

Solutions for Computer Science An Overview 13th Edition
 by Brookshear

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/
https://testbanks.ac/product/9780134875460-SOLUTIONS-5/
https://testbanks.ac/product/9780134875460-SOLUTIONS-5/
https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

8

Chapter Two

DATA MANIPULATION

Chapter Summary

This chapter introduces the role of a computer's CPU. It describes the machine cycle and the various
operations (or, and, exclusive or, add, shift, etc.) performed by a typical arithmetic/logic unit. The
concept of a machine language is presented in terms of the simple yet representative machine
described in Appendix C of the text. The chapter also introduces some alternatives to the von
Neumann architecture such as multiprocessor machines.

The optional sections in this chapter present a more thorough discussion of the instructions
found in a typical machine language (logical and numerical operations, shifts, jumps, and I/O
communication), a short explanation of how a computer communicates with peripheral devices, and
alternative machine designs.

The machine language in Appendix C involves only direct and immediate addressing.
However, indirect addressing is introduced in the last section (Pointers in Machine Language) of
Chapter 7 after the pointer concept has been presented in the context of data structures.

Comments

1. When describing Computer Architecture in Section 2.1, remind students that this architecture
applies, in general, to every computer whether it be a supercomputer, desktop, tablet, laptop, or
phone

2. Students will often be confused with the idea and implementation of machine language, so go
very slowly when first teaching this. In the "Questions and Exercises" at the end of Section 2.2,
problem #7 starts with commands in English and asks students to translate them into Vole. Using
this approach first will help students better see what the Vole language is trying to accomplish.

3. The concepts of Program Counter and Instruction Register in Section 2.3 will make more sense to
students if the instructor does an interactive example in which these values are changing as the
program is hand-simulated. Because a single command requires 4 Hex digits, but each memory cell
holds 2 Hex digits, the program counter in the Vole language must increase by 2 after each
instruction. This is demonstrated in Figure 2.11. Students may need some help seeing why this is
required, and may also need reminders of this fact throughout the chapter.

4. While it could be possible to write an interpreter for the Vole language, students will benefit in
the long run by hand-simulating these programs rather than entering them into a simulator. The
ability to understand that a program is executed one command at a time, and that unintended
commands still execute, lay the groundwork for debugging programs, no matter the language.

5. It may be helpful to hand out to your students a summary of the Vole language, from Appendix
C, on a single sheet of paper.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

9

Answers to Chapter Review Problems

1. a. General purpose registers and main memory cells are small data storage cells in a computer.

b. General purpose registers are inside the CPU; main memory cells are outside the CPU.

(The purpose of this question is to emphasize the distinction between registers and memory cells—a
distinction that seems to elude some students, causing confusion when following machine language
programs.)

2. a. 0010001100000100

 b. 1011

 c. 001010100101

3. Eleven cells with addresses 98, 99, 9A, 9B, 9C, 9D, 9E, 9F, A0, A1, and A2.

4. CD

5. Program Instruction Memory cell
 counter register at 02

02 2211 32
04 3202 32
06 C000 11

6. To compute x + y + z, each of the values must be retrieved from memory and placed in a register,
the sum of x and y must be computed and saved in another register, z must be added to that sum,
and the final answer must be stored in memory.

A similar process is required to compute (2x) + y. The point of this example is that the
multiplication by 2 is accomplished by adding x to x.

7. a. OR the contents of register 2 with the contents of register 3 and place the result in register 1.

b. Move the contents of register E to register 1.

c. Rotate the contents of register 3 four bits to the right.

d. Compare the contents of registers 1 and 0. If the patterns are equal, jump to the instruction at
address 00. Otherwise, continue with the next sequential instruction.

e. Load register B with the value (hexadecimal) CD.

8. 16 with 4 bits, 64 with 6 bits

9. a. 2677 b. 1677 c. BA24 d. A403 e. 81E2

10. The only change that is needed is that the third instruction should be 6056 rather than 5056.

11. a. Changes the contents of memory cell 3C.

b. Is independent of memory cell 3C.

c. Retrieves from memory cell 3C.

d. Changes the contents of memory cell 3C.

e. Is independent of memory cell 3C.

