Test Bank for Beginning and Intermediate Algebra and College Algebra 1st Edition by Lial

CLICK HERE TO ACCESS COMPLETE Test Bank

Test Bank

CHAPTER 2, FORM A COLLEGE ALGEBRA

- NAME____ DATE
- 1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

1. a. __

b. ____

A. $(-\infty, \infty)$ **B.** $[3,\infty)$

C. [0,2]

D. $[0,\infty)$

II

E. [-3,3]

F. $(-\infty, -2]$

G. $\left[-3,\infty\right)$

H. $[-7,\infty)$

i. Domain of $y = 2s^2$

I

d. Range of $y = 2x^2$

a. Domain of $f(x) = \sqrt{x-3}$

c. Domain of $f(x) = x^2 - 16$

e. Domain of $f(x) = \sqrt[3]{x-2}$

f. Range of $f(x) = \sqrt[3]{x} + 2$

g. Domain of f(x) = |x+2|**h.** Range of f(x) = |x| + 3

b. Range of $f(x) = \sqrt{x} - 3$

j. Range of $f(x) = x^2 - 7$

The graph shows the line that passes through the points (-5, -3)and (-1, 4). Refer to it to answer Exercises 2–6.

2. What is the slope of the line?

- 2.
- **3.** What is the distance between the two points shown?
- 3.
- 4. What are the coordinates of the midpoint of the segment joining the two points?
- 4.
- **5.** Find the standard form of the equation of the line.
- 5.
- **6.** Write the linear function defined by f(x) = ax + b that has this line as its graph.
- 6.

Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant.

7.

7.____

8.

8. _____

- **9.** Suppose point *P* has coordinates $\left(\frac{2}{5}, \frac{3}{7}\right)$.
 - **a.** What is the equation of the vertical line through *P*?
 - **b.** What is the equation of the horizontal line through *P*?
- 9. a. _____
 - b. _____
- **10.** Find the slope-intercept form of the equation of the line passing through (2, 5) and
 - **a.** parallel to the graph of y = 4x 7;
 - **b.** perpendicular to the graph of y = 4x 7.

- 10. a. _____
 - b.

Graph each relation.

11.
$$x = 2|y-3|+1$$

12.
$$f(x) = x + 2$$

12.

13.
$$f(x) = \begin{cases} 2x - 1 & \text{if } x < 0 \\ -3x - 1 & \text{if } x \ge 0 \end{cases}$$

13.

- **14.** Explain how the graph of $y = -\frac{1}{2}\sqrt{x+3} + 5$ can be obtained from the graph of $y = \sqrt{x}$.
- 14. _____
- **15.** Determine whether the graph of $2x^2 + 3y^2 = 1$ is symmetric with respect to
- 15. a. _____

a. the x-axis,

b. _____

b. the y-axis,

C

c. the origin.

Given $f(x) = x^2 - 1$ and g(x) = 2x + 1, find each of the following. Simplify the expressions when possible.

16. (fg)(x)

16.

17. (f+g)(x)

17. _____

18. the domain of $\frac{g}{f}$

19.	f(x+h)-f(x)
	h

20.
$$(f-g)(0)$$

21.
$$\left(\frac{f}{g}\right)$$
(2)

22.
$$(f \circ g)(x)$$

23.
$$(f \circ g)(-2)$$

24.
$$(g \circ f)(x)$$

25.
$$(g \circ f)(-2)$$

CHAPTER 2, FORM B COLLEGE ALGEBRA

NAME_____ DATE

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

1. a. _____

a. Domain of $f(x) = \sqrt{x-4}$

I

A. $(-\infty, \infty)$

II

- **b.** Range of $f(x) = \sqrt{x} 2$
- **B.** $[-2, \infty)$
- C. [0,2]
- **c.** Domain of $f(x) = 3x^2$ **d.** Range of $f(x) = x^2 + 5$
- **D.** $[0,\infty)$
- **e.** Domain of $f(x) = \sqrt[3]{x-8}$
- **E.** [-3,3]
- **f.** Range of $f(x) = \sqrt[3]{x} 1$
- **F.** $(-\infty, -2]$
- **g.** Domain of f(x) = |x-2|
- **G.** $[5,\infty)$
- **h.** Range of f(x) = |x| + 5
- **H.** $[4,\infty)$
- i. Domain of $x = 2y^2$

j. Range of $x = 2y^2$

The graph shows the line that passes through the points (-2, -1)and (4, -3). Refer to it to answer Exercises 2–6.

