(2+1)) = 12(6 + 3 — 9) + 2(2 + 3) = 10.
e
) r—a r—a r+ya . (z—a)(Vz4+a) B
2.3.45 i%m_}:%ﬁ—\/&ﬁﬁ-\/&_w% r—a —JIZL)HL(\/E"‘\/&)—Q\/&
2 _ 2 2 _ 2 _
2.3.46 lim 2 gy L0 VERVe g @odEtaVet va)
w—)a\/i—\/& z—)a\/i—\/(; \/E—i—\/a T—a T —a
(a+ a)(va+ Va) = 4a°/2.
2.3.47
. V16+h—-4 . (VI6+h—-4)(V16+h+4) .  (16+h)—16
lim ——— = lim = lim
h—0 h h—0 h(V/16 + h + 4) h—0 h(+/16 + h + 4)
. h . 1 1
=lim ——=lim — = —.
h—=0 h(v/16+h+4) h=0(y/16+h+4) 8
2 _ 2 _ 2
2.3.48 lim =~ 2ex tc = 1m(x °) =limx—c=c—c=0.
T—c €T —cC r—=c I —C T—c
11 —
11 ie -z 1 1
. T 4 _ 7 Az T _ 1 -
2349l = T ey T LT T
2.3.50
11 15— (z242x) 9 9
. 242z 15 . 15(27+23) . 15 — (2% + 2x) , 15— 2x —
lim —/—=—— = lim = lim = lim
a—3 1 —3 z—3 1 —3 23 15(22 + 2z)(x — 3) 23 15(x2 + 2z)(x — 3)
. (3—x2)(5+x) (5+x) 8
= lim = - -2
e—3 15(2x2 + 22)(x —3)  «—3  15(22? 4 22) 225
2.3.51
oy VI02—0-1 (V102 —0-)(VI0z —9+1) _ . (10z-9) -1
el z—1 asl o (- 1D)(I0z—9+1) ==l (z—1)(VI0z -9 +1)
, 10(z — 1) , 10 10
= lim =lim — = — =35.
p=1 (2 —1)(v/I0z —9+1) o1 (VI0z—9+1) 2
1 2 T 2 r—2 1 1
2.3.52 i - — 1 _ N I N T
pas (zZ z221> fas <x(x2) x(a:2)> pas <x(:172)) 2y 2
29 2 1 2_2 1
2.3.53 lim 0PN =2 g 2FWRERT 225 RAOER) (104 8) = 10,
h—0 h—0 h h—0 h h—0
2.3.54 We have
i w? + 5kw + 4k> (w+ 4k)(w + k) . w+4k  —k+4k 5
1m = = 1 = = —3.
w——k ’LU2 + kw w——k (w)(w + k) w——k w —k
w? + 5kw + 4k? w?
=lim —- =1
w—0 ’U)2

If Kk =0, we have lim
w——k ’LU2 + kw
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1 @-D(E+D) . @-DEHD -
2.8.85 lim oo =l (o ey im o S Im(vE ) =
2.3.56
z—1 . (z —1)(V4x +5+ 3) . (r—-1D)(4z +5+3)
m ————— = lim = lim
e=1y/dx +5—3 21 (Viz +5-3)(vVix+5+3) =1 4r+5-9
— lim (x—1)(V4z +5+3) lim (Vdz+5+3) 6 _3
S| 4(z —1) ol 4 42
2.3.57
lim 3(x—4)vVr+5 lim 3(x—4)(Vr+5)3+Vr+5) lim 3(z—4)(Vx+5)3+ Vz+5)
g4 3 —/r+5 e=4  (3—+/z+5)(3+Vx+5) a4 9—(x+5)
— lim 3z -9z +5)(B+Vz+5)
71—)4 —(37—4)

= :11521[_3(\/:8 +5)B3+vVz+5)]=(-3)3)(3+3)=-54
2.3.58 Assume ¢ # 0.

o x — lim z(Vexr +1+1) — lim z(Ver +1+1)
50 \er+1—1 a0 (Ver+1—1)(Vex+1+1) 20 (cx+1)—1
lim z(vVex +1+4+1) lim (Vex+1+1) 2
=1 — =1 2 =

z—0 cx z—0 C c

2.3.59 limxcosx=0-1=0.

z—0
. sin2z . 2sinzcosx )
2.3.60 lim — = lim —— = lim 2cosx = 2.
z—0 sSInx z—0 smx z—0
1—cosz 1 —cosz 1 1
2.3.61 li =1 =—1 =— =1.
250 cos? T — 3c0sT + 2 a0 (cosz — 2)(cosx — 1) 250 cos T — 2 1-2
—1 —1 1 1
2.3.62 lim —~ ~ = lim sy =lim—— = .
z—0cos?x —1 250 (cosx —1)(cosx +1) az—0cosz+1 2
2
- 1
2.3.63 Tim © % — tm 0V o —1
z—0- || x50~  —Z z—0~
|w — 3] ) 3—w )
2.3.64 lm ——— = —=—1 — =1
s W —Tw+ 12 wos- (w—3)(w—4)  wos- w4
. 2t — 2) 2 1
2.3.65 lim —=lim ———— = - = —.
t—ot t2—4 t—2+ (t—2)(t+2) 4 2
21 )(z—1
2.3.66 lim g(z) = lim ’ = lim +h@=1) = lim (z—-1) = -2. Also, lim g¢g(z) =
r——1— z——1—- v+ 1 r——1— x+1 r——1— r——1t
lim (—2) = —2. Therefore, lim g(z) = —2.
z——1+ rz——1
-3 -3 -3 -3
2.3.67 lim P72 him P72 = lim 1= 1 On the other hand, lim 270 fim 2 =
z—3+ |z — 3| z—3+ T — 3 z—3+ z—3- |z — 3| z—3-3—x
lim (—1) = —1. Therefore, hm does not exist.
3~ \a: — 3]
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. |z —5| ) x—5 . 1 1 N ]
2.3.68 1 — = lim —————— = 1 —— = —. On the other hand, 1 =
oot 22— 25 oot (T —5) (@ +5)  wmstaz 5 107 o oo e ManG A v o5
I oo lim — L Dherefore, lim 122 does not exist
im ————— = — lim = ——. Therefore, lim oes not exist.
z—5- (x —5)(z +5) a—b5t T+ 5 10 a—5 12 — 25
2.3.69 Because the domain of f(x) = \“Z"‘Tll is the interval (1, 00), the limit doesn’t exist.
1 , r—1 (x—-1)Y2 0

-
2.3.70 lim ——— = 1 = lim 2~ = .
et V22 1 et (@ — DI2(@+ )2 ot (@ + )2 2

2.3.71

z ifx#1;

a. False. For example, if f(z) = then lim1 f(z) =1Dbut f(1) =4.
z—

4 ifx=1,

z+1 ifx<1;

b. False. For example, if f(z) = then lim f(z) =2 but lim+ f(z) = —5.
r—6 ifz>1, o=l o=l
. x ifz#1,; Lo
c. False. For example, if f(z) = and g(x) = 1, then f and g both have limit 1 as z — 1,

4 ifx=1,
but £(1) =4 # g(1).

2 _

d. False. For example lim as exists and is equal to 4.

=2 T —
e. False. For example, it would be possible for the domain of f to be [1,00), so that the one-sided limit

exists but the two-sided limit doesn’t even make sense. This would be true, for example, if f(z) = x—1.

2.3.72
a. lim g(z) = lim (5z —15) = 5.

r—4- T4~

b. lim g(z) = lim v6z+1=>5.
x—4+t

z—4t

c. Because the two one-sided limits both exist and are equal to 5, lirr}1 g(z) =5.
T—

2.3.73
a. lim f(z)= lim (22 +1)=(-1)2+1=2.
Tz——1" r——1"
b. lim f(z)= lim Vr+l=+v—-141=0.
z——1+ z——1t

c. Because the two one-sided limits differ, lim1 f(z) does not exist.
T—>—

2.3.74
a. lim f(z)= lim 0=0. b. lim f(z)= lim /25 —22=+/25—25=0.
T——5 z—==5 z——5+ x——5+
c. lim{)f(:c):O. d. lir? f(z) = lin5f1 V25 —122=+/25-25=0.
T 5~ 5~
ol = 1li = 15. . L ist.
e. lim f(z) Jim, 3z =15 f i1_>m5 f(z) does not exist
2.3.75
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a. lim vz —2=v2-2=0.

r—21

b. The domain of f(x) = v — 2 is [2,00). Thus, any question about this function that involves numbers
less than 2 doesn’t make any sense, because those numbers aren’t in the domain of f.

2.3.76

a. Note that the domain of f(z) = ,/2=2 is (2,3]. lim v

2w r—3- —x

=0.

b. Because the numbers to the right of 3 aren’t in the domain of this function, the limit as x — 3% of
this function doesn’t make any sense.

4.35 4.35
2.3.77 lim E(z)= lim = ~ 0.0435 N/C.
z—10 (=) =10 /22 + 0.01  104/100.01 /

2.3.78 lim d(t) = lim (3 —0.015¢)> = (3 — (0.015)(200))? = (3 — 3)®> = 0. As time approaches 200
t—200— t—20
seconds, the depth of the water in the tank is approaching 0.

2
2.3.79 lim r(S)= lim (1/2) (\/ 100 + 25 10) =0.
S—0+ S—0+ ™

The radius of the circular cylinder approaches zero as the surface area approaches zero.

2.3.80

a. L(c/2) = Loy/1 — 2% = Ly\/T— (1/4) = v/3Lo/2.
b. L(3c/4) = Lo\/1 — (1/c2)(3¢c/4)2 = Lo+\/1 — (9/16) = /7L /4.

c. It appears that that the observed length L of the ship decreases as the ship speed increases.

d. lim Loy/1— (v2/c?) = Lo-0 = 0. As the speed of the ship approaches the speed of light, the observed
r—c—
length of the ship shrinks to 0.

2.3.81

a. The statement we are trying to prove can be stated in cases as follows: For z > 0, —z < xsin(1/z) < z,
and for z < 0, z < zsin(l/x) < —z.
Now for all z # 0, note that —1 < sin(1/z) < 1 (because the range of the sine function is [—1, 1]).
We will consider the two cases x > 0 and x < 0 separately, but in each case, we will multiply this
inequality through by x, switching the inequalities for the x < 0 case.
For > 0 we have —x < xsin(1/z) < z, and for z < 0 we have —x > xsin(1/z) > x, which are exactly
the statements we are trying to prove.

c. Because lim —|z| = lim |z| = 0, and
z—0 z—0
because —|z| < asin(l/z) < |z,
x the Squeeze Theorem assures us that

}CILI%)[:E sin(1/z)] = 0 as well.
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2.3.82
a.
,‘.
22
0.5 . .
/ > \ b. Note that lim [1- —| =1=lim 1. So
A \ z—0 2 z—0
! A\ 2
i \ because 1 — % < cosz < 1, the squeeze
s X
2/ ] Y theorem assures us that lim cosz = 1 as
/ \ z—0
/ \ well.
; -05 \
i \
K \
! \
! \
: -10 \
2.3.83
a.
.
22
b. Note that lim [1— —| =1=lim 1. So
z—0 6 z—0
2 .
because 1 — % < S‘;x < 1, the squeeze
. sinx
theorem assures us that lim =1 as
z—0 X
well.
02
X
-2 - 0 |
2.3.84
a.
.
.
.
N, 08 b. Note that lim(—|z|) = 0 = lim |z|. So
hN yal x—0 x—0
because —|z| < 22 In2? < |z|, the squeeze
AR : theorem assures us that lim (z? Inz?) = 0
_ —0.5 /, N R x—0
as well.
05 ™,
,"' \\\\
s -10 S
2.3.85 Using the definition of |z| given, we have lim |z| = lim (—z) = —0=0. Also, lim |z|= lim z =
z—0~ —0— z—0+t z—0+t

x
0. Because the two one-sided limits are both 0, we also have lir% |z| = 0.
r—
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2.3.86
If a > 0, then for x near a, || = x. So in this case, lim |z| = lim x = a = |a].
Tr—a Tr—a
If a < 0, then for = near a, |z| = —z. So in this case, lim || = lim (—2) = —a = |a|, (because a < 0).
r—a r—a
If a = 0, we have already seen in a previous problem that lin%) |x] =0 =10|.
z—
Thus in all cases, lim |z| = |al.
T—ra
25 6 - 3)(x—2
2.3.87 lim f(x) = lim i b lim (z=3)(z=2) =lim(z—-2)=1. Soa=1.
r—3 r—3 xr — 3 r—3 €xr — 3 r—3

2.3.88 In order for lim f(x) to exist, we need the two one-sided limits to exist and be equal. We have

hm flx) = hm (335 + b) =6+b, and hm flx) = lim+(9c —2) =0. So we need 6 4+ b = 0, so we require
T—2

that b= —6. Then hm f(z) =

2.3.89 In order for limlg(x) to exist, we need the two one-sided limits to exist and be equal. We have
T——
lim g(z) = lim (z*-5z)=6,and lim g(z)= lim (az®—7) = —a—"7. So we need —a —7 = 6, s0
T——1— z——1— z——11 z——1*

we require that a = —13. Then lim1 f(z) =6.
T——

5 2 -9 4 23 42 16
9.3.90 lim & =52 _ 1y (@2 4227 + 42? 4 8z + 16)

=2 1 —2 T2 T —2

16 + 16 + 16 = 80.

= lim2(:v4+2m3+4a:2+8x+16) =16 +16+
xT—

6_1 D)5 2t B g2 1
2.3.91 lim = lim (=@ +ao"+a+a”+at ):lim(x5+x4+x3+x2+x+1):6.
z—1 ¢ —1 z—1 x—1 z—1
7 6 54 84 22 A
2.3.92 lim DL gy EEVEIZ AT ma ket et ) e s 80 gy
z——1 x4+ 1 z——1 r+1 r——1
5_ .5 _ 4 34 2.2 1 3 4
2.3.93 lim &0 _ jpy W =@ A FaT b a v al) a0 0202 4ot gt = 5t
r—a T — Q T—ra r—a Tr—a
n__ ,n _ n—1 n—2 .. n—2 n—1
2.3.94 lim & =Wy WZQENT Faat A a e aT) e g2y g2y
r—a T — Qa T—a r— Qa T—a
an—l) — ’I’Lan_l.
2.3.95
b. The slope of the secant line between (0, 1)
and (z,27) is 1.
,‘4/ 7/ /z _ '
. T -1 -0.1 —0.01 —0.001 —0.0001 | —0.00001

21| 0.5 | 0.66967 | 0.69075 | 0.692907 | 0.693123 | 0.693145

ui

It appears that lim,_,q- ”—_ =~ 0.693.
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2.3.96

b. The slope of the secant line between (0, 1)
and (z,3%) is ?’ZT_I

T —0.1 —-0.01 | —-0.001 | —0.0001 | 0.0001 0.001 0.01 0.1
87-1 1 1.04042 | 1.0926 | 1.09801 | 1.09855 | 1.09867 | 1.09922 | 1.10467 | 1.16123

1_

1
It appears that lim ~ 1.099.
z—0

X

2.3.97 lim f(z)= lim f(z)=6. lim f(z)= lim f(x)=>5.

z——1— z—1+t z——1+ z—1-
2.3.98 i =—1i =—6. 1l =— i = —5.
lim _g(z) = — lim_g(z) lim g(z) = - lim g(x)
Jr —1 Jr—1 1 1
2.3.99 lim Ve = lim \/5 = lim — =-.
=1 x—1 x%l(%_l)(,/m2+€/§+1) T—1 /:c2+\3/5+1 3
vr—2 v —2 1 1
2.3.100 lim Y22 jim - Ve . = lim — - =
e=16 £ —16 @16 (Yz — 2) (Va3 + 2V 4z +8) =16 V3 + 222 +4yz+8 32
2.3.101 Let f(z) = 2 — 1 and g(x) = =2 Then lim f(z) = 0, lim f()g(z) = lim 2= _ fim 5= 5
D (§] r)=2=x aln gx—wil. enxﬂ Tr) = 71:1~>Inl xgx—;ﬁrri T —:Elin1 = 9.
2
—1
2.3.102 Let f(z) = 2% — 1. Then lim /(@) — lim = = lim (x+1)=2.
x—1 1 — z—1 x — z—1

-2 4
2.3.103 Let p(z) = 2% + 22 — 8. Then lim L(x) = lim w

T2 T — T—2 xTr —

The constants are unique. We know that 2 must be a root of p (otherwise the given limit couldn’t
exist), so it must have the form p(x) = (x — 2)q(z), and ¢ must be a degree 1 polynomial with leading
coefficient 1 (otherwise p wouldn’t have leading coefficient 1.) So we have p(x) = (z — 2)(x 4+ d), but because
111112 p(:z:)2 = 111112 (x 4+ d) =2+ d =6, we are forced to realize that d = 4. Therefore, we have deduced that
T2 T — z—

the only possibility for p is p(x) = (z — 2)(x + 4) = 22 + 22 — 8.

= lim(z +4) = 6.
r—2

2.3.104 Because lim1 f(z) =4, we know that f is near 4 when z is near 1 (but not equal to 1). It follows
T—
that lim1 f(;vQ) = 4 as well, because when z is near but not equal to —1, 22 is near 1 but not equal to 1.
T—>—

Thus f(2?) is near 4 when x is near —1.

2.3.105 Asz — 0", (1—2) - 1. So lim g(x)= lim f(1—2)= lim f(z)=6. (Where z=1-2z.)
z—0t (1—z)—1- z—1—
Asz—07,(1—2)—=1%. So lim g(z)= lim f(1—=z)= lim f(z)=4. (Where z=1—1z.)
z—0~ (1—z)—1t z—1+
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2.3.106

a. Suppose 0 < 6 < w/2. Note that sin > 0, so |sinf| = sinf. Also, sinf = %, so |[AC| = |sinf).
Now suppose that —7/2 < # < 0. Then sinf is negative, so |sinf| = —sinf. We have sinf = ﬁ
so |[AC| = —sinf = |sin6)|.

)

b. Suppose 0 < 6 < 7/2. Because AB is the hypotenuse of triangle ABC, we know that |[AB| > |AC].
We have |sin | = |AC| < |AB| < the length of arc AB =6 = |6)].

If —7/2 < 6 < 0, we can make a similar argument. We have

|sinf| = |AC| < |AB| < the length of arc AB = —6 = |4].

c. If 0 <6 < 7/2, we have sinf = |sinf| < |0], and because sin 6 is positive, we have —|0] < 0 < sin6.
Putting these together gives —|6] < sinf < |6].

If —m/2 < 6§ < 0, then |sinf| = —sinf. From the previous part, we have |sinf| = —sinf < |6].
Therefore, —|f| < sinf. Now because sin 6 is negative on this interval, we have sin6 < 0 < |f]. Putting
these together gives —|0| < sinf < |6].

d. If 0 < § < w/2, we have

0<1-cosf =|0OB|—|0OC|=|BC| < |AB| < the length of arc AB =0 = |4|.

For —m/2 < 6 < 0, we have

0<1-—cosf =|0OB|—|0C|=|BC| < |AB| < the length of arc AB = —6 =0|.

e. Using the result of part d, we multiply through by —1 to obtain —|f] < cosf — 1 < 0, and then add 1
to all parts, obtaining 1 — |f] < cosf < 1, as desired.

2.3.107
lim p(z) = lim (a,2" + ap_ 12" + - + a1z + ap)

r—a r—a

= lim (anpz™) + lim (ap_12" 1) + -+ - + lim (ay2) + lim ag
T—ra T—ra T—ra T—ra

=a, im 2" + a1 lim 2" '+ -+ + aq lim = + ag
r—a r—a r—a

= ap(lim )" + a1 (lim )" 4 - 4 a1 (lim 2) + ao
r—a r—a r—a

= ana" + a,—1a"" "+ -+ aja+ ag = p(a).

2.4 Infinite Limits

2.4.1 As x approaches a from the right, the values of f(z) are negative and become arbitrarily large in
magnitude.

2.4.2 As x approaches a (from either side), the values of f(x) are positive and become arbitrarily large in
magnitude.

2.4.3 A vertical asymptote for a function f is a vertical line x = a so that one or more of the following are

true: lim f(z) = £oo, lim f(z) = +oc.
z—a~ z—at

f(z)

2.4.4 No. For example, if f(z) = 22 — 4 and g(z) = x — 2 and a = 2, we would have lim ~—— = 4, even

T—2 g(:c)
though ¢(2) = 0.
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2.4.5
z+1 z+1
* G@-1) v @=1)°
1.1 210 9 190
1.01 20,100 .99 19,900

1.001 2,001,000 999 1,999,000
1.0001 | 200,010,000 | .9999 | 199,990,000

From the data given, it appears that lim1 f(x) = 0.
r—r

2.4.6 lin})) f(@) =00, and lim f(z) = —c0.
r—

r——1

2.4.7
d. 1 = ol = —00. f. 1 d t exist.
lim f(z) =00 e. lim fx) 00 lim f(z) does not exis
2.4.8
a. Jf& g(z) = oo. b. zlirg g(z) = —o0. c. 31c1_>mz g(z) does not exist.
d. i = —o0. ol = —00. f. 1 = —o0.
Jim g(z) = —c0 e. lim g(z) = —oo lim g(z) = —o0
2.4.9
a. lim h(z) = —oc. b. lim h(z) = —cc. c. lim h(z) = —ooc.
r——2- r——2+ r——2
d. lim h(z) = co. e. lim h(z) = —oco. f. lim h(z) does not exist.
T3~ r—3+ r—3
2.4.10
i - _ b. 1 = —00. i = —00.
a. x_l}u_nfp(x) = —00. Lo p(z) 00 c xl_lfgzp(fﬂ) 00
d. :clirir’,l* p(z) = —oc. e. xlgéh p(x) = —o0. f. alcll}rgp(x) = —00.
24.11
o \
a. lim — = 00.
z—0- T° — T
b. lim 21 = —o0.
z—0t ¢ — T
) 1 -10 =05 0.5 |§U 1.5 !
c. lim — = —00. :
z—1- 22— of :
d. lim % = 00. /\
rz—1t ¢ — X -0t .
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2.4.12

e—$
a. lim —— = —o0.
z——2+ x(x + 2)2
—x

. € . . .
b. Il_l)n_l2 m = —0OQ. -4 -3 )

—X

(&
D lim —5 = 0.
“ b w22
d lim —5 =

s—0+ x(z + 2)?