12. a. Place the value 55 in register 6. b. 55

13. a. 1221 b. 2134

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

10

14. a. Load register 2 with the contents of memory cell 02.
 Store the contents of register 2 in memory cell 42.
 Halt.

 b. 32

 c. 06

15. a. 06 b. 0A

16. a. 00, 01, 02, 03, 04, 05

 b. 06, 07

17. a. 04 b. 04 c. 0E

18. 04. The program is a loop that is terminated when the value in register 0 (initiated at 00) is finally
incremented by twos to the value in register 3 (initiated at 04).

19. 11 microseconds.

20. The point to this problem is that a bit pattern stored in memory is subject to interpretation—it
may represent part of the operand of one instruction and the op-code field of another.

a. Registers 0, 1, and 2 will contain 32, 24, and 12, respectively.

 b. 12

 c. 32

21. The machine will alternate between executing the jump instruction at address AF and the jump
instruction at address B0.

22. It would never halt. The first 2 instructions alter the third instruction to read B000 before it is
ever executed. Thus, by the time the machine reaches this instruction, it has been changed to read
"Jump to address 00." Consequently, the machine will be trapped in a loop forever (or until it is
turned off).

23. a. b. c.
14D8 14D8 2000
34B3 15B3 1144
C000 358D B10A

34BD 22FF
C000 B00C

2201
3246
C000

24. a. The single instruction B000 stored in locations 00 and 01.

 b. Address Contents
00,01 2100 Initialize
02,03 2270 counters.
04,05 3109 Set origin
06,07 320B and destination.
08,09 1000 Now move
0A,0B 3000 one cell.
0C,0D 2001 Increment
0E,0F 5101 addresses.
10,11 5202
12,13 2333 Do it again
14,15 4010 if all cells
16,17 B31A have not

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

11

18,19 B004 been moved.
1A,1B 2070 Adjust values
1C,1D 3071 that are
1E,1F 2079 location
20,21 3075 dependent.
22,23 207B
24,25 3077
26,27 208A
28,29 3087
2A,2B 2074
2C,2D 3089
2E,2F 20C0
30,31 30A4
32,33 2000
34,35 20A5
36,37 B070 Make the big jump!

c. Address Contents
00,01 2000 Initialize counter.
02,03 2100 Initialize origin.
04,05 2270 Initialize destination.
06,07 2430 Initialize references
08,09 1530 to table.
0A,0B 310D Get origin
0C,0D 1600 value.
0E,0F B522 Jump if value must be adjusted.
10,11 3213 Place value
12,13 3600 in new location.
14,15 2301 Increment
16,17 5003 R0,
18,19 5113 R1, and
1A,1B 5223 R2.
1C,1D 233C Are we done?
1E,1F B370 If so, jump to relocated program.
20,21 B00A Else, go back.
22,23 2370 Add 70 to
24,25 5663 value being
26,27 2301 transferred and
28,29 5443 update R4 and
2A,2B 342D R5 for next
2C,2D 1500 location.
2E,2F B010 Return (from subroutine).
30,31 0305 Table of
32,33 0709 locations that
34,35 0B0F must be
36,37 111F updated for
38,39 212B new location.
3A,3B 2FFF

25.
20A0
21A1
6001
21A2
6001
21A3
6001
30A4
C000

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

12

26. The machine would place a halt instruction (C000) at memory location 04 and 05 and then halt
when this instruction is executed. At this point its program counter will contain the value 06.

27. The machine would continue to repeat the instruction at address 08 indefinitely.

28. It copies the data from the memory cells at addresses 00, 01, and 02 into the memory cells at
addresses 10, 11, and 12.

29. Let R represent the first hexadecimal digit in the operand field;
 Let XY represent the second and third digits in the operand field;
 If the pattern in register R is the same as that in register 0,

then change the value of the program counter to XY.