2. What is the slope of the line?

- 2.
- 3. What is the distance between the two points shown?
- 3.
- 4. What are the coordinates of the midpoint of the segment joining the two points?
- 4.
- **5.** Find the standard form of the equation of the line.
- 5.
- **6.** Write the linear function defined by f(x) = ax + b that has this line as its graph.
- 6.

Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant.

7.

'.____

8.

8.

-

Graph each relation.

9.
$$f(x) = 2 - |3x|$$

9.

10. $f(x) = \frac{1}{2}x$

11.
$$f(x) = \begin{cases} -2x & \text{if } x < -3\\ 4 & \text{if } -3 \le x \le 2\\ x - 4 & \text{if } x \ge 2 \end{cases}$$

- **12.** Suppose point *P* has coordinates $\left(\frac{5}{8}, -\frac{7}{9}\right)$.
 - **a.** What is the equation of the vertical line through *P*?
 - **b.** What is the equation of the horizontal line through *P*?
- 12. a. _____
 - b. _____
- 13. Find the slope-intercept form of the equation of the line passing through (-6,3) and
 - **a.** parallel to the graph of y = -3x 12;
 - **b.** perpendicular to the graph of y = -3x 12.
- 13. a. _____
 - b.
- **14.** Explain how the graph of $y = -\frac{1}{3}\sqrt{x+4} + 2$ can be obtained from the graph of $y = \sqrt{x}$.
- 14. _____
- **15.** Determine whether the graph of $y^2 = 3x$ is symmetric with respect to
- 15. a. _____

a. the x-axis,

•

- **b.** the y-axis,
- c. the origin.

Given $f(x) = 2x^2 + 7x + 6$ and g(x) = 3x - 2, find each of the following. Simplify the expressions when possible.

16.
$$(fg)(x)$$

17.
$$(f-g)(x)$$

18. the domain of
$$\frac{g}{f}$$

$$19. \ \frac{f(x+h)-f(x)}{h}$$

20.
$$(f+g)(1)$$

21.
$$\left(\frac{g}{f}\right)(0)$$

22.
$$(f \circ g)(x)$$

23.
$$(f \circ g)(1)$$

24.
$$(g \circ f)(x)$$

25.
$$(g \circ f)(1)$$

CHAPTER 2, FORM C COLLEGE ALGEBRA

NAME____ DATE

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

1. a. ___

- **a.** Domain of $f(x) = \sqrt{x+2}$
- A. $(-\infty, \infty)$

II

b. Range of $f(x) = \sqrt{x} - 4$

I

- **B.** $[-4,\infty)$

- **c.** Domain of $f(x) = x^2 1$ **d.** Range of $f(x) = x^2 - 16$
- C. [0,2]
- **D.** $[0,\infty)$
- **E.** [-3,3]
- **f.** Range of $f(x) = \sqrt[3]{x} + 2$

e. Domain of $f(x) = \sqrt[3]{x-2}$

- **F.** $(-\infty, -3]$
- **g.** Domain of f(x) = |x+3|
- **G.** $\left[-1,\infty\right)$
- **h.** Range of f(x) = |x| 3
- i. Domain of $y = 2x^2$
- **H.** $[-2, \infty)$
- **j.** Range of $y = x^2 3$

The graph shows the line that passes through the points (-3, -5)and (3, -2). Refer to it to answer Exercises 2-6.