2.4.13 Because the numerator is approaching a non-zero constant while the denominator is approaching
zero, the quotient of these numbers is getting big — at least the absolute value of the quotient is getting big.
The quotient is actually always negative, because a number near 100 divided by a negative number is always

f(x)

negative. Thus lim —= = —c
a2 g(z)

2.4.14 Using the same sort of reasoning as in the last problem — as  — 3 the numerator is fixed at 1, but
the denominator is getting small, so the quotient is getting big. It remains to investigate the sign of the
quotient. As z — 37, the quantity x — 3 is negative, so the quotient of the positive number 1 and this small
negative number is negative. On the other hand, as x — 3%, the quantity  — 3 is positive, so the quotient

of 1 and this number is positive. Thus: lim = —00, and lim = 00.
=3 T — 3 T3+ T —
242 +3 —3)(xz—1 -3 =2
2.4.15 Note that lim roArds lim w = lim = = — = 2. So there is not a vertical
e=122 —3x+2 o=l (z—2)(z—-1) =z—o12-2 -1
2?4z +3 . (z-3)(z—1) . x—3

asymptote at x = 1. On the other hand, lim ——— = = lim —— = —o0, so
ymp Tao2t 22 —=3r 42 a2t (x—2)(x—1) a2tz —2 ’
there is a vertical asymptote at x = 2.

2.4.16 Note the at x — 0 the numerator has limit 1 while the denominator has limit 0, so the quotient is
growing without bound. Note also that the denominator is always positive, because for all z, cosx < 1 so

1 —cosx > 0.

2.4.17 2.4.18

&)

_iﬁ

———— e T
———— e

2.4.19 Both a and b are true statements.
2.4.20 Both a and c are true statements.
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100
2.4.21
. 1
a. lim = 0.
z—2+ T — 2
1
b. lim = —00.
22— T — 2
c. lim does not exist.
=2 r —
2.4.22
R T e
b. 1l = —
aos- (@ —3)38
. 2 .
c. lim ————= does not exist.
=3 (x — 3)3
2.4.23
. r—95
a. lim —— = —o0.
r—4+ (JI — 4)2
xr—95
b. 1l =
z—lgll_ (SL‘ — 4)2 o
I xT—95
Coliw a2
2.4.24
. T
a. lim — = oo.
r—1t |$ — 1|
b. lim = 0.
r—1- ‘.’[ — ].|
lim —>
c. lim = 0.
r—1 |:L' — 1|
2.4.25
a. lim —(m—l)(x—Q) =00
r—3+ (Z‘ — 3)
b. lim —(I —Dz-2) = -0
z—3— (z—3)
-1 -2
c. lim w does not exist.
2.4.26
o lim 24 _
z——2+ x(x + 2)
b. lim M = —0
z——2- z(x + 2)
—4
c. lim M does not exist.
T——2 x(x + 2)
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2.4.27
I 2?2 —dx +3
a. lim = —00.
z—2t+  (x—2)?
2
—4
b, lim 2 v+3 = —00.
z—2-  (x—2)2
I 2 — 4 +3
c. lim = —00.
r—2 (:L’ — 2)2
2.4.28
. 23 —52% + 6z ) z(zx —2)(x —3) . z—3
a. lim = lim ——V——F—F = lim — =o.
z——2+  xt —4a? am—2t 22(x —2)(x+2) a—o—2t x(x+2)
) 23 — 5% + 62 ) x(x —2)(x — 3) x—3
b. lim = lim ———%= lim —— = —o0.
z——2-  xt—4x? e——2- 22(x —2)(x 4+ 2) an—2-z(x+2)
3 2
-5 6
c. Because the two one-sided limits differ, lim oo ort 4 b does not exist.
a——2 xt—4a?
4 i x3—5x2+6m_ x—3 -1
Cahy gd 42 _acl—>mQx(x+2)_ 8’
2.4.29
li !
a. lim ———— = 0.
z=2+ \Jx(r — 2)
b. lim ( does not exist. Note that the domain of the function is (—oo,0) U (2, 00).
T—2~ xlx —
c. lim does not exist.
z—2 Z‘(Z‘ —
2.4.30
-3
a. lim does not exist. Note that 22 —52+4 = (r —4)(z — 1) so the domain of the function
z—1+ /22 — 5 +
is (—o0,1) U (4, 00)
b. | lim v-3 = —o0.
=1~ /22 — bx + 4
-3
c. lim ——=—2 does not exist.
z=1 /g2 — b +4
2.4.31
i — T -3 I 1
a. lim = lim =lim ——— = o0.
z—=0 zt — 922 2-022(z—3)(x+3) 2-0x2(z+3)
bl x—3 . x—3 . 1 1
. l1m = 111m = lim —-—-m=—.
a—3 24— 922 2-322(x—3)(x+3) 2—322(zx+3) 54
I — I v3 I hich does not exist
clim ———— = lim = lim ———— i not exist.
¢ e—=-3x4 — 922  +5-322(x—-3)(x+3) «=-322(x+3)’ WHICH GOES Tt ex18
2.4.32
-2 -2
a. lim r = lim :c = lim ———, which does not exist.
z—=0 x% — 423 a0 x3(z—2)(x+2) =—0x3(z+2)
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b i z—2 I T —2 I 1 1
. lim = lim =lm —— = —.
z=2 x5 — 423 e-223(z—2)(x+2) =—o223(x+2) 32
-2 -2
c. lim i S lim x = , which does not exist.

o T2,
s—-2 25 —4a3  s--223(x —2)(z +2) P x3(x + 2)

3 _ 5 2 2 -5
2.4.33 lim 22" iy =0 o5 = s,
z—0 2 -0 2 70
4¢2 — 100 4(t—5)(t+5
2.4.34 1im L 100y, A =9)EHD) lim[4(t + 5)] = 40.
t—5 -5 t—5 t—>5 t—5
2_5 6 —2)(z -3
2.4.35 lim roor+h = lim w = co. (Note that as x — 17, the numerator is near 2, while
z—1+t x—1 rz—1t z—1
the denominator is near zero, but is positive. So the quotient is positive and large.)
z—5 . )

2436 lm ————— =1lim —+———— =
5 (22 — 102+ 24)2 25 (z — 4)2(z — 6)2

while the denominator is near zero but is positive. So the quotient is negative with large absolute value.)

—o00. (Note that as z — 4, the numerator is near —1

x—7
2.4.37 lim = —o0. (Note that as # — 6T the numerator is near —1 and the denominator is near
z—6+ \/xr — 6

zero but is positive. So the quotient is negative with large absolute value.)

-1
2.4.38 lim s 0o. Note that as x — 2~ the numerator is near 1 and the denominator is
e=27 \/(x — 3)(z — 2)

near zero but is positive. So the quotient is positive with large absolute value.)

1
2.4.39 lim cscf = lim — =0
6—0+ 0—0+ sin 6
. . 1
2.4.40 lim cscx = lim — = —00.
r—0— x—0— SINx
. . —10coszx .
2.4.41 lim —10cotz = lim ——— = —oo. (Note that as z — 0%, the numerator is near —10 and the
rz—0+ rz—0t sinax

denominator is near zero, but is positive. Thus the quotient is a negative number whose absolute value is
large.)

sin 0

2.4.42 lim 1tan@ = im
0—(m/2)+ 3 0—(r/2)+ 3cos b

the denominator is near 0, but is negative. Thus the quotient is a negative number whose absolute value is
large.)

= —oo. (Note that as § — (7w/2)", the numerator is near 1 and

2+ sinf

2.4.43 lim ——— =
650 1 — cos?

but is positive. Thus the quotient is a positive number whose absolute value is large.)

oo. (Note that as § — 0, the numerator is near 2 and the denominator is near 0,

sin 6 sin @
2.4.44 lim ——— = lim ———— = — lim =
0—0- cos20 —1  9—0- —sin® 6 0—0— sin
2.4.45
r—>5 . 1 1 . .
a. lim ———— = lim —— = — so there isn’t a vertical asymptote at x = 5.
z—=532 —25 =53 +5 10
. r—5 . 1 . .
b. lim = lim = —00, so there is a vertical asymptote at x = —5.
z5—5-x2—25 a2»-5-T+5
) x—5 . 1 . N . .
c. lim = lim = oo. This also implies that x = —5 is a vertical asymptote, as we

a——5+t 22 —25 stz +5
already noted in part b.
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2.4.46
. T+7 . T+ 7 . 1 . :
a. wlgglﬁ 1047 zir?f W = $1£§17 m = —o0, so there is a vertical asymptote
atz=7.
b. zET i et 7 = oo. This also implies that there is a

im ——— = lim ———— = lim ———
a7t xt — 4922 ot 22(x+T)(x—=T)  astt 22(x—T)
vertical asymptote at * = 7, as we already noted in part a.

c. li vrT li v T li ! ! So there is not a vertical
. lim ——— = lim —————— = lim = . re is n verti
z——7 x4 — 4922 a——722(x+7)(x—7) a——722(x = 7) —686
asymptote at z = 7.
) z+7 . x+7 . 1 . .
d. aljli)l’%) 947 ili% W = }}i% m = —00. So there is a vertical asymptote at
z=0.
2
-9 14 —2)(x =7
2.4.47 f(z) = 22 — ;;J; 5 = Ei — Q;g — 3;. Note that x = 3 is a vertical asymptote, while x = 2 appears
-7 -7
to be a candidate but isn’t one. We have lim f(z) = lim L =—ooand lim f(z)= lim ° = 00,
r—3t z—=3+ T — 3 r—3~ r—3— T —
and thus lim f(x) doesn’t exist. Note that lim f(z) = 5.
r—3 z—2
cos T ) .
2.4.48 f(z) = ﬂ has vertical asymptotes at * = 0 and at * = —2. Note that cosx is near 1
x(x
when z is near 0 , and cosx is near —0.4 when z is near —2. Thus, lim+ f(x) = 400, lim f(z) = —o0,
x—0 z—0~
lim f(z) =00, and lim f(z)= —o0.
z——2% T——2"
2.4.49 f(z) vr1 rrl gy fical fotes at © = 0 and z = 2. We b
4. x) = = . ere are vertical asymptotes at x = 0 and x = 2. We have
xd —dx? +4x  x(x—2)? yimp
1 1
Ilir(r)lﬁ flx) = xlirglﬁ 33(27—’__2)2 = —o0, while Ilirg+ flx) = Illrg+ x(iitZ)Q = oo, and thus ili% f(z) doesn’t
exist. +1 +1
Also we have xlggf flz) = Ilgglﬁ J:(ZW = o0, while xlirgh flz) = xlgng h = 00, and thus

lim f(z) = oo as well.
r—2

3 — 1022 + 16 —2)(z—8
2.4.50 g(x) = x 5 v 8+ - oz ( )(908) ) This function has no vertical asymptotes.
x? — 8z x(x —

2.4.51

a. lim tanz = —oco. .
z—(m/2)t ' 5t

b. lim tanx = oo.
z—(7/2)~

c. lim tanx = —oo.
z—(—m/2)+

d. lim tanx = oo.
z—(—m/2)~

—-10t
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2.4.52
/
a. lim secxtanx = oco.
o (m/2)+ st
b. lim secxtanx = oo.
z—(m/2)~ .
c. lim secxrtanz = —oo. - I ’
z—(—m/2)t
d. lim secxtanz = —oo. =l
z—(—m/2)~

-10t

2.4.53
. L L L (z-D(xz—-6) 5
a False. lim f(z) = Hm, f(z)=lim f(z) = lim o7y = =3
. . (z=1D)(z—6)
b. True. For example, z_l)lr_nﬁ fz) = x_l:r_nﬁ T @rl) —00.
c. False. For example g(z) = L5 has lim g(z) = oo, but hr{l g(x) = —0
T— x—1-

2.4.54

function || a | b | c | d | e | f
graph D|C|F |B|A|E

2.4.55 We are seeking a function with a factor of x — 1 in the denominator, but there should be more factors
of z — 1 in the numerator, and there should be a factor of (z —2)? in the denominator. This will accomplish
the desired results. So )
-1
r(xz) = k) .
(x —1)(z —2)2

2.4.56

One such function is f(z) = ii:giig
(2= 1)(z—3)

@ D@2

2.4.57 One example is f(z) = .
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2.4.58 f(z) -1 L (for# # +1). Th tical totes, b for all
4. xXr) = = or r . ere are no vertical asymptotes ecause Ior all a
(@2 —=1)(22+1) 22+1 yHp ’ ’
1
I -
T J@) =

2 —3zx+2  (z—-2)(xz—1)

2.4.59 f(z) = 02 T D@1 f has a vertical asymptote at x = 0, because zi%h fl@)=—c0
(and lim f(z) = oc.) Note that lim1 f(x) = —1, so there isn’t a vertical asymptote at x = 1.
r—0— g

2.4.60 g(z) =2 —Inz? has a vertical asymptote at = 0, because lirrb(2 —Ina?) = c0.
T—r

T

2.4.61 h(z) = (xiilﬂ has a vertical asymptote at © = —1, because
T
A e~ and lim () = —co.
1

2.4.62 p(x) = sec(mx/2) = cos(mz/2) has a vertical asymptote on (—2,2) at = +1.

sin(7w0/10) . . .
2.4.63 g(0) = tan(wf/10) = ————= has a vertical asymptote at each § = 10n + 5 where n is an integer.

cos(m0/10)

This is due to the fact that cos(w6/10) = 0 when 76/10 = 7/2 + nw where n is an integer, which is the same
as {0: 0 = 10n + 5,n an integer}. Note that at all of these numbers which make the denominator zero, the
numerator isn’t zero.

2.4.64 q(s) = s—ﬂm has a vertical asymptote at s = 0. Note that this is the only number where sins = s.
2.4.65 f(x)= \/E;ecx = Ci’/sg has a vertical asymptote at x = 0.
2.4.66 g(r) = e'/* has a vertical asymptote at 2 = 0, because gcl_i)r(r)lJr et = oo (Note that as © — 07T,
1/2 — o0, so e!/* — oo as well.)
2.4.67
a. Note that the numerator of the given expression factors as (z — 3)(z —4). So if a = 3 or if a = 4 the
limit would be a finite number. In fact, a}l_r)r}3 % =—1and }1&}1 (ac—j)# =1.

b. For any number other than 3 or 4, the limit would be either +c0. Because xz — a is always positive
as ¢ — at, the limit would be 400 exactly when the numerator is positive, which is for a in the set
(—00,3) U (4, 00).

¢. The limit would be —oo for a in the set (3,4).

2.4.68
h) — hl/3
a. The slope of the secant line is given by G W 1) = = h=2/3,
1
b. lim —— = oo. This tells us that the slope of the tangent line is infinite — which means that the

h—0 J/h2
tangent line at (0,0) is vertical.

2.4.69
h) — h2/3
a. The slope of the secant line is G W 1) == h1/3,
: 1 . 1 s P,
b. lim —= = 0o, and lim = —oo. The tangent line is infinitely steep at the origin (i.e., it is a

h—0+ h1/3 h—0— h1/3
vertical line.)
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2.5 Limits at Infinity

2.5.1 As x < 0 becomes arbitrarily large in absolute value, the corresponding values of f approach 10.

2.5.2 lim f(z)=—-2and EIEI f(z)=

Tr—r00

2.5.3 lim z'2 = co. Note that z'2 is positive when z > 0.

Tr—r o0
2.5.4 lim 3z!!' = —co. Note that z'! is negative when z < 0.
T——00
. -6 _ 1
2.5.5 lim x lim — =0
T—>00 r—00 I

1
2.5.6 lim 2z~ ''= lim — =0.

T——00 T—r—00 1‘11
12
2.5.7 lim (—12t7°) = lim —— =0.
t—o00 t—oo 19

2
2.5.8 lim 2z %= lim — =0.

r——00 z——o00 18

2.5.9 lim (3+10/2%) =3+ lim (10/2?) =3 +0=3.
Tr—r00

Tr—r00

2.5.10 lim (5+1/2 + 10/2%) =5+ lim (1/2) + lim (10/2%) =5+ 0+0=5.

2.5.11 If f(z) — 100,000 as x — oo and g(z) — 0o as © — oo, then the ratio fg ; — 0 as x — co. (Because
eventually the values of f are small compared to the values of g.)

2 4 2z 42 2
2.5.12 lim m lim i—i— lim — + lim il =04 lim — 4+ lim 4=0+0+4=14.

T—00 x2 z—r00 T2 z—00 L2 z—o00 x2 T—00 I r—00

2.5.13 lim e/ =00, lim e’ =0, and lim e~ = 0.
t—o0 t——o0 t—o00

2.5.14 As x — oo, we note that e 2* — 0, while as  — —o0, we have e~ 2* — 0.
1
2.5.15 Because lim 3— — =3 and lim 3+ — =3, by the Squeeze Theorem we must have lim g(z) = 3.
Similarly, because lim 3 — — = 3 and lim 3 + = 3, by the Squeeze Theorem we must have
T——00 x T——00

2.5.16 lim g¢(r) =3, lim g(x) =—1, lim g(x)= oo, 11I£1+ g(x) = —oo0.
z—

T——00 T—00 T——2—
. cosf 1 cos 0 1
2.5.17 lim = 0. Note that —1 < cosf < 1,0 —— < —— < —. The result now follows from the
0—oco0 02 02 02 02

Squeeze Theorem.

5t2 4+ tsint

2.5.18 Note that T can be written as 5 + % Also, note that because —1 < sint < 1, we have
1 t 1 t
7 < Sl? < 7 SO % — 0 as t — oo by the Squeeze Theorem. Therefore,
5t + tsint t
i 2 ESIOE g (5+Sm> =5+0=5.
t—00 12 t—00
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2.5.19 lim 2% 0 Note that —1 < cosz® < 1,50 = < @s2® < 1 I lim —L —
Jim \f = 0. Note tha <cosz® < 1,50 = NG f ecausexingoffzirxgo = =
25
0, we have hm = 0 by the Squeeze Theorem.
r—00 f
100 sin*(2®
2.5.20 lim <5+ -0 (f )) = 54040 = 5. For this last limit, note that 0 < sin*(z?) < 1, so
T——00 €T T
40,3
1
0< e (f ) < . The result now follows from the Squeeze Theorem.
T T

2.5.21 lim (32'% — 927) = cc.

r—00

2.5.22 lim (32" +2?) = —oc.

Tr—r—00

2.5.23 lim (—32' +2) = —c.

r—r—00

2.5.24 lim (207 %+42%) =04+ lim 42® = —oc.

r—r—00 r—r—00

3 2 _ 3 _ 2
2.5.25 lim (14z° 4 32° — 22) . 1/x ~ lim 14+ (3/x) — (2/z2) _ 14 _ 2
oo (2123 + 224+ 2x+1) 1/23 2500214 (1/2) + (2/22) + (1/23) 21 3

(92% + 22 —5) 1/z* lim (9/x) 4+ (1/2%) — (5/2*) 0

2.5.26 li . - _9_,
o300 Bzt +422)  1/z*t 2> 3+ (4/x2) 3
2
2.5.27 Gim OF t30) Ve o0 Seds
T——00 (Jj + 1) 1/33 z——o00 1 + (1/1‘)
4 5 5
2598 lim & +70 Yoo o A/9)+(@/z°) _ 0+0 _ o

w00 (25 + a2 —x) 1/z5  emee 1+ (1/23) — (1/z%)  1+0-0
2.5.29 Note that for w > 0, w? = Vw?. We have
(15w? 4+ 3w+1)  1/w? . 154+ (3/w)+ (1/w?) 15

lim . = lim =— =25.
wooo 9wt +wd 1wt woeo 9+ (1/w) Vo
2.5.30 Note that Va® = 2% (even for x < 0). We have
(40x* + 22 + 5x)  1/2* 40 + (1/2%) + (5/2) 40 40

lim . = lim = = — =25.
r——00 /6428 + 6 1/vVa8 zo-o0 /64 4 (1/22) V64 8

2.5.31 Note that for x < 0, Va2 = —zx. We have

A VA V. 7”6:(1/%) — V16 =4

T——00 x —1/3’: T——00

2.5.32 Note that 22 = Vx4 for all z. We have

lim 62 l/ac2 ~ lim 6 _ 6 3
zo0 (422 + /162t +22) 1/2%2 w500 (44 \/T6 1 (1/22)) 4+V16 4
. (2?2 = V2t +322) (2 + V2t + 322) oot — (2 +32%) , —322
2.5.33 lim . = lim = lim —————————=. Now
T—00 1 (2 + vVt 4+ 322) w20 g2 +/at + 322 w00 g2+ \/xt + 322
divide the numerator and denominator by x2 to give
2 2 _
lim —3z l/z = lim 3 3

200 g2 4 \/zh + 322 1/2° 9H°°1+\/1+(3/$2):_5'
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(r+ Va2 —b5z) (z—Va?—5x) . x?— (2% — bx) %

2.5.34 lim . = lim —————* = lim ————. Now divide

T——00 1 (x — Va2 —bx) =z9-0 x—/x2—-5r =wo-0g—/z2-5z

the numerator and denominator by « (and recall that for z < 0 we have —vz? = z) giving

5 1 5 5
hm—xﬁ_ ;

w500 (z — /22 — bz) 1/ _wgr_noo1+ /1—(5/z) -2

1 i +1
2.5.35 Note that because —1 < sinz < 1, we have - < Sy < . Then because lim — = 0, the

1
e er e’ z—o00 e¥
. sinz
Squeeze Theorem tells us that lim — = 0.
r—oo e7T

2.5.36 Note that because —1 < cosx < 1, we have —e” < e” cosz < e”. Then 3—e® < e®cosz+3 < e*+3.
Because lim 3 —e® =3 and lim e® + 3 = 3, the Squeeze Theorem tells us that lim e”cosxz + 3 = 3.
xr—r—00

T——00 T——00

) 4z 1/x ) 4 4 1 . 1. .
2.5.37 mll)ngo 0l Jim Vo1 1/7;10 = zll)n;o m =% =5 Thus, the line y = £ is a horizontal
asymptote.