30. Let the hexadecimal digits in the operand field be represented by R, S, and T;
 Activate the two's complement addition circuitry with registers S and T

as inputs;
 Store the result in register R.

31. Same as Problem 24 except that the floating-point circuitry is activated.

32. a. 02 b. AC c. FA d. 08 e. F2

33. a. b. c. d.
1044 1034 10A5 10A5
30AA 21F0 210F 210F

8001 8001 8001
3034 12A6 4001

21F0 A104
8212 7001
7002 30A5
30A6

34. a. 101001 b. 000000 c. 000100 d. 110011 e. 111001 f. 111110

 g. 010101 h. 111111 i. 010000 j. 101101 k. 000101 l. 001010

35. a. OR the byte with 11110000.

 b. XOR the byte with.10000000.

 c. XOR the byte with 11111111.

 d. AND the byte with 11111110.

 e. OR the byte with 01111111.

 f. AND the 24-bit RGB bitmap pixel with 111111110000000011111111.

 g. XOR the 24-bit RGB bitmap pixel with 111111111111111111111111.

 h. OR the 24-bit RGB bitmap pixel with 111111111111111111111111.

36. a. print(bin(byteVariable | 0b11110000))

 b. print(bin(byteVariable ^ 0b10000000))

 c. print(bin(byteVariable ^ 0b11111111))

 d. print(bin(byteVariable & 0b11111110))

 e. print(bin(byteVariable | 0b01111111))

 f. print(bin(pixel & 0b111111110000000011111111))

 g. print(bin(pixel ^ 0b 111111111111111111111111))

 h. print(bin(pixel | 0b 111111111111111111111111))37. XOR the input string with 10000001.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

13

38. print(bin(inputString ^ 0b10000001))

39. First AND the input byte with 10000001, then XOR the result with 10000001.

40. tempString = inputString & 0b10000001

 print(bin(inputString ^ 0b10000001))

41. a. 11010 b. 00001111 c. 010 d. 001010 e. 10000

42. a. CF b. 43 c. FF d. DD

43. a. AB05 b. AB06

44. Address Contents
00,01 2008 Initialize registers.
02,03 2101
04,05 2200
06,07 2300
08,09 148C Get the bit pattern;
0A,0B 8541 Extract the least significant bit;
0C,0D 7335 Insert it into the result.
0E,0F 6212
10,11 B218 Are we done?
12,13 A401 If not, rotate registers
14,15 A307
16,17 B00A and go back;
18,19 338C If yes, store the result
1A,1B C000 and halt.

45. The idea is to complement the value at address A1 and then add. Here is one solution:

21FF
12A1
7221
13A2
5423
34A0

46. An uncompressed video stream of the specified format would require a speed of about 1.5 Gbps. Thus,
both USB 1.1 and USB 2.0 would be incapable of sending a video stream of this format. A USB 3.0 serial port
would be required. It is interesting to note that with compression, a video stream of 1920 X 1080 resolution,
30 fps and 24 bit color space could be sent over a USB 2.0 port.

47. The typist would be typing 40 x 5 = 200 characters per minute, or 1 character every 0.3 seconds
(= 300,000 microseconds). During this period the machine could execute 150,000,000 instructions.

48. The typist would be producing characters at the rate of 4 characters per second, which translates
to 32 bps (assuming each character consists of 8 bits).

49. Address Contents
00,01 2000
02,03 2101
04,05 12FE Get printer status
06,07 8212 and check the ready flag.
08,09 B004 Wait if not ready.
0A,0B 35FF Send the data.

50. Address Contents
00,01 20C1 Initialize registers.
02,03 2100
04,05 2201
06,07 130B

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

14

08,09 B312 If done, go to halt.
0A,0B 31A0 Store 00 at destination.
0C,0D 5332 Change destination
0E,0F 330B address,
10,11 B008 and go back.
12,13 C000

51. 15 Mbps is equivalent to 1.875 MBs / sec (or 6.75 GBs / hour). Therefore, it would take 29.63
hours to fill the 200 GB drive.