2. What is the slope of the line?

- 2.
- **3.** What is the distance between the two points shown?
- 3.
- 4. What are the coordinates of the midpoint of the segment joining the two points?
- 4.
- **5.** Find the standard form of the equation of the line.
- 5.
- **6.** Write the linear function defined by f(x) = ax + b that has this line as its graph.
- 6.

Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant.

7.

7.____

8.

- **9.** Suppose point *P* has coordinates $(2\sqrt{2}, -\sqrt{5})$.
 - **a.** What is the equation of the vertical line through *P*?
 - **b.** What is the equation of the horizontal line through *P*?
- 9. a. _____
 - b. _____
- 10. Find the slope-intercept form of the equation of the line passing through (4, -2) and
 - **a.** parallel to the graph of $x = \frac{5}{4}y 2$;

10. a. _____

b. perpendicular to the graph of $x = \frac{5}{4}y - 2$;

b. _____

Graph each relation.

11.
$$f(x) = \frac{1}{2}|x+1|-2$$

11.

CHAPTER 2, FORM A

12.
$$f(x) = 2x - 2$$

12.

13.
$$f(x) = \begin{cases} x+1 & \text{if } x \le -2 \\ -1 & \text{if } x > -2 \end{cases}$$

- **14.** Explain how the graph of y = 3|x+4|+2 can be obtained from the graph of y = |x|.
- 14. _____
- **15.** Determine whether the graph of $y = 3x^2 + 7$ is symmetric with respect to
- 15. a. _____

 \mathbf{a} . the *x*-axis,

b. _____

b. the y-axis,

c. _____

c. the origin.

Given $f(x) = 3x^2 - 2$ and g(x) = 4x + 4, find each of the following. Simplify the expressions when possible.

16. (fg)(x)

16.

17. (g-f)(x)

17.

18. *f* (-2)

18.

 $19. \ \frac{f(x+h)-f(x)}{h}$

19.

20. (f+g)(0)

20.

21. $\left(\frac{f}{g}\right)(-2)$

21. _____

22. (f-g)(x)

22.

23. $(f \circ g)(x)$

23.

24. $(g \circ f)(x)$

24.

25. $(g \circ f)(0)$

25. _____

CHAPTER 2, FORM D COLLEGE ALGEBRA

NAME_____ DATE

1. Match the set described in Column I with the correct interval notation from Column II. Choices in Column II may be used once, more than once, or not at all.

1. a. _____

- **a.** Domain of $f(x) = \sqrt{x+1}$
- **A.** $\left(-\infty, -1\right]$

II

b. Range of $f(x) = \sqrt{x+1}$

I

- **B.** $(-\infty, \infty)$
- **c.** Domain of $f(x) = x^2 25$ **d.** Range of $f(x) = x^2 - 1$
- C. [0,2]
- - **D.** $[0,\infty)$
- **e.** Domain of $f(x) = \sqrt[3]{x-2}$
- **E.** [-3,3]
- **f.** Range of $f(x) = \sqrt[3]{x} + 2$
- **F.** $[-3,\infty)$
- **g.** Domain of f(x) = |x+4|
- **G.** $\left[-1,\infty\right)$
- **h.** Range of f(x) = |x| 4
- i. Domain of $y = 2x^2$
- **H.** $[-4,\infty)$

j. Range of $y = x^2 - 4$

The graph shows the line that passes through the points (-7, -4)and (3, -2). Refer to it to answer Exercises 2–6.

2. What is the slope of the line?

- 2.
- **3.** What is the distance between the two points shown?
- 3.
- 4. What are the coordinates of the midpoint of the segment joining the two points?
- 4.
- **5.** Find the standard form of the equation of the line.
- 5.
- **6.** Write the linear function defined by f(x) = ax + b that has this line as its graph.
- 6.

Tell whether each graph is that of a function. Give the domain and the range. If it is a function, give the intervals where it is increasing, decreasing, or constant.

7.

7.

8.

8.

Graph each relation.

9.
$$f(x) = 3 + |x+1|$$

9.