. 4z ) 4z 1/x . 4 4
lim = lim S
e——00 20z 4+1 a2-5-020x+1 1/x

1
= Igriaoo m =3 =5 This shows that the curve is also
asymptotic to the asymptote in the negative direction.
2 2 _ 1/22 _ 2 _
2.5.38 lim oL 1 _ qpy S0 0 Ly, 3207 320
z—oo g2 + 5 w—oox?+5r 1/22 a—oo 1+ (5/x) 1+0
horizontal asymptote.
R . 32?7 1/a? . 3= (7/2?) 3-0 .
mgr?oom - mgr?oo eyl 1 = xl}r_noo T+ (5/2) =170~ 3. Thus, the curve is also
asymptotic to the asymptote in the negative direction.

= 3. Thus, the line y = 3 is a

. (622 =9z +8) 1/z* . 6-9/x+8/2® 6—-04+0 . ) B
2.5.39 wll)ngo Gitta) 1/ Am 2 330 2. Similarly xll)r_noo f(xz) =2. The
line y = 2 is a horizontal asymptote.

(122 —=3) 1/2% . 12-3/2% 12-0 N , _
2.5.40 IILH;O (325 —227) . /25 = IILH;O 52z =30 " 4. Similarly mgljloo f(z) =4. The liney =4

is a horizontal asymptote.

. 337 . 323 -7 3/t . 1z —(7/2*) 0-0 .

2.5.41 mll)n;o m = 11{1;0 m . 1/x4 = z11—>1& 1 T (5/x2) = 1 n 0 =0. Thub, the line Yy = 0 (the
z-axis) is a horizontal asymptote.

323 -7 . 3z3 -7  3/a* . 1 —(7/2Y) 0

1

lim ——— = lim ——— . = 1 =
a;;}rfrl()o x4 + 52 a:~l>rfn<>0 o + 512 1/334 mil;noo 1+ (5/]"2)

asymptotic to the z-axis in the negative direction as well.

—0 = 0. Thus, the curve is
+0

2 1) 1/2* 2/x3 4+ 1/24

2.5.42 lim oD Yo Yol 040
e—oo (324 —2) 1/zt  a—oe 3-—2/z4 3—-0

a horizontal asymptote.

= 0. Similarly lim f(z) =0. The liney =0is
r—r—00

402° 2 1/z? 40 1/22
2.5.43 Ilgréo Elﬁi‘ljgxi . 1§i4 = Tl)rr;om = oo. Similarly xgl_noo f(z) = —oo. There are no

horizontal asymptotes.

2.5.44 Note that for all , Va4 = 22. Then

TN i o ) Y LAY Srde) 6 _y
e—too \/Az4 + 3z + 1 \/1/334 T o Feo \/4+ (3/x3) + (1/a%) IRV

So y = 3 is the only horizontal asymptote.
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1 224 + \/4z® — 92t
2.5.45 Note that for all z, V28 = z*. Then lim . (227 + Vidz® — 927)
z—+oo (204 — /428 — 92t (22* 4+ V4aB — 9z?)
(22* + V42® — 9z%) 1/a* oy 2T VA /2 4
5 =

= 1. . =
s-oo (425 — (42° — 0z4)) 1/a?  a—iboo

§.

Soy= 9 is the only horizontal asymptote.

2.5.46 First note that Va2 = x for x > 0, while Va2 = —z for © < 0. Then lim f(z) can be written as

Tr—r00

i v +1 1/\/552_1. V1+1/x2 1
e 22+ 1 1jz woee 2+1/z 2

However, lim f(z) can be written as
Tr—r—00

Val+1 Va2 VIR ]

1m = m —) = .
z——00 2x + 1 —1/x T—>—00 —2—1/1‘ 2

. 42% +1 1/23
2.5.47 First note that Va6 = 22 if z > 0, but V26 = —23 if 2 < 0. We have lim . =
T—00 (21‘3 + V1626 + 1) 1/333

A 1z 440 2
e=00 2 4\ /16+1/25 2+/16+0 3
) 43 4+ 1 1/a3 ) 4+1/23 440 4
However, lim . 3 = lim = = — =-2.
z——00 (203 + /1625 +1) 1/23  25-002 /16 +1/26 2—-16+0 —2
Soy = % is a horizontal asymptote (as © — o0o) and y = —2 is a horizontal asymptote (as z — —00).

2.5.48 First note that for x > 0 we have V22 = z, but for < 0, we have —x = V22. Then we have lim x—

Tr—0o0
. (z—=Va? = 92)(z + Va? - 9x) . 9z 1/z ) 9 9
Va2 -9z = lim =lim —— '~ = lim —————— = —.
T—00 T+ vVz? -9z =00 (p+ 22 —9x) 1/x 22014 ,/1-9/x 2

2 v
On the other hand, lim z — v22 —9z = lim (@ 72— 9z)(x + Va© — %) =
0 zﬁfool/ T——00 T+ Va2 -9z
X — X

lim : —00. The last equal sign follows because

-9
= lim ———=
e=—co (x 4+ /22 —92) —l/z 29— _14./1-9/z
9
v/1—9/x > 1 but is approaching 1 as  — —oo. We can therefore conclude that y = 5 is the only horizontal

asymptote, and is an asymptote as r — oc.

3/6
+ 8
2.5.49 First note that 26 = 22 and V24 = 22 for all « (even when z < 0.) We have lim sc .
( ) =00 (422 + 3zt + 1)

Va2 Y118/ 1 1
—— = lim = = .
1/a?  emco 4434+ 1/2%  4+V3+0 43
The calculation as z — —oo is similar. So y = 4—\1/5 is a horizontal asymptote.
2.5.50 First note that Va2 =z for z > 0 and V22 = —z for x < 0.
We have

4x(3x — V922 4+ 1)(3 V92 +1
lim 4z(3z — v/922+ 1) = lim 2(3e 2+ D@z + vi2? 4 1)
z—00 T—00 3z + V9?2 + 1
. (42)(-1) 1/x
= lm ——— .
z—00 (3x ++/922 + 1) 1/z
4 2

4
lm ————— = = = 2,
o0 34 ,/941/22 6 3
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Moreover, as x — —oo we have

4 — 922 +1 V92 +1

lim 4z(3z — V922 +1) = lim 2(3z 927 + (32 + vOrt + 1)
T——00 T——00 3z +v9z22 +1
(42)(-1) 1/x

lim ——————

S (Bx++v922+1) 1/z
4
m ————— =0
s5—c0 3 \/01 122

Note that this last equality is due to the fact that the numerator is the constant —4 and the denominator
is approaching zero (from the left) so the quotient is positive and is getting large.

Soy= f% is the only horizontal asymptote.
2.5.51
f(z) v =3 6+ 2> The obli tote of f i 6
a. f(x) = =x— ———. The oblique asymptote of f is y = = — 6.
z+6 z+6 e asymp Y
20}
Because lim f(z) = oo, there is a verti- N R \
z——6+ 1210 -8 46 -4 2 .-~
b. cal asymptote at z = —6. Note also that e
lim f(x) = —co. T ' —20}
r——6" .
—a0}
c —60}
2.5.52
22 -1 3
a. f(z) = 272 8T 2+ oL The oblique asymptote of f is y = =z — 2.
10}
5f
Because lim f(z) = oo, there is a verti- ‘ ‘ H —
r——21 -6 -4 =2 T
b. cal asymptote at * = —2. Note also that ___,,;——"’:;_
lim f(z)=-oc0. = ‘
T——2" -
~10f
—~15k
C. 20}
2.5.53
2_2x45 37
a. f(z) = % =(1/3)x —4/9 + G =2)" The oblique asymptote of f is y = (1/3)x — 4/9.
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4l
Because  lim  f(z) = oo, there is a verti- T
o (2/3)+ DT
b. cal asymptote at x = 2/3. Note also that e e x
lim f(z)=-oc0. o :
z—(2/3)~ ‘N
4l
c. ~Of
2.5.54
5z? —4 . .
a. f(x) = =x+1+ . The oblique asymptote of f is y = x + 1.
5r — 5 5 — 5
4l
Because lim+ f(z) = oo, there is a vertical asymp- b N
r—1 LT
b. tote at z = 1. Note also that lim flx) = —o0. e :
x—1— ;‘_’ﬂ :
03 \10 15 '
c. 2 '
2.5.55

4x3 +42% + 7 4 3
a. f(z) = ’ +1z+;r2 vt =dr+4+ ?22 The oblique asymptote of f is y = 4z + 4.

. There are no vertical asymptotes.

2.5.56

22 1
a. f(x) = ?’QET_’_ZM =x—2+ 330—:1))-4' The oblique asymptote of f is y =z — 2.
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112
10}
A\l
Because lim  f(x) = oo, there is a verti- : =
23 (=4/3)+ ‘ N S, .
b. cal asymptote at x = —4/3. Note also that - e o ’
li =—00. e st
z—)(igl/B)* f(JZ) > ” :
~10f
—~15}
c.
2.5.57
é — X
IILH;O(—36 )=-3-0=0. ml}r}loo(—?)e ) = —00.
2.5.58
|
6}
lim 2% =o00. lim 2% =0.
T—00 T—r—00 4}

)
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2.5.59
lim (1 —Ilnz) = —oo. lim (1 —Ina) = oo.
T—00 r—0+
2.5.60
lim |Inz| =occ. lim |lnz| = oco.
T—00 z—0+
2.5.61

y frg
lim sinxz do not exist.
Tr—r — 00

sinz has no asymptotes. m sinx and

[ 18
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2.5.62

lim 52—0:0. lim 52—0*
T—00 e4T r——o00 T

-10 =05 0.5 1.0 1.5

2.5.63

sin x

False. For example, the function y = on the
a.  domain [1, 00) has a horizontal asymptote of y = 0,
and it crosses the z-axis infinitely many times.

b. False. If f is a rational function, and if lim f(z) = L # 0, then the degree of the polynomial in the
xr—r0o0

numerator must equal the degree of the polynomial in the denominator. In this case, both lim f(z)
T—r00

a
and xEIPoo flz) = b—n where a,, is the leading coefficient of the polynomial in the numerator and b,, is

n
the leading coefficient of the polynomial in the denominator. In the case where lim f(z) = 0, then
Tr—r00

the degree of the numerator is strictly less than the degree of the denominator. This case holds for
lim f(x) =0 as well.
Tr—r—00

c. True. There are only two directions which might lead to horizontal asymptotes: there could be one as
x — oo and there could be one as x — —oo, and those are the only possibilities.

d. False. The limit of the difference of two functions can be written as the difference of the limits only

when both limits exist. It is the case that lim (2® — ) = oo.
Tr—r00

2500
2.5.64 lim p(t) = lim —— = 0. The steady state exists. The steady state value is 0.
t—o0 t—oot+1
. . 3500¢ . .
2.5.65 thm p(t) = thm e 3500. The steady state exists. The steady state value is 3500.
— 00 — 00

2.5.66 lim m(t) = 26li)m 200(1 — 27%) = 200. The steady state exists. The steady state value is 200.

t—o00

2.5.67 lim v(t) = lim 1000e%°%5" = co. The steady state does not exist.

t—o0 t—o00

1 1
2.5.68 lim p(t) = lim p00 1500 500. The steady state exists. The steady state value is 500.
t—o00 t—oo 3 + 21t 3
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t+sint sin ¢
2.5.69 t]jm a(t) = lim 2 ( +:m ) = lim 2 (1 + bl?) = 2. The steady state exists. The steady state
—00

t— 00 t—o0
value is 2.
2.5.70
24z +3 24z +3
a. lim rodrts =00, and lim rodrts = —00. There are no horizontal asymptotes.
Z—00 x—1 Z——00 rx—1
. . . z? — 4z + 3
b. It appears that z = 1 is a candidate to be a vertical asymptote, but note that f(x) = — 7 =
T —
-1 -3
w. Thus lim f(z) = lim(z — 3) = —2. So f has no vertical asymptotes.
€Xr — 1 z—1 r—1
2.5.71
. 223+ 1022 + 122 (1/a3) . 2410/x + 12/ . _
a. lim N . /) ~ xlggo T +2/z = 2. Similarly, zll}r_noo f(z) =2. Thus, y =2
is a horizontal asymptote.
2 2 3 2 3
b. Note that f(z) = x(:;;;x )Jfg;;— ) So ggli}rél+ flz) = gﬂli}rél+ Hz+3) = 00, and similarly, ml_i)rgl_ flz) =
—o0. There is a vertical asymptote at £ = 0. Note that there is no asymptote at z = —2 because

2.5.72

. V16z1 + 6422 + 22 (1/22?) . A/16+64/22+1 5 | _ 5
a. We have xlgrolo 57 4 . /D~ xlggo Py =3 Similarly, xEIPoo fz) = 3

Soy= % is a horizontal asymptote.

b. lim f(z)= lim f(z)=o00,and lim f(z)= lim f(x)= —o0 so there are vertical asymp-
z—v2 " T——V2" V2" z——~/2"
totes at © = +/2.
2.5.73
.32t +32% - 3622 (1/2%) . 3+3/x—36/z2 L .
a. We have zl;ngo T on 14l (120 zhﬁn;o 1= 25/2% 7 1d/ad 3. Similarly, zglzloof(x) = 3.

So y = 3 is a horizontal asymptote.

322 (x +4)(z - 3)

b. Note that = . Th li =— d I =o00. Al
ote that S(2) = Gy gy gy gy T S0) = oo andlmS(2) = oo, Al
hI};l f(z) = —o0 and liI£1+ f(z) = oo. Thus there are vertical asymptotes at x = —3 and z = 4.
z—4- z—

2.5.74

a. First note that

422 + V1624 + 1 2
flz) = x2(4x2 —V16z* +1) - o+ vI6a” + = _ v )
422 + /1624 + 1 422 4 /1624 + 1

x? (1/2%) 1 1
We have lim — - = lim ————————— = ——. Similarly, the limit as
eooo 4a? + /161 + 1 (1/22) 2900 44 /16 + 1/2% 8 Y
o1 . .
x — —oo of f(x) is -3 as well. So y = -3 is a horizontal asymptote.

b. f has no vertical asymptotes.
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2.5.75
29 (1/2? 1—9/2?
a. lim — : (1/z") = lim i = 1. A similar result holds as z — —oco. So y = 1 is a horizontal
z—o0 22 — 3z (1/22) =2—00 1—3/x
asymptote.
. .z +3 . . .
b. Because lim f(z)= lim =ooand lim f(z) = —oo, there is a vertical asymptote at = = 0.
z—0t1 z—0t T z—0—
2.5.76
11 Zo1D)(2?+1
a. lim r oo lim w = lim 2?41 = oco. There are no horizontal or slant asymp-
x—+oo 172 —1 x—+oo 1‘2 —1 r—too
totes.

b. It appears that x = £1 may be candidates for vertical asymptotes, but because

' —1 (2 —1)(z®+1)

2
= = 1
2 -1 z—1 v

for x # £1 there are no vertical asymptotes either.

2.5.77

a. First note that f(z) can be written s

Va2 +22+6-3 Va?4+22+6+3 22 +22+6-9 (x —1)(z+3)

z—1 Va2 +22+6+43 (2-1)(Vi2+20+6+3) (2-1)(VaZ+22+6+3)

Thus
x+3 1/x ) 1+3/z

lim f(z) = lim - —— = lim =1
T—00 =00 \/g2 4 22 +6+3 1l/z  wooo \/142/x+6/22+3/x

Using the fact that va? = —z for < 0, we have lim f(z) = —1. Thus the lines y =1 and y = —1

Tr—r—00

are horizontal asymptotes.

b. f has no vertical asymptotes.

2.5.78
. 2 2 . ‘1 - $2| . 12 - 1 . .
a. Note that when z is large |1 — 2| = z° — 1. We have lim — = lim = 1. Likewise
rz—oo T4+ x z—o00 T4 + X
1 —a? .- . .
lim = lim = 1. So there is a horizontal asymptote at y = 1.
z—00 T2 41 z5—c0 22 + 1
1
b. Note that when z is near 0, we have |1 —2%| = 1—2? = (1-z)(1+z). So lim f(z) = lim R
z—0+t z—0t X
Similarly, lim f(z) = —oco. There is a vertical asymptote at = 0.
z—0—
2.5.79

a. Note that when = > 1, we have |z| = z and |z — 1| = z — 1. Thus

Vi+yVr—1 1
Vi+vVe—1 Jr+Vr—1

fa) = (Vo —Va—T)-

Thus lim f(z)=0.

Tr— 00

When z < 0, we have |z| = —x and |z — 1| =1 — . Thus

e Y EAVITE 1
fl@) = (V-2 -V1-x) J+VI-7  Jw+ -z

Thus, lim f(x)=0. There is a horizontal asymptote at y = 0.
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b. f has no vertical asymptotes.

2.5.80
3e” +10) 1/e” 34 (10/e" 3e*+10 1/€e”
a. lim (3¢ + 10) . /e = lim M = 3. On the other hand, lim se 710 /e
T—00 er 1/@1 T—00 1 r—— 00 et l/em
1 —T
lim % = o0. y = 3 is a horizontal asymptote as x — oco.
r—r—00

b. f has no vertical asymptotes.

2.5.81
2
a. lim w = lim (2 + cosx) = 2. y = 2 is a horizontal asymptote.
T—00 VT z—00 NG
. cosx+2 . cosx+2 . . .
b. lim M =o00. and lim M does not exist. x = 0 is a vertical asymptote.

r—0+ \/E z—0— \/E
2.5.82

a. lim cot™ 'z =0.
Tr—r o0

b. lim cot ™'z =.
r—r—00

2.5.83

a. lim sec™'a = 7/2.
Tr—r00

b. lim sec 'z =m/2.

T——00
2.5.84
. et te®
a. lim —— = 0.
Z—00 2
. et +e "
lim —— = .
T——00 2

2.5.85
et —e "
a. lim = 00
xTr—r00
) T _ o
lim = —00
T——00 2
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2.5.86

One possible such graph is:

2.5.87

One possible such graph is:

4
2.5.88 lim f(n)= lim — =0.

n— 00 n—oo N

2.5.89 lim f(n) = lim " — Tim [1— (1/n)] = 1.

n— 00 n—oo n n— 00

2.5.90 lim f(n)= lim

. n
= hm e

10

-10

-20

4k
2
y=1
-20 -10 10
— y=-
4}
—6L
y
__zil____l_ _________
I } I } } } l i Il ]
T T T T T T T T T T
1 1
y=-2

= 00, so the limit does not exist.
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2.5.91 nhHH;O fln) = nl;rr;o = nl;ngo[l/n +1/n°] =0.
2.5.92

a. Suppose m = n.

1 n

lim f(z)= lim pi(x) . /z
r—+oo r—+oo q(gj) 1/1’"

U+ Qp1/T+ -+ a1 /z" " +ap /2"

i
z_lrinoo by +bp_1/x+ -+ by /anL + b/

b. Suppose m < n.

1/z™
lim f(z)= lim pi(x) . /@
z—too z—doo g(x) 1/am
an/xnfm + anil/xnferl R al/xnfl + ao/x"
m

+oo bn-‘rbn_l/l‘-i-"'—‘rbl/l‘”_l+b0/.’L‘n

li
z—
0
— =0.
bn

2.5.93

a. No. If m = n, there will be a horizontal asymptote, and if m = n + 1, there will be a slant asymptote.

b. Yes. For example, f(r) = ———= has slant asymptote y = z as * — oo and slant asymptote y = —x
ple, flw) = Z==—= ymptote y ymptote y
as r — —00.
2.5.94
4e* 2z T 2z 2z T
T +2e7 i (de” +2¢*7) 1/e — im (4/6)4—2:2.
z—oo 8e +e2¥  z—oo (8e® 4 €2%) 1/e?  a—oo (8/e%) +1
. de® + 2e% . (4e® +2e*) 1/e® 442" 1
b. lim —— = lim . = lim = —.
z——o0 8e% + €2  z——oo (8e® 4 €2%) 1/e* w——o0 8+e€ 2
201
15
c. The lines y =2 and y = % are horizontal ol
asymptotes. '
d Ty -5 5 !
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2 x xT X x
2.5.95 lim 26 13 _ py 2743 V¥ . 2+3/e" 240
z—oo e¥ + 1 z—oo (e 4+1) 1/e*  aw—ool+41/e” 1+0

2e*+3 043
horizontal asymptote. Also lim (? ts _0+s
z——oc0 €% + 1 0+1

= 2. Thus the line y = 2 is a

=3, so y = 3 is a horizontal asymptote.