52. 1.74 megabits

53. Group the 64 values into 32 pairs. Compute the sum of each pair in parallel. Group these sums
into 16 pairs and compute the sums of these pairs in parallel. etc.

54. CISC involves numerous elaborate machine instructions that can be time consuming. RISC
involves fewer and simpler instructions, each of which is efficiently implemented.

55. How about pipelining and parallel processing? Increasing clock speed is another answer.

56. In a multiprocessor machine several partial sums can be computed simultaneously.

57.

 radius = float(input('Please enter a radius '))

 circumference = 2 * 3.14 * radius

 radius = 3.14 * radius * radius

 print('Circumference ' is ' + str(circumference))

 print('Area is ' + str(area))

58.

 message = input('Please enter message ')

 ntimes = int(input('Please enter no. times to repeat the message '))

 print(message * ntimes)

58.

 import math

 side1 = float(input('Please enter first side of a right triangle '))

 side2 = float(input('Please enter second side of a right triangle '))

 hypotenuse = math.sqrt(side1 * side1 + side2 * side 2)

 perimeter = side1 + side2 + hypotenuse

 are = side1 * side2 / 2

 print('Hypontenuse ' is ' + str(hypotenuse))

 print('Perimeter is ' + str(perimeter))

 print('Area is ' + str(area))

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

8

Chapter Two

DATA MANIPULATION

Chapter Summary

This chapter introduces the role of a computer's CPU. It describes the machine cycle and the various operations
(or, and, exclusive or, add, shift, etc.) performed by a typical arithmetic/logic unit. The concept of a machine

language is presented in terms of the simple yet representative machine, which we call The Vole, described in
Appendix C of the text. The chapter also introduces some alternatives to the von Neumann architecture such as

multiprocessor machines.

The optional sections in this chapter present a more thorough discussion of the instructions found in a typical

machine language (logical and numerical operations, shifts, jumps, and I/O communication), a short explanation
of how a computer communicates with peripheral devices, and alternative machine designs.

The machine language in Appendix C involves only direct and immediate addressing. However, indirect

addressing is introduced in the last section of Chapter 7 (Pointers in Machine Language) after the pointer concept
has been presented in the context of data structures.

Comments

1. When describing Computer Architecture in Section 2.1, remind students that this
architecture applies, in general, to every computer whether it be a supercomputer, desktop,
tablet, laptop, or phone.

2. Students will often be confused with the idea and implementation of machine language, so
go very slowly when first teaching this. In the "Questions and Exercises" at the end of Section
2.2, problem #7 starts with commands in English and asks students to translate them into Vole.
Using this approach first will help students better see what the Vole language is trying to
accomplish.

3. The concepts of Program Counter and Instruction Register in Section 2.3 will make more
sense to students if the instructor does an interactive example in which these values are
changing as the program is hand-simulated. Because a single command requires 4 Hex digits,
but each memory cell holds 2 Hex digits, the program counter in the Vole language must
increase by 2 after each instruction. This is demonstrated in Figure 2.11. Students may need
some help seeing why this is required, and may also need reminders of this fact throughout
the chapter.

4. While it could be possible to write an interpreter for the Vole language, students will benefit
in the long run by hand-simulating these programs rather than entering them into a simulator.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

9

The ability to understand that a program is executed one command at a time, and that
unintended commands still execute, lay the groundwork for debugging programs, no matter
the language.

5. It may be helpful to hand out to your students a summary of the Vole language, from
Appendix C, on a single sheet of paper.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

10

Answers to Chapter Review Problems

1. a. General purpose registers and main memory cells are small data storage cells in a computer.

b. General purpose registers are inside the CPU; main memory cells are outside the CPU.

(The purpose of this question is to emphasize the distinction between registers and memory cells—a distinction

that seems to elude some students, causing confusion when following machine language programs.)