10.
$$f(x) = \begin{cases} -x & \text{if } x < 0 \\ 2x & \text{if } x \ge 0 \end{cases}$$

11	Sunnose	noint	P has	coordinates	(_3	2 1	١
11.	Suppose	point.	P mas	coordinates	, – э,	, 2.1	J.

- **a.** What is the equation of the vertical line through *P*?
- h P? 11. a. _____
- **b.** What is the equation of the horizontal line through *P*?
- b. _____

12. Find the slope-intercept form of the equation of the line passing through
$$(1, -5)$$
 and

a. parallel to the graph of $x = -\frac{3}{4}y + 5$;

- 12. a. _____
- **b.** perpendicular to the graph of $x = -\frac{3}{4}y + 5$;

- b. _____
- **13.** Find the slope of the line through points (11, -5) and (-8, 6). from the graph of $y = \sqrt{x}$.
- 13. _____
- **14.** Explain how the graph of $y = 3\sqrt{x-4} 2$ can be obtained from the graph of $y = \sqrt{x}$.
- 14. _____
- **15.** Determine whether the graph of xy = -4 is symmetric with respect to
- 15. a. _____

 \mathbf{a} . the *x*-axis,

h

b. the y-axis,

c. _____

c. the origin.

Given $f(x) = 2x^3 - 3x - 1$ and g(x) = 2x + 1, find each of the following. Simplify the expressions when possible.

16.
$$(f+g)(x)$$

17.
$$\left(\frac{f}{g}\right)(x)$$

18.
$$f(0)$$

$$19. \ \frac{f(x+h)-f(x)}{h}$$

20.
$$(g-f)(0)$$

21.
$$(fg)(-1)$$

22.
$$(f \circ g)(x)$$

- **23.** $(f \circ g)(2)$
- **24.** $(g \circ f)(x)$
- **25.** $(g \circ f)(2)$

- 23. _____
- 24. _____
- 25. _____

CHAPTER 2, FORM E COLLEGE ALGEBRA

NAME_____DATE

Choose the best answer.

1a. Which of the following is the domain of $f(x) = \sqrt{3} - x$?

- [0,3]
- **b.** $(-\infty, 3]$
- c. $[3,\infty)$
- **d.** $(-\infty,\infty)$

1b. Which of the following is the range of $f(x) = x^2 - 49$?

- **a.** $[-49, \infty)$
- **b.** $\left[-7,\infty\right)$
- **c.** [-7,7] **d.** $[0,\infty)$

1c. Which of the following is the domain of $f(x) = \sqrt[3]{x+7}$?

1c. _____

- **a.** $(-\infty,\infty)$
- **b.** $(-\infty, 6]$
- c. $[0,\infty)$
- **d.** $[6,\infty)$

1d. Which of the following is the range of f(x) = |x| + 1?

1d. _____

- **a.** [-1,1]
- **b.** [0,1]
- c. $[0,\infty)$
- **d.** $[1,\infty)$

1e. Which of the following is the domain of $x = y^2$?

1e. _____

- **a.** $(-\infty,\infty)$
- **b.** $[0,\infty)$
- **c.** $(0, \infty)$ **d.** $(-\infty, 0]$

The graph shows the line that passes through (-5,8) and (4,-3). Refer to it to answer Exercises 2-6.

2. What is the slope of the line?

- **d.** 0

3. What is the distance between the two points shown?

- **a.** $\sqrt{26}$
- **b.** $2\sqrt{5}$
- c. $\sqrt{202}$
- **d.** $\sqrt{122}$

CHAPTER 2, FORM E

4. What are the coordinates of the midpoint of the segment joining

- **a.** $\left(-\frac{1}{2}, \frac{5}{2}\right)$ **b.** $\left(-\frac{9}{2}, \frac{11}{2}\right)$

- 5. Find the standard form of the equation of the line.

- 11x + 9y = 127
- **b.** 11x 9y = 17
- 11x + 9y = 17
- **d.** 11x 9y = 127
- **6.** Find the standard form of the equation of the line.