3e°” + 7eb” (3e5% + 7eb%)  1/eb 3e "+ 7 7 1 1
2.5.96 lim —— ¢ _ | . . e s A A R
s300 0657 + 14607 amoo (957 + 14e67)  1/eb  wooo9e—® +14 14 2 oY T g B®®
. ) 3e5 + 762 . (3e5% + 7e5%) 1/e>® ) 3+ Te” 3 1
horizontal asymptote. Also, ZEIPOO 965" 1 1dg6r — dim (9c5 T 14c57) . 1w = lim 91lder 9= 3

1
Soy= 3 is a horizontal asymptote.

61
2.5.97 Using the rules of logarithms, f(z) = 31113:% The domain of f is (0, /e) U (¥/e,00). We first
1
examine the end behavior of the function. Observe that lim Gi = lim # = § = 2 and

e=oo 3lnr —1 e—=c03 —(1/Inz) 3
lim _Olne im 6 _6_ 2. So the function has a horizontal asymptote of y = 2 and it is
a0+ 3Inx —1 250+ 3—(1/lnx) 3 7 yimp v=
undefined at x = 0 but has limit 2 as x approaches 0 from the right. Notice also that as z — %+, 6lnz — 2

61
and 3Inxz — 1 is positive and approaches 0. Therefore, lim b oo and by a similar argument,
e Yot 3lnx — 1

. 61lnx
lim

o e~ Slnz —1 -

2.6 Continuity

2.6.1

a. a(t) is a continuous function during the time period from when she jumps from the plane and when
she touches down on the ground, because her position is changing continuously with time.

b. n(t) is not a continuous function of time. The function “jumps” at the times when a quarter must be
added.

c. T(t) is a continuous function, because temperature varies continuously with time.

d. p(t) is not continuous — it jumps by whole numbers when a player scores a point.
2.6.2 In order for f to be continuous at x = a, the following conditions must hold:

e f must be defined at a (i.e. @ must be in the domain of f),

e lim f(x) must exist, and
r—a
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e lim f(x) must equal f(a).

r—a

2.6.3 A function f is continuous on an interval I if it is continuous at all points in the interior of I, and it
must be continuous from the right at the left endpoint (if the left endpoint is included in I) and it must be
continuous from the left at the right endpoint (if the right endpoint is included in I.)

2.6.4 The words “hole” and “break” are not mathematically precise, so a strict mathematical definition can
not be based on them.

2.6.5 fis discontinuous at x = 1, at = 2, and at x = 3. At z = 1, f(1) is not defined (so the first condition
is violated). At z = 2, f(2) is defined and lim2 f(x) exists, but lim2 f(z) # f(2) (so condition 3 is violated).
r—r rT—r

At x =3, lirrg f(z) does not exist (so condition 2 is violated).
T—

2.6.6 f is discontinuous at x = 1, at x = 2, and at x = 3. At z = 1, lim1 f(z) # f(1) (so condition 3 is
—
violated). At x = 2, lim2 f(z) does not exist (so condition 2 is violated). At x = 3, f(3) is not defined (so
T—r

condition 1 is violated).

2.6.7 f is discontinuous at z = 1, at x = 2, and at x = 3. At x =1, hm1 f(z) does not exist, and f(1) is not
r—
defined (so conditions 1 and 2 are violated). At z = 2, 111112 f(x) does not exist (so condition 2 is violated).
T—r

At z =3, f(3) is not defined (so condition 1 is violated).

2.6.8 f is discontinuous at z =2, at x = 3, and at x = 4. At © = 2, lim2 f(z) does not exist (so condition 2
z—
is violated). At = 3, f(3) is not defined and lir% f(z) does not exist (so conditions 1 and 2 are violated).
r—r
At x =4, lin}L f(z) # f(4) (so condition 3 is violated).
z—
2.6.9

a. A function f is continuous from the left at £ = a if @ is in the domain of f, and lim f(z) = f(a).
r—a~—

b. A function f is continuous from the right at = a if @ is in the domain of f, and lim+ f(z) = f(a).
Tr—a

2.6.10 If f is right-continuous at z = 3, then f(3) = linél+ f(x)=6,s0 f(3) =6.
T

2.6.11 f is continuous on (0,1), on (1,2), on (2, 3], and on (3,4). It is continuous from the left at 3.
2.6.12 f is continuous on (0,1), on (1,2], on (2,3), and on (3,4). It is continuous from the left at 2.
2.6.13 f is continuous on [0,1), on (1,2), on [2,3), and on (3,5). It is continuous from the right at 2.

2.6.14 f is continuous on (0,2], on (2,3) , on (3,4), and on (4,5). It is continuous from the left at 2.

2.6.15 The domain of f(z) = s (—00,0) U (0,00), and f is continuous everywhere on this domain.
x

2.6.16 The function is continuous on (0, 15], on (15, 30], on (30, 45], and on (45, 60].

2.6.17 The number —5 is not in the domain of f, because the denominator is equal to 0 when z = —5.
Thus, the function is not continuous at —5.

2.6.18 The function is defined at 5, in fact f(5) = SCELFEL — 66 _ 33 Aloo Jim f(z) = I 2’ 341
.6. e function is defined at 5, in fact f(5) = 55 = 55 = %5 SO,z%fx)—xﬂ 2+ 50
33

% = (5). The function is continuous at a = 5.

2.6.19 f is discontinuous at 1, because 1 is not in the domain of f; f(1) is not defined.
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2.6.20 g is discontinuous at 3 because 3 is not in the domain of g; g(3) is not defined.

2.6.21 f is discontinuous at 1, because lim1 f(z) # f(1). In fact, f(1) = 3, but lim1 f(z) =
— r—

-3)(xz—1
2.6.22 f is continuous at 3, because lirrg f(z) = f(3). Infact, f(3) = 2 and lirrg f(z) = lim E=3@=-1 =
T— T—

z—3 r—3
lim(z — 1) = 2.
r—3
2.6.23 f is discontinuous at 4, because 4 is not in the domain of f; f(4) is not defined.

1
2.6.24 f is discontinuous at —1 because lim f(z) = lim retl) = lim z=-1# f(-1)=2.

z——1 z——-1 x+1 z——1
2.6.25 Because p is a polynomial, it is continuous on all of R = (—o0, 00).

2.6.26 Because g is a rational function, it is continuous on its domain, which is all of R = (—o00, 00). (Because
2? + 2 + 1 has no real roots.)

2.6.27 Because f is a rational function, it is continuous on its domain. Its domain is (—oo0, —3) U (=3,3) U
(3,00).

2.6.28 Because s is a rational function, it is continuous on its domain. Its domain is (—oco, —1) U (—1,1) U
(1,00).

2.6.29 Because f is a rational function, it is continuous on its domain. Its domain is (—oo, —2) U (—2,2) U
(2, 00).

2.6.30 Because f is a rational function, it is continuous on its domain. Its domain is (—oo0, —2) U (—2,2) U
(2, 00).

2.6.31 Because f(x ( — 326 — 1)40 is a polynomial, it is continuous everywhere, including at 0. Thus

;igg)f()—f(m:( =1,

5 — 42 — 50
including at © = 2. So lim f(z) = f(2) =
T—2

4
) is a rational function, it is continuous at all points in its domain,

81
16

3
2.6.32 Because f(z) = (2:100

2.6.33 Because 2 — 222 — 8z = z(2? — 22 — 8) = x(x — 4)(x + 2), we have (as long as = # 4)

_ 2 _

xr —

— 972 8
Thus, lirr}1 1/ # = hm vVa(x 4+ 2) = V24, using Theorem 2.12 and the fact that the square root
z— x —

is a continuous function.

2.6.34 Note that t — 4 = (v/t — 2)(\/t +2), so for t # 4, we have

t—

i3 2—\f+2

Thus, hm = hm(\f t +2) = 4. Then using Theorem 2.12 and the fact that the tangent function is

\f 2 t—4

t—4 —4
continuous at 4, we have lim tan () = tan ( ) = tan4.
t—4 \/i —92 t—4 \[
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4
2.6.35 Because f(z) = (%) is a rational function, it is continuous at all points in its domain, including

at = 1. Thus lim1 fx) = f(1) =16.
z—

—00 x —00

2z +1\°
2.6.36 lim < Tt > — lim (24 (1/2))® = 2° = 8.

2.6.37 Note that

6(v2Z— 16 — 3)

i . 6(vVa? —16-3) (Va?2—-16+3) i 6(z% — 25)
=5 5z —5) 25 5(z—5) (Va2 =16 +3) ==55(z —5)(vV2% — 16 + 3)
6(z +5) 60

= lim ————

= — = 2
=5 5(v/z2 —16+3) 30

2.6.38 First note that
x . x (V16x +1+1) . z(V16x+1+1) 2
= |1m = — =

1. :1 . .
25016z +1—1 om0 (VIbz +1—1) (VIbz F1+1) a0 16z 16 8

| =

1/3 1/3
1 1
Then because = z'/3 is continuous at 1/8, we have li S = (= =, b
n use f(x) = z'/° is continuou /8, we hav lim eI 1 5 5 by

Theorem 2.12.

2.6.39

a. fis defined at 1. We have f(1) = 12+(3)(1) = 4. To see whether or not lim1 f(z) exists, we investigate
Tr—r

the two one-sided limits. lim f(z) = lim 2z =2, and lim f(x) = (2% + 3x) = 4, so lim f(x)
z—1— T—1— rz—1t r—1

lim
rz—1t
does not exist. Thus f is discontinuous at = = 1.

b. f is continuous from the right, because lim f(z) =4 = f(1).

z—1t

c. f is continuous on (—o0,1) and on [1,00).
2.6.40

a. f is defined at 0, in fact f(0) = 1. However, lim f(z) = lim (2® + 42 + 1) = 1, while liI(I)l+ f(z) =
z—

z—0~ x—0~

lim 22 = 0. So lim f(x) does not exist.
r—0+ x—0

b. f is continuous from the left at 0, because lim f(z) = f(0) = 1.

z—0~

c. f is continuous on (—o0,0] and on (0, c0).
2.6.41 f is defined and is continuous on (—o0, 5]. It is continuous from the left at 5.

2.6.42 f is defined and is continuous on [—5,5]. It is continuous from the right at —5 and is continuous
from the left at 5.

2.6.43 f is continuous on (—oo, —\/g] and on [\/g, o0). Tt is continuous from the left at —/8 and from the
right at V8.

2.6.44 g(z) = V22 =3z +2 = /(z — 1)(z — 2) is defined and is continuous on (—o0, 1] and on [2, 00). It is
continuous from the left at 1 and from the right at 2.

2.6.45 Because f is the composition of two functions which are continuous on (—oo, 00), it is continuous on
(=00, 00).
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2.6.46 f is continuous on (—oo, —1] and on [1,00). It is continuous from the left at —1 and from the right
at 1.

2.6.47 Because f is the composition of two functions which are continuous on (—o0, ), it is continuous on
(—00, 00).

2.6.48 f is continuous on [1,00). It is continuous from the right at 1.

2.6.49 ,/49”“0 1/ 8 _3
x—>2 2x —

2.6.50 lim (x Ay a2 )z 1?2 44 (12 —9= -3+ Y 8= -34+-2= 5.

z——1
2
3 2 1 2
2.6.51 lim - rScosTE L lim (cos@ + 1)(cosz +2) = lim (cosz +2) = 1.
T—T cosr + 1 T cosr + 1 T
2652 lim 527 F0snzZH5 _ (sinz40)(sine +1) )~ osinetd 4 _
z—3m/2 sin“x — 1 z—3r/2 (sinx — 1)(sinz + 1) e—3r/2sine—1 -2

2.6.53 1i1rn3 Vaz+T7=vV947=
r—

2
2.6.54 lim 5 = ) = 9

t=214+vV24+5 149 4

sinx — 1
2.6.55 lim —— = lim (Vsinz+1)=2.
z—m/2 y/sinx — 1 z—7/ 2( )

1 1

5Ty — 5 (2)(2 in6 2—(2 in6 1 1

2.6.56 lim 20 2 (DQH+sin0) 0 2-Q+sin6) 1 1

-0  sinf (2)(2+4sinf)  6-0 (sinf)(2)(2+sinf) 6—0 2(2+sindh) 4
2.6.57 lim c0§x2—1 ~ Jim cosr — 1 ~ Jim cosx —1 T 1 :_1

50 sinz 2501 —costa | =m0 (1 —-cosz)(l4+cosxz) =2—0 14 cosz 2

1— 2 202

2.6.58 lim ﬂ = lim Sl,n - lim sinz = 0.

z—0+  sinz z—0+ Sinx  z—0+t

dx 1 2x 1 2z _ 1 2z 1 T _1 T 1

2.6.59 lim & C o e DET D) g (A DE DD

z—0 e — 1 x—>0 er —1 z—0 et — 1

: 2x T _ —
;11)%(6 +1)(e"+1)=2-2=4.

Iz —51 Inz —2)(lnz —
2.6.60 lim 2 =oMmrH+6 e =3) L e gy = 1
r—e? Inx —2 r—e? Inx —2 r—e?

2.6.61 f(x) = cscx isn’t defined at = kmw where k is an integer, so it isn’t continuous at those points. So it is

continuous on intervals of the form (km, (k+1)7) where k is an integer. lim cscx = V2. lim escz = —oo.
z—m/4 27

2.6.62 f is defined on [0, 00), and it is continuous there, because it is the composition of continuous functions
defined on that interval. lim f(z) = e¢®. lim f(z) does not exist—but lim f(z) = e® = 1, because f is
r—4 x—0 r—0t

continuous from the right.

2.6.63 f isn’t defined for any number of the form /2 + k7 where k is an integer, so it isn’t continuous
there. It is continuous on intervals of the form (w/2 + km,7/2 + (k4 1)m), where k is an integer.

lim f(z)=o00. lim f(z)= \[/2 =V3-2.

w7 /27 z—4m/3 C-1/2
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2.6.64 The domain of f is (0,1], and f is continuous on this interval because it is the quotient of two
continuous functions and the function in the denominator isn’t zero on that interval.
Inx Inl 0

1. = 1. = = — =
o 1- /(@) Pac sin~'(x) sinT'(1)  @/2

2.6.65 This function is continuous on its domain, which is (—oo,0) U (0, 00).

= 00, while lim f(z)= lim C -
z—0+t

li =1
zi}g* f(x) e z—0t 1 —e®

z—0—- 1 —e”
2.6.66 This function is continuous on its domain, which is (—oo,0) U (0, 00).
1 e’ +1)(e” — 1)

o ) 1 i |
M= e T T T e

:,713%(6 +1)=2.

2.6.67

a. Note that f(z) = 22 + o — 2 is continuous everywhere, so in particular it is continuous on [—1,1].
Note that f(—1) = =5 < 0 and f(1) =1 > 0. Because 0 is an intermediate value between f(—1) and
f(1), the Intermediate Value Theorem guarantees a number ¢ between —1 and 1 where f(c) = 0.

/.

B R 05

Using a graphing calculator and a computer al-
I, gebra system, we see that the root of f is about
0.835.

2.6.68
a. Note that f(x) = va*+ 2523 + 10 — 5 is continuous on its domain, so in particular it is continuous

on [0,1]. Note that f(0) = v/10 =5 < 0 and f(1) = 6 —5 = 1 > 0. Because 0 is an intermediate
value between f(0) and f(1), the Intermediate Value Theorem guarantees a number ¢ between 0 and

1 where f(c) = 0.

A
55¢F
50
Using a graphing calculator and a computer alge-
b. bra system, we see the root of f(z) is at about 45}
.834.
40t
35F
‘ . . . . > X
c. 02 04 06 08
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2.6.69

a. Note that f(z) = 2 — 522 + 2z is continuous everywhere, so in particular it is continuous on [—1,5].
Note that f(—1) = =8 < —1 and f(5) = 10 > —1. Because —1 is an intermediate value between f(—1)
and f(5), the Intermediate Value Theorem guarantees a number ¢ between —1 and 5 where f(c) = —1.

Using a graphing calculator and a computer alge- 2
bra system, we see that there are actually three

b, different values of ¢ between —1 and 5 for which —4r
f(¢) = —1. They are ¢ = —0.285, ¢ ~ 0.778, and ol
¢~ 4.507.

—gl

—10}F

C. ~12¢

2.6.70

a. Note that f(z) = —2% — 422 + 24/z + 5 is continuous on its domain, so in particular it is continuous on

[0,3]. Note that f(0) =5 > 0 and f(3) ~ —270.5 < 0. Because 0 is an intermediate value between f(0)
and f(3), the Intermediate Value Theorem guarantees a number ¢ between 0 and 3 where f(c) = 0.

Using a graphing calculator and a computer alge-
b.  bra system, we see that the value of ¢ guaranteed
by the theorem is about 1.141.

2.6.71

a. Note that f(z) = e® + x is continuous on its domain, so in particular it is continuous on [—1,0]. Note
that f(-=1) = 1 —1 < 0 and f(0) =1 > 0. Because 0 is an intermediate value between f(—1) and
£(0), the Intermediate Value Theorem guarantees a number ¢ between —1 and 0 where f(c) = 0.
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Using a graphing calculator and a computer alge- -10 -08-~—~06 -04 -02

b.  bra system, we see that the value of ¢ guaranteed
by the theorem is about —0.567.

2.6.72

a. Note that f(x) = zlnx —1 is continuous on its domain, so in particular it is continuous on [1,e]. Note

that f(1) =Inl—1=—-1<0and f(e) =e—1> 0. Because

0 is an intermediate value between f(1)

and f(e), the Intermediate Value Theorem guarantees a number ¢ between 1 and e where f(c) = 0.

A

Using a graphing calculator and a computer alge-

b.  bra system, we see that the value of ¢ guaranteed
by the theorem is about 1.76322.

2.6.73

a. True. If f is right continuous at a, then f(a) exists and the limit from the right at a exists and is equal
to f(a). Because it is left continuous, the limit from the left exists — so we now know that the limit
as x — a of f(x) exists, because the two one-sided limits are both equal to f(a).

b. True. If ;ll_l’g f(z) = f(a), then 1im+ f(z) = f(a) and lim f(z

) = f(a).

c. False. The statement would be true if f were continuous. However, if f isn’t continuous, then the

statement doesn’t hold. For example, suppose that f(z) =

f(2) =1, but there is no number ¢ between 0 and 2 where f(

d. False. Consider f(x) = 22 and @ = —1 and b = 1. Then f is
and there is no ¢ on (a,b) with f(c) = 1.

0 if0<x<l;

Note that f(0) = 0 and
1 if1<z<2
c)=1/2.

continuous on [a, b], but w =1,

Copyright (© 2019 Pearson Education, Inc.


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

128 Chapter 2. Limits

2.6.74

a. Because m is a continuous function of r on [0.04, 0.05], and because m(0.04) ~ 1193.54 and m(0.05) ~
1342.05, (and 1300 is an intermediate value between these two numbers) the Intermediate Value The-
orem guarantees a value of r between 0.04 and 0.05 where m(r) = 1300.

.\'

A
1950} y=m()
. y=1300
Using a computer algebra system, we see that the 1300
1
b.  required interest rate is about 0.047. /:
1
1
650F :
1
1
1
i
0.02 0.04 0.06 0.08 o

2.6.75

a. Because A is a continuous function of r on [0,0.08], and because A(0) = 5000 and A(0.08) ~ 11098.2,
(and 7000 is an intermediate value between these two numbers) the Intermediate Value Theorem
guarantees a value of r between 0 and 0.08 where A(r) = 7000.

y
A
12000 y=A(r)
10000 }

Solving 5000(1 + (r/12))'2° = 7000 for r,
olving (1+ (r/12)) orr, wesee b 1000

b, that (1+ (r/12))120 =7/5,s0 1 +7/12 = ¥/7/5,

sor=12(*%/7/5 — 1) ~ 0.034. 6000f __——

4000}

2000 F

\j

0.02 0.04 0.06 0.08

2.6.76

a. Note that A(0.01) ~ 2615.55 and A(0.1) ~ 3984.36. By the Intermediate Value Theorem, there must
be a number ro between 0.01 and 0.1 so that A(rg) = 3500.

b. The desired value is rg &~ 0.0728 or 7.28%.

2.6.77 Consider the function f(x) = cosz — 2z on the interval [0,1]. Note that f(0) = 1 and f(7/2) =
—m < 0. So by the Intermediate Value Theorem, there must be a root of f on the interval [0, 7/2]. Using a
computer algebra system, we find a root of approximately 0.45.

2.6.78 Let f(x) = |z|.
For values of a other than 0, it is clear that lim |z| = |a| because f is defined to be either the polynomial
T—ra
x (for values greater than 0) or the polynomial —z (for values less than 0.) For the value of a = 0, we have
lim f(z) = lim x =0 = f(0). Also, lim f(z) = lim (—z) = —0 = 0. Thus lim f(z) = f(0), so f is
z—0+ z—0F x—0~ z—0~ z—0

continuous at 0.
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2.6.79 Because f(x) = 23 + 3z — 18 is a polynomial, it is continuous on (—oo, o), and because the absolute
value function is continuous everywhere, |f(z)| is continuous everywhere.

4

2.6.80 Let f(z) = % Then f is continuous on (—oo, —2) U (~2,2) U (2,00). So g(z) = |f(z)| is also
o

continuous on this set.

2.6.81 Let f(z) = Then f is continuous on [0,16) U (16,00). So h(xz) = |f(x)| is continuous on

—4
this set as well.