2. a. 0010001100000100

b. 1011

c. 001010100101

3. Eleven cells with addresses 0x98, 0x99, 0x9A, 0x9B, 0x9C, 0x9D, 0x9E, 0x9F, 0xA0, 0xA1, and 0xA2.

4. 0xCD

5. Program Instruction Memory cell
 counter register at 0x02

0x02 0x2211 0x32
0x04 0x3202 0x32
0x06 0xC000 0x11

6. To compute x + y + z, each of the values must be retrieved from memory and placed in a register, the sum of x
and y must be computed and saved in another register, z must be added to that sum, and the final

answer must be stored in memory.

A similar process is required to compute (2x) + y. The point of this example is that the
multiplication by 2 is accomplished by adding x to x.

7. a. OR the contents of register 0x2 with the contents of register 0x3 and place the result in register 0x1.

b. Move the contents of register 0xE to register 0x1.

c. Rotate the contents of register 0x3 four bits to the right.

d. Compare the contents of registers 0x1 and 0x0. If the patterns are equal, jump to the instruction at address 0x00.

Otherwise, continue with the next sequential instruction.

e. Load register 0xB with the value (hexadecimal) 0xCD.

8. 16 with 4 bits, 64 with 6 bits

9. a. 0x2677 b. 0x1677 c. 0xBA24 d. 0xA403 e. 0x81E2

10. The only change that is needed is that the third instruction should be 0x6056 rather than 0x5056.

11. a. Changes the contents of memory cell 0x3C.

b. Is independent of memory cell 0x3C.

c. Retrieves from memory cell 0x3C.

d. Changes the contents of memory cell 0x3C.

e. Is independent of memory cell 0x3C.

12. a. Place the value 0x55 in register 0x6. b. 0x55

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

11

13. a. 0x1221 b. 0x2134

14. a. Load register 0x2 with the contents of memory cell 0x02.

 Store the contents of register 0x2 in memory cell 0x42.
Halt.

 b. 0x32

c. 0x06

15. a. 0x06 b. 0x0A

16. a. 0x00, 0x01, 0x02, 0x03, 0x04, 0x05 b. 0x06, 0x07

17. a. 0x04 b. 0x04 c. 0x0E

18. 0x04. The program is a loop that is terminated when the value in register 0x0 (initiated at 0x00) is finally
incremented by twos to the value in register 0x3 (initiated at 0x04).

19. 11 microseconds, because 11 instructions were executed.

20. The point to this problem is that a bit pattern stored in memory is subject to interpretation—it may represent

part of the operand of one instruction and the op-code field of another.

a. Registers 0x0, 0x1, and 0x2 will contain 0x32, 0x24, and 0x12, respectively.

b. 0x12

c. 0x32

21. The machine will alternate between executing the jump instruction at address 0xAF and the jump instruction

at address 0xB0.

22. It would never halt. The first 2 instructions alter the third instruction to read 0xB000 before it is ever executed.

Thus, by the time the machine reaches this instruction, it has been changed to read "Jump to address
0x00." Consequently, the machine will be trapped in a loop forever (or until it is turned off).

23. As the question states, assume the program is loaded into memory starting at address 0x00

a. b. c.

0x14D8 0x14D8 0x2000
0x34B3 0x15B3 0x1144
0xC000 0x35D8 0xB10A

0x34B4 0x22FF
0xC000 0xB00C

0x2201
0x3246
0xC000

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

12

24. a. The single instruction 0xB000 stored in locations 0x00 and 0x01.

 b. Address Contents
0x00 0x2100 Initialize
0x02 0x2270 counters.
0x04 0x3109 Set origin
0x06 0x320B and destination.
0x08 0x1000 Now move
0x0A 0x3000 one cell.
0x0C 0x2001 Increment
0x0E 0x5101 addresses.
0x10 0x5202
0x12 0x2333 Do it again
0x14 0x4010 if all cells
0x16 0xB31A have not
0x18 0xB004 been moved.
0x1A 0x2070 Adjust values
0x1C 0x3071 that are
0x1E 0x2079 location
0x20 0x3075 dependent.
0x22 0x207B
0x24 0x3077
0x26 0x208A
0x28 0x3087
0x2A 0x2074
0x2C 0x3089
0x2E 0x20C0
0x30 0x30A4
0x32 0x2000
0x34 0x20A5
0x36 0xB070 Make the big jump!

c. Address Contents
0x00 0x2000 Initialize counter.
0x02 0x2100 Initialize origin.
0x04 0x2270 Initialize destination.
0x06 0x2430 Initialize references
0x08 0x1530 to table.
0x0A 0x310D Get origin
0x0C 0x1600 value.
0x0E 0xB522 Jump if value must be adjusted.
0x10 0x3213 Place value
0x12 0x3600 in new location.
0x14 0x2301 Increment
0x16 0x5003 R0,
0x18 0x5113 R1, and
0x1A 0x5223 R2.
0x1C 0x233C Are we done?
0x1E 0xB370 If so, jump to relocated program.
0x20 0xB00A Else, go back.
0x22 0x2370 Add 70 to
0x24 0x5663 value being
0x26 0x2301 transferred and
0x28 0x5443 update R4 and
0x2A 0x342D R5 for next
0x2C 0x1500 location.
0x2E 0xB010 Return (from subroutine).
0x30 0x0305 Table of
0x32 0x0709 locations that
0x34 0x0B0F must be
0x36 0x111F updated for

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

13

0x38 0x212B new location.

0x3A 0x2FFF

25.
0x20A0

 0x21A1
 0x6001
 0x21A2
 0x6001

0x21A3
0x6001
0x30A4
0xC000

26.The machine would place a halt instruction (C000) at memory location 04 and 05 and then halt when this

instruction is executed. At this point its program counter will contain the value 06.

27. The machine would continue to repeat the instruction at address 08 indefinitely.

28. It copies the data from the memory cells at addresses 00, 01, and 02 into the memory cells at addresses 10, 11,

and 12.

29. Let R represent the first hexadecimal digit in the operand field;

 Let XY represent the second and third digits in the operand field;
 If the pattern in register R is the same as that in register 0,

 then change the value of the program counter to XY.

30. Let the hexadecimal digits in the operand field be represented by R, S, and T;

 Activate the two's complement addition circuitry with registers S and T as inputs;

 Store the result in register R.

31. Same as Problem 24 except that the floating-point circuitry is activated.

32. a. 0x02 b. 0xAC c. 0xFA d. 0x08 e. 0xF2

33. a. b. c. d.

0x1044 0x1034 0x10A5 0x10A5
0x30AA 0x21F0 0x210F 0x210F

0x8001 0x8001 0x8001
0x3034 0x12A6 0x4001
0x21F0 0xA104
0x8212 0x7001
0x7002 0x30A5
0x30A6

34. a. 101001 b. 000000 c. 000100 d. 110011 e. 111001 f. 111110

 g. 010101 h. 111111 i. 010000 j. 101101 k. 000101 l. 001010

35. a. OR the byte with 11110000.

 b. XOR the byte with.10000000.

 c. XOR the byte with 11111111.

 d. AND the byte with 11111110.

 e. OR the byte with 01111111.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

14

 f. AND the 24-bit RGB bitmap pixel with 111111110000000011111111.

 g. XOR the 24-bit RGB bitmap pixel with 111111111111111111111111.

 h. OR the 24-bit RGB bitmap pixel with 111111111111111111111111.

36. a. print(bin(byteVariable | 0b11110000))

b. print(bin(byteVariable ^ 0b10000000))

c. print(bin(byteVariable ^ 0b11111111))

d. print(bin(byteVariable & 0b11111110))

e. print(bin(byteVariable | 0b01111111))

f. print(bin(pixel & 0b111111110000000011111111))

g. print(bin(pixel ^ 0b 111111111111111111111111))

 h. print(bin(pixel | 0b 111111111111111111111111))

37. XOR the input string with 10000001.

38. print(bin(inputString ^ 0b10000001))

39. First AND the input byte with 10000001, then XOR the result with 10000001.

40. tempString = inputString & 0b10000001

 print(bin(inputString ^ 0b10000001))

41. a. 11010 b. 00001111 c. 010 d. 001010 e. 10000

42. a. 0xCF b. 0x43 c. 0xFF d. 0xDD

43. a. 0xAB05 b. 0xAB06 (2 bits to the left is equivalent to 6 bits to the right)

44.