2.6.82 Because 22 + 2z + 5 is a polynomial, it is continuous everywhere, as is |#2 + 2z + 5|. So h(x) =
|22 4 22 + 5| + /7 is continuous on its domain, namely [0, 00).

2.6.83

The graph shown isn’t drawn correctly at the in-
tegers. At an integer a, the value of the function

. 1.

is 0, whereas the graph shown appears to take on y

all the values from 0 to 1.

Note that in the correct graph, lim f(x) =1 and 0.5
r—a~—

lim f(z) =0 for every integer a.
z—a™t

2.6.84

The graph as drawn on most graphing calculators appears to be continuous at x = 0, but it isn’t, of
course (because the function isn’t defined at = 0). A better drawing would show the “hole” in the graph
at (0,1).

05}

sinx

c. It appears that lim =1
z—0

xT

2.6.85 With slight modifications, we can use the examples from the previous two problems.
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1.0
The function y = « — |x] is defined at z = 1 but

a.
isn’t continuous there. 05
» X
-2 -1 1
y
A
L5f
The function y = % has a limit at = = 1, 10l
but isn’t defined there, so isn’t continuous there.
0.5
. - X
-3 -2 -1 0 1 2
2.6.86 In order for this function to be continuous at x = —1, we require lim1 f(z) = f(=1) = a. So the
T——
2
z°+3x+ 2 z+2)(z+1
value of a must be equal to the value of lim A ts lim E+e+l) = lim (z+2)=1. Thus
rz——1 z+1 z——1 x+1 z——1

we must have a = 1.

2.6.87

a. In order for g to be continuous from the left at © = 1, we must have lim g¢(z) = g(1) = a. We have
r—1-

lim g(z) = lim (2 + x) = 2. So we must have a = 2.
rz—1- rz—1-

b. In order for g to be continuous from the right at = 1, we must have lim+ g(x) = g(1) = a. We have
z—1

lim g(z) = lim (3z 4+ 5) = 8. So we must have a = 8.
z—1+t z—1t

c. Because the limit from the left and the limit from the right at x = 1 don’t agree, there is no value of
a which will make the function continuous at x = 1.

. 2% + 5e3% . 2e® + 5e3
2.6.88 lim —r—— = lim e = °.
e—0- €2T — 3T 40— e27(1 — e?)
. 2e® + 53T . 2e® + Hed®
m —= lim ———— = —.
g0+ €2 —e3 0t e22(1 — %)
. 2% + 5e3% . 2T 4 HedT 2% . 2e7% + he®
lim —— = lim . = lim — =
Ty — 00 eQ;c _ e3x I — 00 6290 _ e3x e—2$ 3 —00 1 —e®
. 2e% 4 5e3® . 2% 4 5edT e . 2% 4§
lim ——— = lim . = lim ——— = —5.
2300 6290 _ 6332 E300 eQac _ 6390 6—390 z500 e~T — 1
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»

-3 -2 -1 2
-20
-40

There is a vertical asymptote at x = 0, and the line y = —5 is a horizontal asymptote.

2e” +10e™® 12

2.6.89 lim —— = — =6.
z—0 e* e 7 2

) 2e” +10e™* . 2e* 4+ 10e™* €” . 2e?* +10 10

lm —= lim ——  — = lim —— = — =10.
r——c0 e%T e % z——00 eT e T er oo e2% 4 1 1

. 2e"+10e™" . 28" +10e7* e " . 2+ 10e2® 2
lim ——= lim —— - =lim ————=-=2.
z—oo et +e 7T z—o00 eT 4 e 7% e~ z—oo 14 e 2% 1

|
w

|
S}

|
S}

There are no vertical asymptotes. The lines y = 2 and y = 10 are horizontal asymptotes.

2.6.90 Let f(x) = 2% 4 1022 — 100z + 50. Note that f(—20) < 0, f(=5) > 0, f(5) < 0, and f(10) > 0.
Because the given polynomial is continuous everywhere, the Intermediate Value Theorem guarantees us a
root on (—20, —5), at least one on (—5,5), and at least one on (5,10). Because there can be at most 3 roots
and there are at least 3 roots, there must be exactly 3 roots. The roots are 1 ~ —16.32, x2 ~ 0.53 and
Tr3 ~ 5.79.

2.6.91 Let f(z) = 7023 — 872% 4+ 32z — 3. Note that f(0) < 0, f(0.2) > 0, £(0.55) < 0, and f(1) > 0.
Because the given polynomial is continuous everywhere, the Intermediate Value Theorem guarantees us a
root on (0,0.2), at least one on (0.2,0.55), and at least one on (0.55,1). Because there can be at most 3
roots and there are at least 3 roots, there must be exactly 3 roots. The roots are z; = 1/7, zo = 1/2 and

2.6.92
a. We have f(0) =0, f(2) =3, g(0) =3 and g(2) = 0.
b. h(t) = f(t) — g(t), h(0) = —3 and h(2) = 3.

c. By the Intermediate Value Theorem, because h is a continuous function and 0 is an intermediate value
between —3 and 3, there must be a time ¢ between 0 and 2 where h(c) = 0. At this point f(c) = g(c),
and at that time, the distance from the car is the same on both days, so the hiker is passing over the
exact same point at that time.

2.6.93 We can argue essentially like the previous problem, or we can imagine an identical twin to the original
monk, who takes an identical version of the original monk’s journey up the winding path while the monk is
taking the return journey down. Because they must pass somewhere on the path, that point is the one we
are looking for.

Copyright (© 2019 Pearson Education, Inc.


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

132 Chapter 2. Limits

2.6.94
a. Because | — 1| =1, |g(z)| = 1, for all .

b. The function g isn’t continuous at = 0, because lim g(z) =1# —1 = lim g(z).
z—0t z—0—

c. This constant function is continuous everywhere, in particular at = 0.

d. This example shows that in general, the continuity of |g| does not imply the continuity of g.

2.6.95 The discontinuity is not removable, because lim f(z) does not exist. The discontinuity pictured is a
r—a

jump discontinuity.

2.6.96 The discontinuity is not removable, because lim f(z) does not exist. The discontinuity pictured is
r—a

an infinite discontinuity.

27 10 —2)(x =29
2.6.97 Note that lim — T i (z=2)(z=5) = lim (z — 5) = —3. Because this limit exists, the
z—2 xr — 2 z—2 xr — 2 z—2

discontinuity is removable.

21 -1 1
2.6.98 Note that lim — = lim =D+l = lim[—(z + 1)] = —2. Because this limit exists, the

r—1 —x r—1 1—2x rx—1
discontinuity is removable.

3 422 +4 —2)2
2.6.99 Note that h(z) = < ( a ;—) - x((x 1)) . Thus lir% h(z) = —4, and the discontinuity at z = 0 is
z(z — z(x — o

removable. However, lim1 h(z) does not exist, and the discontinuity at = 1 is not removable (it is infinite.)
z—

2.6.100 This is a jump discontinuity, because lim+ f(z)y=1and lim f(z)=-1.
T—2

T2~

2.6.101

a. Note that —1 < sin(1/z) < 1 for all x # 0, so —z < zsin(1/z) < z (for x > 0. For x < 0 we would
have x < xsin(1/z) < —z.) Because both z — 0 and —z — 0 as © — 0, the Squeeze Theorem tells us
that lir% zsin(l/xz) = 0 as well. Because this limit exists, the discontinuity is removable.

z—

b. Note that as z — 0%, 1/x — oo, and thus lim+ sin(1/x) does not exist. So the discontinuity is not
z—0
removable.

2.6.102 Because g is continuous at a, as  — a, g(x) — g(a). Because f is continuous at g(a), as z — g(a),

g(z) Z f(g(a)). Let z = g(x), and suppose © — a. Then g(z) = z — g(a), so f(z) = f(g(x)) — f(g(a)), as

2.6.103

a. Consider g(z) =z + 1 and f(x) = % Note that both ¢ and f are continuous at = 0. However
flg(z)) = flx+1) = 12l ig not continuous at 0.

x

b. The previous theorem says that the composition of f and g is continuous at a if g is continuous at a and
f is continuous at g(a). It does not say that if g and f are both continuous at a that the composition
is continuous at a.

2.6.104 The Intermediate Value Theorem requires that our function be continuous on the given interval. In
this example, the function f is not continuous on [—2,2] because it isn’t continuous at 0.
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2.6.105

a. Using the hint, we have
sinz = sin(a + (z — a)) = sinacos(z — a) + sin(z — a) cos a.

Note that as x — a, we have that cos(z —a) — 1 and sin(z — a) — 0.
So,

lim sinz = lim sin(a+ (x —a)) = lim (sina cos(z — a) + sin(x — a) cosa) = (sina)-1+0-cosa = sina.
T—a T—a T—a

b. Using the hint, we have
cosz = cos(a + (x — a)) = cosacos(x — a) — sinasin(z — a).
So,
lim cosx = lim cos(a + (x — a)) = lim ((cosa) cos(z — a) — (sina) sin(z — a))

r—a r—a r—a

= (cosa) -1 — (sina) - 0 = cosa.

2.7 Precise Definitions of Limits

2.7.1 Note that all the numbers in the interval (1,3) are within 1 unit of the number 2. So |z — 2| < 1 is
true for all numbers in that interval. In fact, {z: 0 < |x — 2| < 1} is exactly the set (1,3) with = # 2.

2.7.2 Note that all the numbers in the interval (2,6) are within 2 units of the number 4. So |f(z) — 4| < ¢
for e = 2 (or any number greater than 2).

2.7.3
a. This is symmetric about z = 5, because = 5.
. . +6
b. This is symmetric about x = 5, because =5.
. . 8
c. This is not symmetric about z = 5, because # 5.
4.5+5.5
d. This is symmetric about x = 5, because + =5.

2.7.4 The set {z : |x — a|] < §} is the interval (a — d,a + J) and {x : 0 < |r — a|] < §} is the set of all points
in the interval (a — 0, a + J) excluding the point a.

2.7.5 lim f(x) = L if for any arbitrarily small positive number ¢, there exists a number ¢, so that f(x) is
r—a

within € units of L for any number z within § units of a (but not including a itself).

2.7.6 The set of all = for which |f(x) — L| < € is the set of numbers so that the value of the function f at
those numbers is within € units of L.

2.7.7 We are given that |f(z) — 5| < 0.1 for values of = in the interval (0,5), so we need to ensure that the
set of x values we are allowing fall in this interval.

Note that the number 0 is two units away from the number 2 and the number 5 is three units away from
the number 2. In order to be sure that we are talking about numbers in the interval (0,5) when we write
|z — 2| < ¢, we would need to have § = 2 (or a number less than 2). In fact, the set of numbers for which
|z — 2| < 2 is the interval (0,4) which is a subset of (0, 5).

If we were to allow § to be any number greater than 2, then the set of all x so that |x — 2| < § would
include numbers less than 0, and those numbers aren’t on the interval (0, 5).
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2.7.8

lim f(z) = oo, if for any N > 0, there exists 6 > 0

r—a

so that if 0 < | — a| < ¢ then f(x) > N.

2.7.9
a. In order for f to be within 2 units of 5, it appears that we need = to be within 1 unit of 2. So § = 1.

b. In order for f to be within 1 unit of 5, it appears that we would need z to be within 1/2 unit of 2. So

0 =0.5.
2.7.10
a. In order for f to be within 1 unit of 4, it appears that we would need = to be within 1 unit of 2. So
6=1.
b. In order for f to be within 1/2 unit of 4, it appears that we would need z to be within 1/2 unit of 2.
Sod=1/2.
2.7.11

a. In order for f to be within 3 units of 6, it appears that we would need = to be within 2 units of 3. So

6=2.
b. In order for f to be within 1 unit of 6, it appears that we would need x to be within 1/2 unit of 3. So
0=1/2.
2.7.12

a. In order for f to be within 1 unit of 5, it appears that we would need x to be within 3 units of 4. So

6 =3.
b. In order for f to be within 1/2 unit of 5, it appears that we would need z to be within 2 units of 4.
So d = 2.
2.7.13

If e = 1, we need |2° + 3 — 3| < 1. So we need
|z| < ¥/1 = 1 in order for this to happen. Thus
0 = 1 will suffice.

a.
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If ¢ = 0.5, we need |23 +3 — 3| < 0.5. So we
need |z| < v/0.5 in order for this to happen. Thus
§ = V0.5 ~ 0.79 will suffice.

2.7.14

By looking at the graph, it appears that for e = 1,
we would need ¢ to be about 0.4 or less.

a.

By looking at the graph, it appears that for ¢ =
b. 0.5, we would need 6§ to be about 0.2 or less.

2.7.15

00 05 10 15 20 25

a. For ¢ = 1, the required value of § would also be 1. A larger value of § would work to the right of 2,
but this is the largest one that would work to the left of 2.

b. For € = 1/2, the required value of § would also be 1/2.

c. It appears that for a given value of £, it would be wise to take § = min(e,2). This assures that the

desired inequality is met on both sides of 2.

2.7.16

a. For € = 2, the required value of § would be 1 (or smaller). This is the largest value of § that works on

either side.
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b. For € = 1, the required value of § would be 1/2 (or smaller). This is the largest value of § that works
on the right of 4.

c. It appears that for a given value of €, the corresponding value of 6 = min(5/2,¢/2).
2.7.17

a. For e = 2, it appears that a value of § = 1 (or smaller) would work.

b. For ¢ = 1, it appears that a value of 6 = 1/2 (or smaller) would work.

c. For an arbitrary ¢, a value of § = £/2 or smaller appears to suffice.
2.7.18

a. For e = 1/2, it appears that a value of 6 = 1 (or smaller) would work.

b. For e = 1/4, it appears that a value of § = 1/2 (or smaller) would work.

c. For an arbitrary e, a value of 2¢ or smaller appears to suffice.

2.7.19 For any € > 0, let § =¢/8. Then if 0 < |z — 1| < §, we would have |x — 1| < £/8. Then |8z — 8| < ¢,
so |(8x +5) — 13| < e. This last inequality has the form |f(z) — L| < &, which is what we were attempting
to show. Thus, liml(Sas +5)=13.

T—

2.7.20 For any € > 0, let § = ¢/2. Then if 0 < |z — 3| < §, we would have |x — 3| < £/2. Then |2z — 6] < ¢,
s0 | =2z +6| < ¢, so |(—2z +8) — 2| < e. This last inequality has the form |f(z) — L| < &, which is what we
were attempting to show. Thus, 1in§(—2x +8) =2.

T—r

2.7.21 First note that if z #£4, f(z) = wi:}f =z +4.

Now if € > 0 is given, let 6 = . Now suppose 0 < |z — 4| < §. Then = # 4, so the function f(z) can
be described by = + 4. Also, because |x — 4| < §, we have |z — 4| < e. Thus |(z +4) — 8| < e. This last

2
z“ — 16
inequality has the form |f(z) — L| < €, which is what we were attempting to show. Thus, lin}L 1
z—4 T —

=38.

2.7.22 First note that if x # 3, f(z) = ”2;77’3;'12 = (w_i)£§_3) =z —4.
Now if € > 0 is given, let 6 = e. Now suppose 0 < |z — 3| < §. Then z # 3, so the function f(z) can be
described by = — 4. Also, because |z — 3| < 4, we have |x — 3| < e. Thus |(x —4) — (—1)| < e. This last

inequality has the form |f(z) — L| < ¢, which is what we were attempting to show. Thus, lin% flz)=-1.
T—

2.7.23 Let € > 0 be given and assume that 0 < |z — 0] < § where § = ¢. It follows that ||z| — 0| = |z| =
|z—0| < § = e. We have shown that for any ¢ > 0, ||| —0] < ¢ whenever 0 < |z —0] < 4, provided 0 < § < e.
2.7.24 Let ¢ > 0 be given and assume that 0 < |z — 0] < ¢ where 6 = £. It follows that [[52| — 0] =
5z — 0] < 56 = 5(£) = e. We have shown that for any ¢ > 0, |[5z| — 0] < & whenever 0 < |z — 0] < 4,
provided 0 < § < %

2.7.25 Let ¢ > 0 be given and assume that 0 < |z—7| < d where d = ¢/3. If x < 7, | f(2)—9] = [3z—12—-9| =
le—T7] <36 =3(e/3) =¢;if . > 7, then |[f(z) —9|=|x+2—-9| = |z —T| < § =¢/3 < e. We’ve shown that
for any € > 0, |f(z) — 9] < € whenever 0 < |x — 7| < 4, provided 0 < 6 < ¢/3.

2.7.26 Let € > 0 be given and assume that 0 < |z —5] < d where 0 = ¢/4. If x < 5, |f(x)—4| =20 —6—4| =
2z —5] <20 =2(e/d) =¢/2 < g ifx>5, then |f(x) —4|=|—4z+24—4| =|—4(z—5)| = 4|z —5| < 46 =
4(e/4) = e. We've shown that for any € > 0, |f(z) — 4] < € whenever 0 < |z — 5| < §, provided 0 < § < g/4.
2.7.27 Let € > 0 be given. Let § = /2. Then if 0 < |z — 0| < §, we would have |z| < /. But then |z?| < ¢,
which has the form |f(z) — L| < €. Thus, 1in%) f(z)=0.

r—

Copyright (© 2019 Pearson Education, Inc.


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

2.7. Precise Definitions of Limits 137

2.7.28 Let € > 0 be given. Let 6 = /. Then if 0 < |z — 3| < §, we would have |z — 3| < /. But then
|(z — 3)?| < &, which has the form |f(x) — L| < e. Thus, lim3 f(z)=0.
r—

2.7.29 Let € > 0 be given and assume that 0 < |z —2| < § where § = min{1,e/8}. By factoring 2%+ 3z — 10,
we find that |22+ 3z — 10| = |z — 2||z +5|. Because |z —2| < § and § < 1, we have |z — 2| < 1, which implies
that -1 <z —2 <1, 0or 1 <z < 3. It follows that |x + 5| = z + 5 < 8. We also know that |z — 2| < &/8
because 0 < |z — 2| < 6 and § < &/8. Therefore |22 + 3z — 10| = |z — 2||x + 5| < (¢/8) - 8 = . We have
shown that for any ¢ > 0, |22 + 3z — 10| < ¢ whenever 0 < |z — 2| < §, provided 0 < § < min{1,¢/8}.

2.7.30 Let ¢ > 0 be given and assume that 0 < |z — 4] < § where § = min{l,e/14}. Observe that
222 — 4z + 1 — 17| = |22 — 42 — 16| = 2|z — 4|z + 2|. Because |z — 4| < § and § < 1, we have |z — 4| < 1
which implies that —1 < 2z —4 < 1 or 3 < 2 < 5. It follows that |z + 2| = 2+ 2 < 7. We also know that
|z —4] < £/14 because 0 < |z —4| < § and § < £/14. Therefore [22? —4x+1| = 2|z —4||x+2| < 2(¢/14)-7 = &.
We have shown that for any € > 0, [222 — 4z + 1 — 17| < € provided 0 < § < min{1,¢/14}.

2.7.31 Let ¢ > 0 be given and assume that 0 < |z — (=3)| < § where 6 = /2. Using the inequality
[la| = |b]] < |a — b|] with @ = 22 and b = —6, it follows that ||2z] — 6] = ||2z] — | — 6]] < |22 — (—6)] =
2|z — (—3)] < 20 = 2(e/2) = € and therefore ||2z| — 6| < . We have shown that for any ¢ > 0, ||2z| — 6| < ¢
whenever 0 < |z — (—3)| < ¢, provided 0 < § < &/2.

2.7.32 Let ¢ > 0 be given and assume that 0 < |z — 25| < § where § = min{25, 5¢}. Because |z — 25| < §
and 6 < 25, we have |z — 25| < 25, which implies that —25 < x — 25 < 25 or 0 < 2 < 50. Because z > 0, we

have /z 4+ 5 > 5 and it follows that \/51 = < %. Therefore

| —25] |x—25] ¢
—5 = < <
V=5l Vz+5~ 5 <5°

We have shown that for any € > 0, |/z — 5| < &, provided 0 < § < min{25, 5¢}.

2.7.33 Assume |z — 3| < 1, as indicated in the hint. Then 2 <z < 4,s0 1 <1 <1 and thus || < 3.
Also note that the expression ’% — %‘ can be written as |m37—w(3‘
Now let € > 0 be given. Let § = min(6e,1). Now assume that 0 < |x — 3| < §. Then

-3 -3 6e
—L|= < — =©¢.
) -2l = |2 < |75 < F =
Thus we have established that |1 — 1| < ¢ whenever 0 < |z — 3| < §.
2.7.34 Note that for x # 4, the expression Iw_fQ = ’”;12 : gi; = /z + 2. Also note that if |z — 4| < 1,
then x is between 3 and 5, so /= > 0. Then it follows that \/x 4+ 2 > 2, and therefore ﬁ < % We will

use this fact below.
Let € > 0 be given. Let 6 = min(2¢,1). Suppose that 0 < |z — 4] < J, so |z — 4] < 2e. We have

x—4
—L| = 2 —4| = -2l =
)~ Ll = Va2 = Va2 = | =4
Sl 2
2 2~ °©

2.7.35 Assume |z — (1/10)| < (1/20), as indicated in the hint. Then 1/20 < z < 3/20, so 22 < 1 < 20 and
thus | 1| < 20.
Also note that the expression E — 10‘ can be written as .
Let € > 0 be given. Let ¢ = min(¢/200,1/20). Now assume that 0 < |z — (1/10)| < 6. Then

10z — 1

| 10z—1
T

If(x)—Lz‘ ‘<|(10x—1)-20|

5
<lz—(1/10)|-200 < — - 200 = €.
<l (1/10)]-200 < 5o 200 = ¢

Thus we have established that |1 — 10| < ¢ whenever 0 < |z — (1/10)| < 6.
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2.7.36 Multiplying both sides of the inequality |sin 1| < 1 by |z|, we have |z sin 1| < |z|. Let & > 0 be given
and assume that 0 < |z — 0] < § where § = e. We have |zsin > — 0| = |zsinl| < [z] < |z -0 <§ =e.
Therefore it as been shown that for any € > 0, |« sin % — 0] < e whenever 0 < |z —0] < §, provided 0 < § < e.