Address Contents
0x00 0x2008 Initialize registers.
0x02 0x2101
0x04 0x2200
0x06 0x2300
0x08 0x148C Get the bit pattern;
0x0A 0x8541 Extract the least significant bit;
0x0C 0x7335 Insert it into the result.
0x0E 0x6212
0x10 0xB218 Are we done?
0x12 0xA401 If not, rotate registers
0x14 0xA307
0x16 0xB00A and go back;
0x18 0x338C If yes, store the result
0x1A 0xC000 and halt.

45. The idea is to complement the value at address A1 and then add. Here is one solution:

0x21FF
0x12A1
0x7221
0x13A2
0x5423
0x34A0

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

15

46. An uncompressed video stream of the specified format would require a speed of about 1.5 Gbps. Thus, both USB 1.1 and
USB 2.0 would be incapable of sending a video stream of this format. A USB 3.0 serial port would be required. It is
interesting to note that with compression, a video stream of 1920 X 1080 resolution, 30 fps and 24 bit color space could be
sent over a USB 2.0 port.

47. The typist would be typing 40 x 5 = 200 characters per minute, or 1 character every 0.3 seconds (= 300,000

microseconds). During this period the machine could execute 150,000,000 instructions.

48. The typist would be producing characters at the rate of 4 characters per second, which translates to 32 bps

(assuming each character consists of 8 bits).

49.

Address Contents
0x00 0x2000
0x02 0x2101
0x04 0x12FE Get printer status
0x06 0x8212 and check the ready flag.
0x08 0xB004 Wait if not ready.
0x0A 0x35FF Send the data.

50.

Address Contents
0x00 0x20C1 Initialize registers.
0x02 0x2100
0x04 0x2201
0x06 0x130B
0x08 0xB312 If done, go to halt.
0x0A 0x31A0 Store 00 at destination.
0x0C 0x5332 Change destination
0x0E 0x330B address,
0x10 0xB008 and go back.
0x12 0xC000

51. 15 Mbps is equivalent to 1.875 MBs / sec (or 6.75 GBs / hour). Therefore, it would take 29.63 hours to fill the
200 GB drive.

52. 1.74 megabits

53. Group the 64 values into 32 pairs. Compute the sum of each pair in parallel. Group these sums into 16 pairs
and compute the sums of these pairs in parallel. etc.

54. CISC involves numerous elaborate machine instructions that can be time consuming. RISC involves fewer and
simpler instructions, each of which is efficiently implemented.

55. How about pipelining and parallel processing? Increasing clock speed is another answer.

56. In a multiprocessor machine several partial sums can be computed simultaneously.

57.

 radius = float(input('Please enter a radius '))
 circumference = 2 * 3.14 * radius
 radius = 3.14 * radius * radius
 print('Circumference ' is ' + str(circumference))
 print('Area is ' + str(area))

58.

 message = input('Please enter message ')
 ntimes = int(input('Please enter no. times to repeat the message '))
 print(message * ntimes)

59.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

16

 import math
 side1 = float(input('Please enter first side of a right triangle '))
 side2 = float(input('Please enter second side of a right triangle '))
 hypotenuse = math.sqrt(side1 * side1 + side2 * side 2)
 perimeter = side1 + side2 + hypotenuse
 are = side1 * side2 / 2
 print('Hypontenuse ' is ' + str(hypotenuse))
 print('Perimeter is ' + str(perimeter))
 print('Area is ' + str(area))

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780134875460-SOLUTIONS-5/