2.7.37 Let ¢ > 0 be given and assume that 0 < |z — 0| < § where § = min{1, /z/v/2}. Because |z — 0| < 6,
we have |z| < 1 and |x| < \/£/v/2, which implies that 22 < 1 and 22 < /2. Tt follows that |z% + 2% — 0| =
2?4z = 2%(1+2?%) < £-2 = e. We have shown that for any ¢ > 0, |z%+2* —0| < € whenever 0 < [z—0] < 6,
provided 0 < § < min{1, \/z/v/2}.

2.7.38 Let f(x) =b. Let € > 0 be given and assume that 0 < |z —a| < § where 6 = 1 (or any other positive
number). Then |f(x) —b] = |[b —b] = 0 < . We have shown that for any € > 0, |b — b| < & whenever
0 < |z — a| < ¢, provided ¢ equals any positive number.

2.7.39 Let m = 0, then the proof is as follows: Let £ > 0 be given and assume that 0 < |z — a| < § where
d =1 (or any other positive number). Then |f(x) —b| = |b —b] = 0 < e. We have shown that for any € > 0,
|b —b| < & whenever 0 < |z — a| < §, provided § equals any positive number.

Now assume that m # 0. Let ¢ > 0 be given and assume that 0 < |x — a| < § where § = ¢/|m|. Then

[(ma+b) — (ma +b)| = |mlle - a] < |m|6 = [m|(e/m|) = .

Therefore it has been shown that for any € > 0, |(ma +b) — (ma+b)| < € whenever 0 < |z —a| < §, provided
§=¢/|m|.

2.7.40 Let € > 0 be given and assume that 0 < |z — 3| < § where § = min{1,/37}. By factoring x3 — 27, we

find that |23 —27| = |z —3||2%+ 32 +9|. Because |x—3| < § and § < 1, we have |z —3| < 1, which implies that

—1<x-3<1lor2<ux<4. It follows that [#2+32+9| = 2% +32+9 < 42+3(4)+9 = 37. We also know that

|z —3] < /37 because 0 < |z—3| < § and § < £/37. Therefore |23 —27| = |x—3||2®+32+9| < (¢/37)-37 = &.

We have shown that for any € > 0, |23 — 27| < € whenever 0 < |z — 3| < §, provided 0 < § < min{1,¢/37}.
18

2.7.41 Let € > 0 be given and assume that 0 < |z — 1] < § where § = min{Q,Gg}. Observe that
1

|zt — 1| = [(2? — 1)(2% + 1)| = |z — 1||]z + 1||]z? + 1]. Because |z — 1| < § and § < 50 we have |z — 1| < 3

1 1 1
which implies that —3 <zr-—-1< 30O 5 <z< g It follows that [t + 1| =2z +1 < g Also 22 < %, SO
13 8 8
|22 + 1] =22 +1< T We also know that |z — 1] < é because |z — 1] < § and 6 < é Therefore

8 5 13
4 2
1=z -1z +1 <2222 ¢
=1 =l =l 1le? 41 < e 2 P

4 . . [1 8
We have shown that for any € > 0, |* — 1| < € whenever 0 < |z — 1| < ¢, provided 0 < § = min ([
2.7.42 Note that if |z — 5] < 1, then 4 < z < 6, so that 9 < z +5 < 11, so |z 4+ 5] < 11. Note also that
16 < 2% < 36, s0 25 < 15-

Let £ > 0 be given. Let § = min(1, 2%¢). Assume that 0 < |z — 5| < 6. Then

1 1 |z + 5|z — 5|
— L ==
@)= LI=17%~ 55 2512
11|z — 5| 11 11 400¢

2 o6 Y tmom f

2.7.43 Let € > 0 be given.

Because lim f(z) = L, we know that there exists a d; > 0 so that | f(z) — L| < /2 when 0 < |z —a| < 6.

r—a

Also, because li_r)n g(x) = M, there exists a d2 > 0 so that |g(x) — M| < /2 when 0 < |z — a| < Js.

Now let § = min(dy, d2).

Then if 0 < |z — a|] < &, we would have |f(z) — g(z) — (L — M)| = |(f(zx) = L) + (M — g(x))] <
|f(z) — LI+ |M — g(z)| = |f(z) — L| + |g(x) — M| < /24 /2 = . Note that the key inequality in this
sentence follows from the triangle inequality.
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2.7.44 First note that the theorem is trivially true if ¢ = 0. So assume c # 0.
Let ¢ > 0 be given. Because lim f(x) = L, there exists a 6 > 0 so that if 0 < |z — a|] < §, we have
r—a

|f(z) = L| < e/|c|. But then |c||f(xz) — L| = |cf(x) — c¢L| < €, as desired. Thus, li_1>n cf(x) = cL.

2.7.45 Let N > 0 be given. Let § = 1/v/N. Then if 0 < |z — 4| < §, we have |z — 4| < 1/v/N. Taking
the reciprocal of both sides, we have

b
(x —4)2

W > VN, and squaring both sides of this inequality yields
T —

> N. Thus lim f(z) = .
r—4

2.7.46 Let N > 0 be given. Let § = 1/v/N. Then if 0 < |z —(—1)| < §, we have |z +1| < 1/v/N. Taking the
> VN , and raising both sides to the 4th power yields ——— > N.

(x+1)*

reciprocal of both sides, we have

Thus m1—1>H—11 f(z) = oc.

|z + 1]

2.7.47 Let N > 1 be given. Let § = 1/4/N — 1. Suppose that 0 < |z — 0| < 6. Then |z| < 1/v/N — 1, and
taking the reciprocal of both sides, we see that 1/|z| > +/N — 1. Then squaring both sides yields

dsfraclz® > N — 1, s0 — +1>N Thus hmf() 00.

2.7.48 Let N > 0 be given. Let § = 1/\/ . Then if 0 < |z — 0] < 4, we would have |z| < 1/V/N + 1.
Taking the reciprocal of both sides yields — > +/N + 1, and then raising both sides to the 4th power gives

1 1 . .
- > N +1, so - 1 > N. Now because —1 < sinz < 1, we can surmise that 9%4 —sinz > N as well,
T

1 . 1 . 1
because — —sinz > — — 1. Hence lim — = sinz | = oo.
€T €T x—0 €T

2.7.49

a. False. In fact, if the statement is true for a specific value of §;, then it would be true for any value of
0 < d7. This is because if 0 < |z — a| < §, it would automatically follow that 0 < |z — a| < d;.

b. False. This statement is not equivalent to the definition — note that it says “for an arbitrary § there
exists an €” rather than “for an arbitrary e there exists a §.”

c¢. True. This is the definition of lim f(xz) = L.
r—a

d. True. Both inequalities describe the set of x’s which are within § units of a.

2.7.50

a. We want it to be true that | f(z)—2| < 0.25. So we need |22 —2x+3—2| = |22 —22+1| = (z—1)? < 0.25.
Therefore we need |z — 1| < +/0.25 = 0.5. Thus we should let § = 0.5.

b. We want it to be true that |f(z) —2| < e. So we need |22 — 22 +3 —2| = |22 — 2z + 1| = (x — 1)?
Therefore we need |z — 1| < v/2. Thus we should let § = /z.

2.7.51 Because we are approaching a from the right, we are only considering values of  which are close to,
but a little larger than a. The numbers z to the right of a which are within § units of a satisfy 0 < z —a < 4.

2.7.52 Because we are approaching a from the left, we are only considering values of = which are close to,
but a little smaller than a. The numbers z to the left of @ which are within § units of a satisfy 0 < a—x < 4.
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2.7.53
a. Let € > 0 be given. let 0 = ¢/2. Suppose that 0 < < J§. Then 0 < z < /2 and

|f(z) = L] = |22 — 4 — (—4)[ = [22| = 2|z|
=2r <e.

b. Let € > 0 be given. let § = ¢/3. Suppose that 0 <0 — 2z < ¢. Then —0 <z < 0 and —¢/3 < z < 0, so
€ > —3xz. We have

|f(x) = L| = |3z — 4 — (—4)[ = [3z[ = 3|z|
=-3r<e.

c. Let € > 0 be given. Let 6 = /3. Because £/3 < ¢/2, we can argue that |f(x) — L| < ¢ whenever
0 < |z| < § exactly as in the previous two parts of this problem.

2.7.54
a. This statement holds for § = 2 (or any number less than 2).
b. This statement holds for 6 = 2 (or any number less than 2).
c. This statement holds for § = 1 (or any number less than 1).

d. This statement holds for § = .5 (or any number less than 0.5).

2.7.55 Let ¢ > 0 be given, and let § = £2. Suppose that 0 < z < §, which means that x < €2, so that

vz < e. Then we have

F@) - Ll =[VE -0l = vE<e.
as desired.
2.7.56

a. Suppose that lim f(z) = L and lim+ f(x) = L. Let ¢ > 0 be given. There exists a number d; so
Tr—a~— r—a

that |f(z) — L| < & whenever 0 <  — a < 01, and there exists a number d2 so that |f(z) — L| < ¢
whenever 0 < a —x < 0. Let § = min(dq,d2). It immediately follows that |f(x) — L| < e whenever
0 < |z —al <0, as desired.

b. Suppose lim f(x) = L, and let € > 0 be given. We know that a J exists so that | f(z) — L| < € whenever
r—a
0 < |z —a| < §. In particular, it must be the case that |f(z) — L| < € whenever 0 < z —a < § and also

that |f(x) — L| < € whenever 0 < a —x < 4. Thus lim+ f(z) =L and lim f(x)= L.
T—a r—a—
2.7.57

a. We say that lim+ f(x) = oo if for each positive number N, there exists § > 0 such that

r—a

f(z) >N whenever a <z <a+d.

b. We say that lim f(z) = —oc if for each negative number N, there exists § > 0 such that

r—a~

f(x) < N whenever a—06<z<a.
c. We say that lim f(z) = oo if for each positive number N, there exists § > 0 such that

r—a—

f(z) >N whenever a—4§ <z <a.
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N -1
2.7.58 Let N < 0 be given. Let 6 = —1/N, and suppose that 1 < z < 14+4§. Then 1 < z < N SO

1-N 1-N
N < —x < —1, and therefore 1 +

1
reciprocals yields the inequality N > T2 as desired.
-z

1
< 1—2a < 0, which can be written as N < 1—2 < 0. Taking

N -1
2.7.59 Let N > 0 be given. Let 6 = 1/N, and suppose that 1 —§ < « < 1. Then <z <1, s0

1-N 1-N
> —x > —1, and therefore 1 +

1
> 1—a > 0, which can be written as N > 1—2a > 0. Taking

1
reciprocals yields the inequality N < 1

, as desired.

2.7.60 Let M < 0 be given. Let § = \/—2/M. Suppose that 0 < |z — 1| < §. Then (z — 1)? < —2/M, so

1 M -9
w—12 =2 and CEE M, as desired.

2.7.61 Let M < 0 be given. Let § = {/—10/M. Suppose that 0 < |z + 2| < §. Then (z +2)* < —10/M, so

1 M 10
— > —,and ——— = < M desired.
EED)L > g’ @12 < M, as desire

2.7.62 Let N > 0 be given and let Ny = max{1l, N — c¢}. Because lim f(x) = oo there exists § > 0 such
T—ra

that f(x) > Ny whenever 0 < |z — a| < d. It follows that f(z) +¢> N1 +¢> N —c+c= N. So for any
N > 0, there exists ¢ > 0 such that f(z) + ¢ > N whenever 0 < |z — a| < 4.

2.7.63 Let N > 0 be given. Because lim f(z) = oo, there exists d; > 0 such that f(z) > whenever
Tr—ra

N
2
% whenever

0 < |z —a| < ¢;. Similarly, because lim g(z) = oo, there exists d2 > 0 such that g(z) >
T—ra

0 < |z —a|] < 3. Let § = min{d;, d2} and assume that 0 < |z — a|] < . Because § = min{d1, a2}, § < §; and

§ < 65. It follows that 0 < |z —a| < 61 and 0 < |z — a| < 2 and therefore f(z) + g(z) > & + 5§ = N. So

for any N > 0, there exists § > 0 such that f(x)+ g(z) > N whenever 0 < |z —a| < 0.

10 10 10
2.7.64 Let ¢ > 0 be given. Let N = —. Suppose that x > N. Then ¢ > — so 0 < — < e. Thus,
€ € T

1
|—0 — 0] < ¢, as desired.
T

1
2.7.65 Let ¢ > 0 be given. Let N = 1/e. Suppose that 2 > N. Then — < ¢, and so
x
1
|f(z)—L|= |2—|—;—2| <e.

2.7.66 Let M > 0 be given. Let N = 100M. Suppose that x > N. Then x > 100M, so 135—0 > M, as
desired.

2.7.67 Let M > 0 be given. Let N = M — 1. Suppose that xt > N. Then z > M —1,s0 x4+ 1 > M, and
2+
thus

> M, as desired.

2.7.68 Let € > 0 be given. Because lim f(x) = L, there exists a number d; so that |f(z) — L| < e whenever
r—ra
0 < |x —a| < 6;. And because lim h(z) = L, there exists a number J; so that |h(z) — L| < ¢ whenever
r—a

0 < |z —a| < d2. Let § = min(dy,d2), and suppose that 0 < |z — a| < §. Because f(z) < g(x) < h(z) for
x near a, we also have that f(z) — L < g(z) — L < h(z) — L. Now whenever z is within § units of a (but
x # a), we also note that —e < f(z) — L < g(x) — L < h(z) — L < e. Therefore |g(z) — L| < ¢, as desired.
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2.7.69 Let € > 0 be given. Let N = [(1/e)]| + 1. By assumption, there exists an integer M > 0 so that
|f(z) — L| < 1/N whenever |z —a| < 1/M. Let 6 = 1/M.
Now assume 0 < |x — a| < é. Then |z —a| < 1/M, and thus |f(x) — L] < 1/N. But then

[f(z) = L| < <e,

__
[(1/e)] +1

as desired.

2.7.70 Suppose that € = 1. Then no matter what ¢ is, there are numbers in the set 0 < |z — 2| < ¢ so that
|f(z) — 2| > e. For example, when z is only slightly greater than 2, the value of | f(x) — 2| will be 2 or more.

|z]

2.7.71 Let f(z) = — and suppose lir% f(z) does exist and is equal to L. Let ¢ = 1/2. There must be
X xT—r

a value of § so that when 0 < |z| < 4, |f(z) — L| < 1/2. Now consider the numbers §/3 and —4¢/3, both
of which are within § of 0. We have f(6/3) = 1 and f(—9/3) = —1. However, it is impossible for both
|1 —L| <1/2 and | — 1 — L| < 1/2, because the former implies that 1/2 < L < 3/2 and the latter implies
that —3/2 < L < —1/2. Thus ili% f(z) does not exist.

2.7.72 Suppose that lim f(x) exists and is equal to L. Let ¢ = 1/2. By the definition of limit, there must
r—a

be a number 4 so that |f(z) — L| <  whenever 0 < |z —a| < 6. Now in every set of the form (a,a + d) there
are both rational and irrational numbers, so there will be value of f equal to both 0 and 1. Thus we have
|0 — L| < 1/2, which means that L lies in the interval (—1/2,1/2), and we have |1 — L| < 1/2, which means
that L lies in the interval (1/2,3/2). Because these both can’t be true, we have a contradiction.

2.7.73 Because f is continuous at a, we know that ligl f(z) exists and is equal to f(a) > 0. Let ¢ = f(a)/3.

Then there is a number ¢ > 0 so that |f(z) — f(a)| < f(a)/3 whenever |z — a| < 0. Then whenever x lies in
the interval (a — d,a + 6) we have —f(a)/3 < f(z) — f(a) < f(a)/3, so 2f(a)/3 < f(x) < 4f(a)/3, so f is
positive in this interval.

2.7.74 Using the triangle inequality, we have |a| = [(a—b)+b| < |a—b|+]b|. This implies that |a| < |a—b|+|b|

or la] —|b] < |a —b|. A similar argument shows that |b| — |a| < |a — b|. Because the expression ||a| — |b|| is
equal to either |a| — |b| or |b] — |al, it follows that ||a| — |b]| < |a — b].

Chapter Two Review
1

-1 1 1
a. False. Because lim — = lim = —, f doesn’t have a vertical asymptote at x = 1.
z—1 x4 —1 z—=1x+1 2

b. False. In general, these methods are too imprecise to produce accurate results.

2z if x <O0;
c. False. For example, the function f(z) = {1  if 4 = o; has a limit of 0 as z — 0, but f(0) = 1.

4r ifx >0

d. True. When we say that a limit exists, we are saying that there is a real number L that the function
is approaching. If the limit of the function is oo, it is still the case that there is no real number that
the function is approaching. (There is no real number called “infinity.”)

e. False. It could be the case that lim f(z)=1and lim f(z)=2.

T—a— r—at

f. False.
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2 if0<x<l;

g. False. For example, the function f(z) = is continuous on (0,1), and on [1,2), but

3 ifl<z<?2,
isn’t continuous on (0, 2).

h. True. lim f(z) = f(a) if and only if f is continuous at a.
r—a

2 s(1) =48 and s(1.5) = 60, so the average velocity over the time period is
5(1.5) —s(1) 60 — 48
15—1 05

s(b) — s(1.5)
b—15

= 241t /s.

3 For various values of b, we calculate vay, =

b 1.6 1.51 1.501 1.5001 | 1.50001
Vavg | 10.4 | 11.84 | 11.984 | 11.9984 | 11.9998

We estimate that the instantaneous velocity is 12.

4
a f(-1)=1 b. tm_f(z) =3 ¢. tm flz)=1
. 1£H31 (x) does not exist. e. f(1)=5. f. ilﬂml f(z) =5.
i =4. h. i =3. i 1 = 5.
g lim f(z) =4 lim f(z) i lim f(z)
j. lim f(x) does not exist.
r—3
5 This function is discontinuous at z = —1, at z = 1, and at x = 3. At x = —1 it is discontinuous because

lim1 f(z) does not exist. At x = 1, it is discontinuous because lim1 f(z) # f(1). Atz = 3, it is discontinuous
T—— T—

because f(3) does not exist, and because lim3 f(z) does not exist.
z—

6

6 4 2 )
a. The graph drawn by most graphing calculators and -1
computer algebra systems doesn’t show the disconti- 5
nuities where sin 6 = 0.

True graph, showing discontinuities

b. It appears to be equal to 2 where sin 6 — 0.

. . L . . sin20 _
c. Using a trigonometric identity, lim = Y

1 -
o cind P 6—0 sinf
lim w. This can then be seen to be \ I /
0—0 sin 6
lim 2 cos 6 = 2. «

60—0

Graph shown without discontinuities.
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7
a x 0.97/4 | 0.997/4 | 0.9997/4 | 0.99997 /4
f(x) || 1.4098 | 1.4142 1.4142 1.4142
x 1.17/4 | 1.017/4 | 1.0017/4 | 1.00017/4
f(x) || 1.4098 | 1.4142 1.4142 1.4142
The limit appears to be approximately 1.4142.
2 2 0 G2
b. lim Lx, = lim w = lim (cosz +sinz) = V2.
z—7/4 COST —SINT  z—m/4 COST —sinzx z—7/4
8
: b. tE‘ng(t) = 55.
° * c. lim f(¢t) =55and lim f(t) = "70.
t—3~ t—3+
o0
60 d. The cost of the rental jumps by $15 exactly
at t = 3. A rental lasting slightly less than
40 REE— 3 days cost $55 and rentals lasting slightly
" more than 3 days cost $70.
e. The function f is continuous everywhere ex-
. -

i ) 3 4 * cept at the integers. The cost of the rental
jumps by $15 at each integer.

9
| y
: af S
| L
|
There are infinitely many different correct func- : T
tions which you could draw. One of them is: : T o
_i } _% } é } i .
|
i -2+
!
10 lim 187% = 1872
£=1000
11 lim v/5z +6 = V1L
T—
12
lim V5x 4 5h —/5x /51 +5h +bx lim (bx +5h) —bx lim 5 I
h0 h V52 +5h+ /52 h—=0 h(y/5z + 5h +/5x)  h—=0/5x +5h++/5x 25z
13
h 24 (h —42 h? +12h h —42 h? + 13h
i LEO" (46 =42 PR AS6+RA6-42 o WHI8h gy — s,
h—0 h h—0 h h—0 h h—0
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14 Factoring the numerator as the difference of squares, we have

- (3z +1)% — (3a + 1)?

(Bz+1)—Ba+1)((38z+1)+ (3a+1))

li = lim
Tr—ra Tr—Qa Tr—ra Tr—aQa
— 2
— lim (3x — 3a)(3z + 3a +2)
T—a Tr—a

=3 lim (3z 4+ 3a + 2)
r—a
=3(3a +3a+2) = 18a + 6.

x3—7x2+12x_1—7+12_6

i
372?412 —3)(z—4
16 Tim & e H 120y 2@ =@ sy =
z—4 4—=x T—4 44—z z—4
g2 _ _
17 Bim =T gy Lm0 D L
e—122 —8x+7 ao1(z—T)(z—-1) 251 z-7 3
18l V3EHI6-5 VB 1645 3(z — 3) i 3 B
@53 x—3 V3r+16+5 -3 (x—3)(V3r+16+5) 233z +164+5
19
L ( 1 _1>_hm 2—Vr+1 (2+Vz+1)
53w —3\Vr+1 2) 9322 -3)Voe+1 2+Vr+1)
I 4—(x+1)
= l11m
e=32(z—3)(Vr+1)(2+Vz+1)
= lim —(@—3)
=3 2(z - 3) (Ve +1)(2+Vz+1)
= lim — ! N
a3 2z +124+Vz 1) 16
t—1 t—1 1
20 lim —3_ = lim 37 = lim —————, which does not exist.
t—1/3 (3t —1)2  t=1/33(3t —1)2  51/33(3t—1)

4 _ 2
21 lim * 81 N (x —3)(xz+3)(xz*+9)
z—=3 1 —3 z—3 x—3

— 1 2 _
= il{g(er?))(:E +9) =108.

p° —

22 Note that

1
T = p* +p® +p? + p + 1. (Use long division.)

3

TO.

-1
lim 2 =lim@p* +p* +p>+p+1)=5.
p—1 p— 1 p—1
Afn Y —
23 lim v 3:11m Vo3 = lim L :L.
e—8l x —81 281 (Ve +9) (Vo +3)(Vor—3) =2-=81 (Vr+9)(vxr+3) 108
. sin?6 — 5sinf + 4 . (sin® —4)(sinf — 1) . sinf—4 1-4
24 lim — = lim - - = lim — = = ——.
0—7/2 sin®6 — 1 0—x/2 (sinf — 1)(sinf + 1) 6—n/2sinf+1 1+1 2
1
— — 1
25 lim =X = 0 =0.
/2 T+ 7/2 ™
-1
26 The domain of f(x) = x 3 is (—o0, 1] and (3, 00), so lim+ f(z) doesn’t exist.
Tr — z—1
However, we have lim f(z) = 0.

r—1—
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27 lim ez = —00.
a—5 x(x — 5)>2
28 lim z=5 = —00.
z——5+ £+ 5
x—4 r—4
29 lim ——— = lim — = co.
oo3- 22— 3T w3 x(z —3) >
—1
30 lim —— = —oc.
z—0t SInu
423 — 422 4% (z — 1
31 fim Ay ) g gy
z—1t |$ — 1| z—1t r—1 z—1t
32 The expression 2z — 4 = 2(z — 2) is negative for x < 2, so |22 — 4] = —2(x — 2). Therefore,
. |22 — 4] _ —2(z —2) . -2
lim ——— = lim ———*— = lim =2

a2 22 =5 +6 a2 (x—2)(x—3) zo2-x—3

33 lim
z—0- tanx

= —0OQ.

34 First note that for all 2, Va4 = 2. Then we have
(42? + 3z +1) 1/2? . 4+ 3/z)+(1/2Y) 4 2 _ 3

lim . = lim = — —
voo Brl 42 1)yl e 8+ (2/a%) V8 V2

23:—3_1, 2—(3/z) 2 1

35 i — 2= 2 1
oo dr + 10 eboedt (10/z) 4 2
-1 (1/z) = (1/2°) 0—0
36 i — i - —0.
e 75 12 woee 1+ (2/20) 1+0

37 Note that for z < 0, x = —vz2. Then we have

lim Bz+1) l/z ~ lim 3+(1/z) 3

ro-oo a2 +2 —1/Vi2 w0 \Jat 2/  Va

38 We have
lim \/{E2—|—ax_ \/$2_b: lim (\/x2+a$_\/$2—b) ) (\/x2+ax+\/x2_b)
T—00 T—00 1 (\/$2+a$+\/x27b)
= lim az +b

e—oo /22 L ax 4+ Vi — b
Now noting that x = V22 for x > 0 we have
i (azx + b) 1/x ) a+b/x
lim : = lim =
v=o0 (Va2 +ax+ Va2 —b) 1/Vx2 2=\ /l+a/z++/1-b/x

39 We multiply the numerator and denominator by the conjugate of the denominator (i.e., the expression
Va2 —ax + /22 — x). This gives

. Vrt—ar+VaZ -z )
lim = lim

e

Va2 —ar+ V22 —x

z—oo (22 —ax) — (22 —x) =—00 —ax +x
1/v/ 22
We now multiply by /1 ] " to obtain
x

i V1-(a/z)+/1-(1/z) 2
z—00 —a+1 1—a
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Z—r00

2
40 lim <e_2z+z) =0+0=0.

41 lim (3tan 'x +2) = sm +2.

z—00 2

42 lim (—32° +5) = cc.

T—r—00

43 Forz <1, |z — 1|+ 2= —(x — 1)+ 2 = 1. Therefore lim (jJx —1|+2)= lim 1=1.
T——00 T——00

Forz>1,|z—1]+2z=2—1+2 =2z — 1. Therefore lim (Jz — 1|+ z) = lim 2z — 1 = cc.
T—r 00 r—00

—2
44 Forx < 2, |[x — 2|+ = —(z — 2) + © = 2. Therefore lim lz=2te =1 - =0.
T——00 T T——00 I
-2 2c — 2
Forx > 2, |v — 2|+ 2 =2 — 2+ 2z = 2x — 2. Therefore lim lp=2+e = lim -2 =2.
T—00 x T—r00 X
. In w? . 2lnw 1/Inw . 2 2
45 lim ————— = lim . = lim —— = —.
wooolnwd+1  wooo Blnw+1) 1/lnw  woo3+ (1/lnw) 3
. 1 1 1
46 lim = — = —.
r——oo 2+ e’ 2+0 2
1
lim =0
r—oo 2+ e’
4r 5r 5r r
A7l 3T Vem 2/ 43 3 1
rooo (Tedm —9e57) 1/e  r—oo (T/e")—9 -9 3
. (2ef +3e5T) 1/etr . 243" 2
lim - = lim = —.
ro—oo (Te" —9e57) 1/e!™ ro—00T7—9e" 7
48 Because —1 <sinxz <1, —e* < e%sinx < e®. Because lim —e® = lim ¢e* =0, we can conclude that
Tr—r—00 T—r—00

lim e®sinz = 0 by the Squeeze Theorem.
r——00

49 We know that 0 < cos* z < 1. Dividing each part of this inequality by 2 4+ x + 1 and then adding 5, we

cosx 1 1

have 5 <5+ <5+ . Note that lim 5 =5and lim [ 54+ ————— | =5, so by the
2?2 +ax+1 22+xz+1 T—00 T—00 2?+ax+1

4
Squeeze Theorem we can conclude that lim (54 N 5
T—00 24+ z+1

1 cost 1 1

50 Recall that —1 < cost < 1, and that €3 > 0 for all £. Thus - < — < =5 Because lim i
e e e t—o0 e

t
lim —— =0, we can conclude lim st _ 0 by the Squeeze Theorem.
t—oo 3t t—oo e3t
. T
51 lim — = —o0
z—1- lnx

52 Note that lin%(singx +1) = 1. Thus if 1 < g(z) < sin?x + 1, the Squeeze Theorem assures us that
r—r

lim g(z) =1 as well.
z—0
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53
b. Because lim cosz = lim = 1, the Squeeze
-0 -0 COS T
Theorem assures us that 111% ST _ 1 as well.
z—
54
.\‘
First note that f(x) = $1;Ef§;6 = (I;(gx)(—z2;2)'
0
. . (z=3)(x—2)
1 = lim ————— = . 5
R e
. o (@=3)(z—-2) - - >
111{{)1‘*' f(m) B 111{51‘*' fﬂ(.’E — 2) - -5
-3 1
lim f(z) = lim i =—-. -10
T2 z—2- X 3 %
T —
li =1 =, y
S )= =y
b. By the above calculations and the definition of
vertical asymptote, f has a vertical asymptote at 0
z=0. 5
c. Note that the actual graph has a “hole” at the , , . N X
point (2,—1/2), because x = 2 isn’t in the domain, -2 -1 -
but lim f(x) = —1/2. -
r—2
-10
423 + 1 4+ (1/2%)  4+0
55 lim . im +(1/2°) _ 20 —4. A similar result holds as © — —oo. Thus, y = —4 is a
z—oo 1 — g3 T—00 (1/1‘3) -1 0—-1
horizontal asymptote as * — oo and as x — —o0.
6+1 1/25 1+ (1/a8
56 Note that vx!2 = 2% for all z. We have lim (z°+1) . [z = lim + (1/27) =0
e—=doo 16zt +1 1/Val2  z=dee /1622 + (1/212)
57 lim (1 —e 2®) =1, while lim (1 —e %*) = —c0.
T—00 T——00

y = 1 is a horizontal asymptote as x — co.

58

59

lim

—— =0, and

z—o0 In 2

lim

—— = 0,0 y =0 is a horizontal asymptote as x — oo and as z — —o0.
z——oco Inx

(6e™ +20) 1/e”

smoo (3% + 4)

1/e®

6+ (20/e%) 6

T a0 3 (4/er)

3

=2

1—11—n<>o 3e® +4

6e” +20  0+20

044

=5.
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1
60 First note that \/>2 =
T

1 1+(1 1
vt lim L2/ 1

lim ——— = — =
1 14+ (1 1
On the other hand, lim Tl im M =——.

——00 /972 +x T—00 /9+ 1 3

So y = % is a horizontal asymptote as  — oo, and y = —3 is a horizontal asymptote as z — —oo.

xT

61
(32 +52+7) 1/x . 3z +5+4(7/x)

Clim o T T
T @t D 1z a0 1+ (1/2)

(82> +52+7) 1/x . 3w +5+(7/x)

lim =22 9T =
:L’ﬁuzloo (ac + 1) 1/x I*lIPoo 1+ (1/3;‘)

b. By long division, we see that 3“”2;75;”” =3z +2+ %H, so the line y = 3z + 2 is a slant asymptote.

62

. 922 +4 . 922 +4 1/22 . 9+ 4/x2 9
a. lim ———— = lim . = lim —————— = -,
z—oo (20 —1)2  z—ooda? —4x4+1 1/22 2-cd—4/zx+1/22 4

922 +4 . 922 +4 1/x? ) 9+4/2? 9

smoo (22 —1)2  ao-ooda? —4dz+1 1/z2  eo—ecod—4jz+1j22 4

b. Because there is a horizontal asymptote, there is not a slant asymptote.

63
. 14+x—222—23 . l+a—222—a3 1/2° . 1+ 1/z—-2—2
a. lim = lim . = lim = —00
T—00 2 +1 T— 00 2 +1 1/1‘2 T— 00 1+ 1/3:2
. 14z —222 28 . 14z —222—2% 1/22 . 12+ 1z —2—-2
lim = lim : = lim =
Z——00 2 +1 T——00 241 1/22  a—-oc 1+ 1/22
b. By long division, we can write f(x) as f(z) = —z — 2 + i“gii’, so the line y = —x — 2 is the slant
asymptote.
64
. w(z+2)3 . wt 4623+ 1222 + 8z 1/22 . w246z +12+8/x
a. lim ——— = lim : = lim =00
z—oo 3x2 —4x w00 32?2 —4dx 1/22 -0 3—4/x
. x(z+2)3 . xt 4623+ 1222+ 8x 1/22 . 22 +6x+12+8/x
lim ——— = lim . = lim =
z——o0 32 —4x  w——o0 3z2 — 4z 1/22  a2—-o0 3—4/x

b. Because the degree of the numerator of this rational function is two more than the degree of the
denominator, there is no slant asymptote.

65
. (At + 2?2+ 7)) 1/ ) de+1+ (7/z)
a. lim . = lim = 00
@B —aw D) 1 ank 1= (1/2) + (1/27)
(42 + 224+ 7) 1/2? . dr+ 14 (7/x)

e (@2 —xz+1)  1/2%  aoee1— (1z) + (1/22)
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423 247 2
b. By long division, we can write e e U dx 4+ 5+ L Therefore y = 4z + 5 is a slant
2 —x+1 2 —z+1
asymptote.
222 + 6 2(x% +3)
66 Note that = = .
ote that (@) = 5 3 5 T e D@+ 2)
. . 2+6/a” -
We have lim f(z) = lim ———————— = 1. A similar result holds as © — —oc.
T—00 x—)oo2+3/x—2/(£2
li =—o00. i = 0.
ac—>111’;12* f(z) 00 $_>111?512+ f(z) =0
1. = . 1. = — .
Ay S = oo Ty Sl = —ec
Thus, y = 1 is a horizontal asymptote as z — oo and as x — —oo. Also, x = % and x = —2 are vertical
asymptotes.

67 Recall that tan™! z = 0 only for # = 0. The only vertical asymptote is z = 0.

. 1 1 2
llm 7_1 = = = —.
zsootan tx  w/2 0w
1 1 2
lim —— = = —Z. Soy = 2 is a horizontal asymptote as x — oo and y = —2 is a horizontal
z——oo tan~tz  —7/2 T ™ ™

asymptote as x — —oo0.

2

1
=2xr+44+4 ——, 80y = 2z + 4 is a slant asymptote. Also,

68 By long division, we can write
r—2 r—2

22 -7

1m
z—2+ T — 2

= 00, so x = 2 is a vertical asymptote.

69 Observe that
x+xze® +10e®  x(l+e”)+10e® 1 He*
flx) = — = — =T+ —7.
2(e* +1) 2(e* +1) 2 e? +1

B lim % — |
ecause lim = lim ——
zooe? +1 oo 14 (1/e%)
5e* 0
T — 00. Similarly, lim ©  — 7 — 0 and therefore the graph of f and the line y = %x approach
z——co e + 1 0+1
each other as z — —oo.

=5, the graph of f and the line y = %x + 5 approach each other as

2 2 9
3 3 3
70 Observe that lim rAhrhS lim rArAs lim 2+ 1+ (3/2) = 0o and lim rZrr+d
r—0+ |Jj| r—0+ €T 0+ IO |.13|
2 3 9 3 5
x—0~ —T z—0~ T -
?+z+3

so y =z + 1 is a slant asymptote as ¢ — oo. For & < 0, we have f(z) = —x—1—-—,s0
x

—Z

Copyright (© 2019 Pearson Education, Inc.


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

Chapter Two Review 151

y = —x — 1 is a slant asymptote as x — —oo. So the function has one vertical asymptote x = 0 and two
slant asymptotes, y =z + 1 and y = —z — 1.

\\ A
L L L L 3L L L L L e X
-10-8 -6 -4 2\ 2 4 6 8

4 N

2 =2k

4 \

I, \\
’/ -4t \\

71 The function f is not continuous at 5 because f(5) is not defined.

=8#g(4).

4)(x—4
72 g is discontinuous at 4 because lim g(z) = lim M
r—4 r—4 r—4

73 Observe that h(5) = —2(5) + 14 = 4. Because lim h(z) = lim (—2z + 14) = 4 and lim h(z) =

z—5~ z—5 z—51

lim V22 —9=+v25-9 =4, we have lim5 h(z) = 4. Thus f is continuous at x = 5.
T—r

r—5t

. . w3 =5z +6z . xz(z—2)(z—-3) .
74 Observe that g(2) = —2 and i;mQ g(x) = ileQ 5 = ileQ e e i;mz x(x—3) = -2.
Therefore g is continuous at x = 2.

75 The domain of f is (—oo, —v/5] and [v/5,00), and f is continuous on that domain. It is left continuous
at —/5 and right continuous at V5.

76 The domain of g is [2,00), and it is continuous on that domain. It is continuous from the right at = = 2.

77 The domain of h is (—oo, —5), (—5,0), (0,5), (5,00), and like all rational functions, it is continuous on
its domain.

78 g is the composition of two functions which are defined and continuous on (—oo, 00), so ¢ is continuous
on that interval as well.

79 In order for g to be left continuous at 1, it is necessary that lim g(z) = g¢(1), which means that
Tz—1-

a = 3. In order for g to be right continuous at 1, it is necessary that lim+ g(x) = g(1), which means that
rz—1
a+b=34+b=3,50b=0.

80
a. Because the domain of h is (—oo, —3] and [3, 00), there is no way that h can be left continuous at 3.

b. h is right continuous at 3, because lim h(z) =0 = h(3).

z—31
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81
y
2 Q@
One such possible graph is pictured to the right. 14+ O—o0
= S
82
a. Consider the function f(z) = 2° + 7z + 5. f is continuous everywhere, and f(—1) = —3 < 0 while
f(0) =5 > 0. Therefore, 0 is an intermediate value between f(—1) and f(0). By the Intermediate
Value Theorem, there must a number ¢ between 0 and 1 so that f(c) = 0.
b. Using a computer algebra system, one can find that ¢ =~ —0.691671 is a root.
83
a. Rewrite The equation as x — cosx = 0 and let f(x) =  — cosz. Because z and cosz are continuous
on the given interval, so is f. Because f(0) = —1 < 0 and f(n/2) = «/2 > 0, it follows from the
Intermediate Value Theorem that the equation has a solution on (0, 7/2).
b. Using a computer algebra system, one can find that ¢ &~ 0.739085 is a root.

84 Temperature changes gradually, so it is reasonable to assume that T is a continuous function and therefore
f is also continuous. Becausef(0) = —33 < 0 and f(12) = 33 > 0, it follows from the Intermediate Value
Theorem that there is a value ¢ in (0,12) satistying f(to) = 0. . Therefore, T(to) — T'(to + 12) = 0, or
T(to) = T(to + 12).

85

a.

b.

C.

Note that m(0) = 0 and m(5) &~ 38.34 and m(15) ~ 21.2. Thus, 30 is an intermediate value between
both m(0) and m(5), and m(5) and m(15). Note also that m is a continuous function. By the IVT,
there must be a number ¢; between 0 and 5 with m(c;) = 30, and a number c¢o between 5 and 15 with
m(ca) = 30.

A little trial and error leads ¢; ~ 2.4 and ¢y ~ 10.8.

No. The graph of the function on a graphing calculator suggests that it peaks at about 38.5

86 Let ¢ > 0 be given. Let § = £/5. Now suppose that 0 < |z — 1| < 6.
Then

[f(z) = L| = |(52 — 2) = 3] = [52 — 5|

g
=5z —1]<5-- =«
|z — 1] 5

87 Let € > 0 be given. Let § = . Now suppose that 0 < |z — 5| < 4.
Then

2?2 — 25 (x —5)(x +5)
|f(z) | p— O‘ - 0| =]z +5—10]
=z —5|<e.
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88 Let € > 0 be given. Let 6 = £ and assume that 0 < |z — 3| < ¢. For 2 < 3,
|f(x)—5|:|3x—4—5|:3|:13—3\<35:3~Z<5.

For x > 3,
|f(a:)—5\:|—4x+17—5|:4\x—3|<46:4-Z:6.

We have shown that for any € > 0, |f(x) — 5| < € whenever 0 < |z — 2| < §, provided 0 < § < §.

89 Let ¢ > 0 be given. Let § = min{l,e/15} and assume that 0 < |z — 2| < 6. Then [32? — 4 — 8| =
3la? —4| = 3|z — 2|z +2|. Because 0 < |z —2| <dand 6 <1, -1 <z —2<1landsol <z <3. It follows
that 2 +2 < 5. Therefore [32? —4 — 8| = 3|z — 2|[z + 2| < 3- & -5 = e. So we’ve shown that for any ¢ > 0,
|32% — 4 — 8] < & whenever 0 < |z — 2| < §, provided 0 < § < min{1,&/15}.

90 Let ¢ > 0 be given. Let § = % and assume that 0 < z —2 < §. Then |4z —8 — 0| = 2/x —2 <

26 = 24/ % = . So we’ve shown that for any ¢ > 0, |[v/42 — 8 — 0] < € whenever 0 < x — 2 < §, provided
0<d< %.

1 1
91 Let N > 0 be given. Let 6 = 1/V/N. Suppose that 0 < |x—2| < §. Then |z—2| < TN =) o2 > VN,
T —
1

and m > N, as desired.

92

a. Assume L > 0. (If L = 0, the result follows immediately because that would imply that the function
f is the constant function 0, and then f(x)g(z) is also the constant function 0.) Assume that d; is a
number so that |f(z)| < L for |z —a| < d;.

Let € > 0 be given. Because ligl g(x) = 0, we know that there exists a number 6o > 0 so that
lg(z)| < &/L whenever 0 < |z — a| < d2. Let ¢ = min(d1, d2).
Then .
[f(2)g(z) =0 = |f(@)llg(2)| < L - =e¢,
whenever 0 < |z — a| < 4.

2

b. Let f(z) = — 5 Then

. oatr—2) L,
i:r%f(x)(x—Z)—hmi—ignzm =4 0.

r—2 €T —
This doesn’t violate the previous result because the given function f is not bounded near x = 2.

c. Because |H(z)| < 1 for all x, the result follows directly from part a) of this problem (using L = 1,
a=0, f(x) = H(z), and g(z) = o).
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4 Guided Projects

Guided Project 2: Constant rate problems

Topics and skills: Algebra

Continuing with the theme of problem solving, we now give you an opportunity to apply Polya’s method (see
Guided Project 1: Problem-solving skills) to a specific type of problem. Constant rate problems require only
algebra (solving problems that involve variable rates is a major reason for studying calculus).
Exercises 1—16 below involve constant speeds. Constant speed problems use the fact that
Distance traveled = speed x time elapsed or d=s x .

Exercises 17-25 deal with more general constant rates, such as work rates and flow rates; but the same ideas
may be used. If a problem involves a quantity Q (such as gallons of water or number of bagels) and its rate of
change is the constant 7, the constant rate formula is

Amount of Q = rate of change of O x time elapsed or Q=rxt.
Write out complete solutions to the following problems and discuss whether and how Polya’s method was
useful.

Problem-Solving Exercises

Constant speed problems

1. A car went 4 miles up a hill at 40 mi/hr and 6 mi down the back of the hill at 60 mi/hr. What was the
average speed of the round trip?

2. A one-mile-long train went through a one-mile-long tunnel at 15 mi/hr. How long did it take the entire train
to pass through the tunnel?

3. Ifalady walks to work and drives home, it takes one and a half hours. When she drives both ways, it takes
half an hour. At the same speeds, how much time does a round trip while walking require?

4. At full speed, a motor boat can go upstream 10 mi (against the current) in 15 min and downstream 10 mi
(with the current) in 9 min. At full speed, how much time is required for the boat to go 10 mi with no
current?

5. Two trains travel toward each other on parallel tracks. Train A is 0.5 mi long and travels at 20 mi/hr. Train
B is 1/3 mi long and travels at 30 mi/hr. How long does it take the trains to pass each other completely
(from the instant the engines meet to the instant that the cabooses pass each other)?

6. At midnight a train left Denver bound for Omaha, a distance of 500 mi, at a speed of 80 mi/hr and another
train left Omaha bound for Denver at a speed of 100 mi/hr. When the trains passed each other, what
fraction of its trip had the Denver train completed?

7. At midnight a train left Denver bound for Chicago and another train left Chicago bound for Denver, both
traveling at constant speeds on adjacent tracks. The first train took 12 hr to complete the trip and the second
train took 16 hr to complete the trip. At what time did the trains pass each other?

8. A train left Denver bound for Omaha, a distance of 500 mi, at a speed of 80 mi/hr. Two hours later, another
train left Omaha bound for Denver at a speed of 100 mi/hr. When the trains passed each other, how far had

the Denver train traveled?

9. A train left Boston for New York, a distance of 220 mi, at 70 mi/hr. One hour later, a train left New York
for Boston at 60 mi/hr. How far apart were the trains one hour before they met?

10. Two cyclists racing on parallel roads maintain constant speeds of 30 mi/hr and 25 mi/hr. The faster cyclist
crosses the finish line one hour before the slower cyclist. How long was the race (in miles)?

11. Because Boat A travels 1.5 times faster than Boat B, Boat B was given a 1.5-hr head start in a race. How
long did it take Boat A to catch Boat B?

Copyright © 2019 Pearson Education, Inc.


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

12.

13.

14.

15.

16.

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

Constant rate problems 5

A plane flew into a headwind and made the outbound trip in 84 min. It turned around and made the return
trip with a tailwind in 9 min less than it would have taken with no wind. Assuming that the plane's ground
speed and the wind speed are constant, what are the possible times for the return trip?

A woman usually takes the 5:30 train home from work, arriving at the station at 6:00 where her husband
meets her to drive her home. One day she left work early and took the 5:00 train, arrived at the station at
5:30, and began walking home. Her husband, leaving home at the usual time, met his wife along the way
and brought her home 10 min earlier than usual. How long did the woman walk?

Bob was traveling 80 km/hr behind a truck traveling 65 km/hr. How far behind the truck was Bob one
minute before the crash?

At his usual rate Bernie can row 15 mi downstream in five hr less time than it takes him to row 15 mi
upstream. If he doubles his usual rate, his time downstream is only one hour less than the time upstream.
What is the rate of the current in miles per hour?

A cyclist began at the tail of a parade that is 4 km long and rode in the direction that the parade was
moving. By the time the cyclist reached the head of the parade and returned to the tail, the parade had
moved 6 km. Assuming that the cyclist and the parade moved at constant (but different) speeds, how far did
the cyclist ride?

Other constant rate problems

17.

18.

19.

20.

21.

22,

23.

24,

25.

Work rates Working together (but independently), Arlen, Ben, and Carla can complete a job in 1 hr.
Working alone, Ben and Carla can complete the same job in 2.5 and 3.5 hr, respectively. How long would
it take Arlen to complete the same job working alone?

Work rates Twenty people can make 4 hats in 2 hr. How long will it take 15 people to make 30 hats? How
many people are needed to make 40 hats in 4 hr? How many hats can be made by 5 people in 12 hr?

Work rates Ann and Betty can do a job in 10 days; Ann and Carol can do the same job in 12 days; Betty
and Carol can do the same job in 20 days. How long will it take Carol to do the job alone?

Machine rates Working alone, photocopy machine C requires 40 min to complete an 800-page job.
Working together machines B and C require 25 min for the same 800-page job. With machines A, B, and C
working together, the job takes 10 min. How long does it take machine A to complete the job working
alone?

Filling a tank Pipes A and B can fill a tank in 2 hr and 3 hr, respectively. Pipe C can empty the same full
tank in 5 hr. If all pipes are opened at the same time when the tank is empty, how long will it take to fill the
tank?

Open and shut valves Each of valves A, B, and C, when open, releases water into a tank at its own
constant rate. With all three valves open, the tank fills in 1 hr. With only valves A and C open, it takes 1.5
hr to fill the tank, and with only valves B and C open, it takes 2 hr. How long does it take to fill the tank
with valves A and B open?

Filling a tank Joe opened two input pipes to a tank, but forgot to close the drain. The tank was half full
when he noticed his error and closed the drain. If it takes one input pipe 10 hr to fill the tank and the other
input pipe 8 hr to fill the tank (with the drain closed), and if it takes the drain 6 hr to empty the tank when it
is full (with no input pipes open), how long did it take Joe to fill the tank on this occasion?

Burning issue Two candles of equal length were lit at the same time. One candle took 6 hr to burn out and
the other candle took 3 hr to burn out. After how much time was one candle exactly twice as long as the

other candle?

Dueling candles Two candles of length L and L + 1 were lit at 6:00 and 4:30, respectively. At 8:30 they
had the same length. The longer candle died at 10:30 and the shorter candle died at 10:00. Find L.
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Solution to Guided Project 2: Constant rate problems

Constant speed problems

1.
2.

10.

11.

12.

13.

14.

15.

The car traveled 10 miles in 9 minutes (3/20 hr) for an average speed of % =53.3 mi/hr.

When the front of the train enters the tunnel, the end of the train has two miles to travel before exiting the
tunnel. Dividing this distance by the speed of 15 mi/hr gives that the train takes 2/15 hr or 8 minutes to pass
through the tunnel.

Driving one way takes 15 minutes, so walking one way takes one and a quarter hours. The round trip
walking takes two and one half hours.

Upstream, the boat travels 40 mi/hr. Downstream, it travels 200/3 mi/hr. These speeds are the boat speed
minus the current speed and the boat speed plus the current speed, respectively. Combining these facts
gives that the speed of the boat alone is 160/3 mi/hr. Therefore, traveling 10 mi with no current takes 3/16
hr or 11.25 min.

Consider the point at which the engines meet to be the origin. Then the position of the caboose of Train A
after ¢ hris —1/2+20¢ and the position of the caboose of Train B is 1/3 —30¢ . These positions are equal
at time ¢ =1/60 hr, meaning the trains completely pass each other after one minute.

Consider Denver to be the origin. After ¢ hr, the train bound for Omabha is at position 100z. At that same
time, the train bound for Denver is at position 500 —80¢ . These positions are equal when ¢ =25/9, at
which point the train bound for Denver will have traveled (25/9)-80 mi, which is 4/9 of its trip.

Consider Denver to be the origin. After ¢ hr, the first train is at position (d /12)¢, where d is the distance
between Denver and Chicago. At that same time, the second train is at position d —(d /16)¢ . The trains
meet at ¢ = 48/7 = 6.86 hr, meaning the trains passed each other at approximately 6:51 a.m.

Consider Denver to be the origin. After ¢ hours, the Omaha-bound train is at position 80z . For ¢ > 2, the
Denver-bound train’s position is 500 —100(¢ —2) . Therefore, the trains meet at time ¢ =35/9 hr, meaning
the Omaha-bound train had traveled (35/9-2)100=(17/9)100 = 189 mi.

Consider Boston to be the origin. After ¢ hours, the New York train is at position 70z . For ¢ =1, the
Boston train is at position 220 —60(¢ —1) . Therefore, the trains meet at time # = 28 /13 hr. One hour prior,
the distance between the trains is 130 mi.

Let x be the length of the race (in miles). The first cyclist completes the race in x /30 hr, while the second
requires x/25 hr. We are given that x/30+1=x/25, which implies x =150 mi.

Let the speed of Boat B be s mi/hr. After ¢ hr, Boat B has traveled s mi. Boat A has traveled

15s5(t —15) mi ¢ hr after Boat B started. Therefore, Boat A overtakes Boat B 4.5hr after Boat B began, so it
took Boat A 3 hr to catch Boat B.

Let g be the plane’s ground speed, w the wind speed, and d the distance the plane travels (one way).
From the outbound trip, we have 84(g—-w)=d ,so w= g —d /84 . For the return trip, we have
(g+w)(d/g—-9)=d . Substituting for w and solving for g givesthat g=d /21 or g =d /72. The time
for the return trip is d / g —9 , so it must be either 12 minutes or 63 minutes.

Let ¢, be the time the woman spent walking and ¢, the time spent in the car on this day. Let ¢ be the usual
amount of time it takes her husband to drive her home from the train station. Since she left 30 minutes early
but only got home 10 minutes early, ¢, +¢, —20 =¢. Since her husband left at the usual time but got home
10 minutes early, 2¢, = 2¢—10. Combining these facts, we see that ¢, = 25 minutes.

At time ¢ hr before the crash, the truck is 65¢ km away from the crash site and Bob is 80¢ km away from
the crash site. Here # =1/60, and so the distance between these positions is 1/4 km.

Let » be Bernie’s usual rowing rate and ¢ the speed of the current. The relationship at his usual rowing
rate gives that 15 = (r+c¢)(15/(r —c¢)—5) . At double his usual rate, we have 15 = (2r+c)(15(2r—c)-1).
Combining and solving for ¢ gives ¢ = r/2 . Substituting this, we are able to solve for » and find r =4
miles per hour, so ¢ =2 miles per hour.
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Let p be the rate at which the parade moves and c the rate at which the cyclist moves. Fixing the origin at

the point where the back of the parade began, before the cyclist turns around, the cyclist’s position is c?
and the front of the parade is at pz+4 . The cyclist turns around at time ¢, =4/(c— p) . For t > 1t,, the

cyclist’s position is ct, —ct . The back of the parade is at pz+ pt, . Therefore, the cyclist reaches the back
of the parade when ct, —ct = pt+ pt,. Solving for ¢, we find that the cyclist reaches the back of the parade
t, hours after the turnaround where #, =4/ (c+ p) . Since the parade moves 6 km in time ¢, +¢,, we have

p(t, +¢) =06, and therefore c = (\/B + 2) p /3. The distance the cyclist rode is
c(ty+1,)=4+2413 =11.21 km.

Other Constant Rate Problems

17.

18.

19.

20.

21.

22.

23.

24,

25.

Let a, b, and c be the work rates of Arlen, Ben, and Carla, respectively. Denote by ; the amount of
work required to complete the job. Then a = 0.314; . If it takes Arlen ¢ time to do the job alone, then
at = j , which allows us to find that ¢ = 3.18 hr.

From the given information, one worker produces 1/10 hat per hour. Therefore, it will take 20 hr for 15
people to make 30 hats. To make 40 hats in 4 hr will require 100 people. Five people working for 12 hr will
make 6 hats.

Let O denote the total quantity of work done, and let a, b, and ¢ denote the work rates of Ann, Betty,

and Carol, respectively. Then 10(a+b)=Q, 12(a+¢)=Q, and 20(b+c) = O . Solving, we find
¢ =0/60, and therefore it will take Carol 60 days to do the job alone.

Machine C works at 20 pages per min, which allows us to determine that machine B works at 12 pages per
min. Together, this gives that machine A works at 48 pages per min. Therefore, machine A working alone
will take 50/3 =16.67 min to complete the job.

Let O be the quantity of water the tank holds. Then pipe A fills at a rate of O/2, pipe B fills at a rate of

Q/3, and pipe C drains at a rate of Q/5. Filling the tank with all three pipes open takes time
0/(Q/2+0/3-0/5)=30/19=1.58.

Let O denote the volume of the tank, and let a, b, and ¢ denote the fill rates of valves A, B, and C,
respectively. Then we have a+b+c=0, 15(a+c)=0,and 2(b+c)=Q . Therefore a =Q/2 and

b =Q/3 and it takes 1.2 hr for the tank to fill with valves A and B open.

Let QO denote the volume of the tank. The first pipe fills at a rate of O /10 and the second fills at a rate of
Q/8. The drain empties the tank at a rate of O /6 . To get the tank half full with both input pipes and the

drain open then takes 60/7 = 8.57 hr. To fill half the tank with both input pipes open and the drain closed
takes 20/9 = 2.22 hr. Therefore, the total time in this case is approximately 10.79 hr.

Let L denote the length of the candle. The first candle burns at a rate of L /6, and the second burns at a
rate of L /3. After ¢ hr, the length of the first candle is L — (L /6)¢ and the length of the second candle is

L—(L/3)t. The first candle is twice the length of the second then after 2 hr.

The shorter candle burns at a rate of L /4, while the longer burns at a rate of (L+1)/6 . Knowing that they
had the same length at 8:30 gives the equation L—-2.5L/4=L+1-4(L+1)/6, and solving this gives
L=8.
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Figure 2.6 (2 of 3)
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Figure 2.6 (3 of 3)
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2.2

Definitions of Limits
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Figure 2.7
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Figure 2.8
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Figure 2.9
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Figure 2.10

ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 18


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

Table 2.2
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Figure 2.11 (a & b)
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Figure 2.12 (a & b)
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Table 2.3
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Figure 2.13
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Table 2.4
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Figure 2.14
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2.3

Techniques for Computing
Limits
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Figure 2.15
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THEOREM 2.3 Limit Laws
Assume lim f(x) and lim g(x) exist. The following properties hold, where c is a

X—>a X—a

real number, and n > 0 is an integer.

1.

2.

Sum lim (f(x) + g(x)) = lim f(x) + lim g(x)

Difference lim (f(x) — g(x)) = lim f(x) — lim g(x)

. Constant multiple lim (c¢f(x)) = ¢ lim f(x)

x—>a X—a

. Product lim ( f(x)g(x)) = (lim £(x) ) ( lim g(.x))

X—a X—>a X—a

(fm) lim 7(0)

. Quotient lim { — | = , provided i # 0
Quotien xE}}z 2(x) }Eﬂz 2(x) provide xl_rgz g(x)

. Power lim (f(x))" = (lim f(x))"

. Root lim (f(x))"/" = (lim f(x))l/”, provided f(x) > 0, for x near a, if n

. x—a x—a
1S €vEn
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THEOREM 2.4 Limits of Polynomial and Rational Functions
Assume p and g are polynomials and a 1s a constant.

a. Polynomial functions: lim p(x) = p(a)
Xx—>a

X a
b. Rational functions: lim pr) = d ),provided g(la) # 0

—a q(x)  q(a)
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THEOREM 2.3 (CONTINUED) Limit Laws for One-Sided Limits

Laws 1-6 hold with lim replaced with lim_or lim . Law 7 is modified as follows.
x—>a x—>a X—a

Assume n > 0 1s an integer.

7. Root

a. lim (f(x))"/" = ( lim, f(x)) /n provided f(x) = 0, for x near a with
X—>da X—a
x > a,if n1s even

b. lim (f(x))V/" = ( lim f(x)) /n provided f(x) = 0, for x near a with

x—a x—>a . )
x < a,1f n1s even

ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 33


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

Figure 2.16
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Figure 2.17
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Figure 2.18
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Figure 2.19 (a)
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Figure 2.19 (b)
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Table 2.5
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Figure 2.20
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Figure 2.21
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Figure 2.22

YA h(x) = A YA

—|x| = sinx < |x| 8(x) = sin x 1 h(x) =1

v o
on —3<x <3 g(x) = cos x

=Y

fx) = —|xf 1 —|x|=cosx=1

on 2 X 2
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2.4

Infinite Limits
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Table 2.6
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Table 2.7
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Figure 2.23
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Figure 2.24 (a)

... f(x) grows
arbitrarily large.

0, a X

[As x approaches a...
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Figure 2.24 (b)

ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 50


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

Figure 2.25
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Figure 2.26 (a & b) continued...
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Figure 2.26 (¢ & d)
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Figure 2.27
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Table 2.8
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Figure 2.28
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Figure 2.29

ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 59


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

2.9

Limits at Infinity
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Figure 2.30

ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 61


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

Figure 2.31
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DEFINITION Limits at Infinity and Horizontal Asymptotes

If f(x) becomes arbitrarily close to a finite number L for all sufficiently large and

positive x, then we write
lim f(x) = L.
X—>Co
We say the limit of f(x) as x approaches infinity is L. In this case, the line y = L
is a horizontal asymptote of f (Figure 2.31). The limit at negative infinity,
lim f(x) = M, is defined analogously. When this limit exists, y = M is a

X—>—w

horizontal asymptote.
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Figure 2.32
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Figure 2.33
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Figure 2.34

ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 66


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 67


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

Figure 2.35

n > 0even: n >0 odd:
lim x" = » lim x" =c; lim x" = —
x=*tow xX=00 xX=—o0

y==x
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Figure 2.36
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Figure 2.37
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Figure 2.38
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Figure 2.39
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Figure 2.40

ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 74


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

Figure 2.41
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THEOREM 2.7 End vior and Asym S ional Functions
_ p(x) . .
Suppose f(x) = ﬁ is a rational function, where
q(x

p(x) =ax"+a x" '+ +ax*+ax+a, and
g(x) =bx"+ b _x""'+ .-+ bx*+ bx + b,
with a,, # O and b, # O.

a. Degree of numerator less than degree of denominator If m < n, then
lim f(x) = 0,and y = 0 is a horizontal asymptote of f.

x—> t oo
b. Degree of numerator equals degree of denominator If m = n, then

lil’_ll’_l f(x) = a,/b,, and y = a,,/b, is a horizontal asymptote of f.
x— t oo

¢. Degree of numerator greater than degree of denominator If m > n, then
lim f(x) = o or —, and f has no horizontal asymptote.

x— t oo

d. Slant asymptote If m» = n + 1, then lim f(x) = o or —, and f has no

x—>tw

horizontal asymptote, but f has a slant asymptote.

e. Vertical asymptotes Assuming f is in reduced form (p and g share no com-
mon factors), vertical asymptotes occur at the zeros of g.
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Figure 2.42
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Figure 2.43
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Figure 2.44

y A fx)=¢€

lim Inx = oo]

X —=>oo

Reflection of y = ¢*
across line y = x

[lim Inx = —oo]
x=>0T
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Figure 2.45

YA

f(x) = cosx

AWAWIWAWAYS

_1__

[ lim cos x does not exist.} [ Iim cos x does not exist.J

X=>—00 X=>00
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2.0

Continuity
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Figure 2.46 (a)
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Figure 2.46 (b)
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Figure 2.47

ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 85


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

DEFINITION Continuity at a Point

A function f is continuous at ¢ if lim f(x) = f(a).
Xx—a
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Figure 2.48
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Figure 2.49
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Figure 2.50 (a)
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Figure 2.50 (b)
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DEFINITION Continuity at Endpoints

A function f i1s continuous from the right (or right-continuous) at a if
lim f(x) = f(a), and f is continuous from the left (or left-continuous) at b
X—a

if im f(x) = f(b).

x—b
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Figure 2.51
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THEOREM 2.13 Continuity of Functions with Roots
Assume 7 is a positive integer. If n is an odd integer, then ( f(x))'/" is continuous
at all points at which f 1s continuous.

If n is even, then (f(x))'/" is continuous at all points a at which f is continuous
and f(a) > 0.
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Figure 2.52
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Figure 2.53

y = sin x

ALWAYS LEARNING Copyright © 2019, 2015, 2011 Pearson Education, Inc. Slide 101


https://testbanks.ac/product/9780134763644-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

Figure 2.54
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Figure 2.55

YA

f@) =4

(0, 1)

—— }_
X

: Exponential functions are defined )
for all real numbers and are
continuous on (—oe, %), as shown
in Chapter 7.

AN
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Figure 2.56

[Intermedi ate Value Theoremj

YA YA

y=fx)
L_ _________________
1
1
1
fla)+ }
| >
0 a c b X

There is at least one number c in (a, b) such that f(c) = L,
where L is between f(a) and f(b).
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Figure 2.57
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Figure 2.58
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2.1

Precise Definitions of Limits
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Figure 2.59
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Figure 2.60 (a)
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Figure 2.60 (b)
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Figure 2.61 (a)
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Figure 2.61 (b)
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Figure 2.62
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Figure 2.63
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DEFINITION Limit of a Function
Assume f(x) is defined for all x in some open interval containing a, except
possibly at a. We say the limit of f(x) as x approaches a is L, written

lim f(x) = L,

xX—a

if for any number € > 0 there is a corresponding number 6 > 0 such that

If(JC) — LI < & whenever 0 < |x — a\ < 6.
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Figure 2.64
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Figure 2.65
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Figure 2.66
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Figure 2.67 (a)
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Figure 2.67 (b)

YA
| |
I |
s pammanan e Ll
| | e
I |
I |
| y = gx)
3 | 5 |
|/ |
| |
| |
I |
| |
1 F—— e
| |
| |
i I >
0 1 2 3 4 5 6 X

: Symmetric interval 0 < |x — 2| < 1
that guarantees | g(x) — 3| <2
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Figure 2.68 (a)
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Figure 2.68 (b)
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Figure 2.69
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