- **a.** $f(x) = \frac{11}{9}x \frac{17}{9}$ **b.** $f(x) = -\frac{11}{9}x + \frac{17}{9}$
- **c.** $f(x) = \frac{11}{9}x + \frac{127}{9}$ **d.** $f(x) = \frac{11}{9}x \frac{127}{9}$

Tell whether each graph is that of a function. Give the domain and range.

7.

- Function; domain: $\begin{bmatrix} -5,7 \end{bmatrix}$; range: $\begin{bmatrix} -1,3 \end{bmatrix}$
- Function; domain: $(-\infty, \infty)$; range: [-1, 3]
- Function; domain: $\begin{bmatrix} -1, 3 \end{bmatrix}$; range: $\begin{bmatrix} -5, 7 \end{bmatrix}$
- Not a function; domain: [-5,7]; range: [-1,3]

- Not a function; domain: $(-\infty, \infty)$; range: $[-2, \infty)$
- Not a function; domain: [-5,5]; range: $[-3,\infty)$ b.
- Function; domain: $(-\infty, \infty)$; range: $[-2, \infty)$
- Function; domain: $(-\infty, \infty)$; range: $[-3, \infty)$

9. Suppose point *P* has coordinates (-6,1).

What is the equation of the horizontal line through *P*?

- x = -6
- **b.** y = 1
- c. x = 1
- **d.** y = 6
- 10. Find the slope-intercept form of the equation of the line passing. through (-2,5) perpendicular to the graph of $y = -\frac{1}{8}x + \frac{19}{4}$.

- y = 8x + 21 **b.** $y = \frac{1}{3}x 3$
- **c.** y = -8x 13 **d.** $y = -\frac{1}{3}x + 3$

Graph each function.

11. f(x) = 2|x-1|-2

a.

c.

12.
$$f(x) = \frac{1}{2}x$$

12. _____

a.

b.

c.

d.

13.
$$f(x) = \begin{cases} 2 & \text{if } x < -2 \\ -\frac{1}{2}x + 1 & \text{if } x \ge -2 \end{cases}$$

13. _____

a.

b.

c.

- **14.** Explain how the graph of $y = \sqrt{x+2} 5$ can be obtained from the graph of $y = \sqrt{x}$.
- 14. _____

- a. Translate 2 unit to the right and 5 units up.
- Translate 2 unit to the right and 5 units down.
- Translate 2 unit to the left and 5 units up.
- Translate 2 unit to the left and 5 units down.
- **15.** Determine the symmetries of the graph of the relation $x^2 2xy + y^2 = 5$.
- 15.

- \mathbf{a} . x-axis only
- **b.** y-axis only
- **c.** origin only
- **d.** x-axis, y-axis, and origin

Given f(x) = 5x - 4 and $g(x) = x^2 + 3$, find each of the following. Simplify the expressions when possible.

16. (fg)(x)

16. _____

- **a.** $x^3 + 4x^2 12$ **b.** $5x^3 4x^2 + 15x 12$
- **c.** $5x^3 + 4x^2 + 3x 12$ **d.** $-5x^3 + 4x^2 5x 12$
- **17.** (g-f)(x)

- **a.** $x^2 5x + 7$ **b.** $x^2 + 5x 7$
- **c.** $-x^2 5x + 1$ **d.** $x^2 + 5x + 1$
- **18.** The domain of $\frac{g}{f}$

18. _____

- **a.** $\left(-\infty, \frac{4}{5}\right) \cup \left(\frac{4}{5}, \infty\right)$ **b.** $\left(-\infty, \frac{5}{4}\right) \cup \left(\frac{5}{4}, \infty\right)$
- c. $\left(-\infty, \frac{1}{3}\right) \cup \left(\frac{1}{3}, \infty\right)$ d. $\left(-\infty, \infty\right)$
- 19. $\frac{f(x+h)-f(x)}{h}$

19. _____

- **b.** 5
- c. 5x+2h
- **d.** 5x + 2h 4
- **20.** (f+g)(-1)

20. _____

a. −1

b. −5

21. $\left(\frac{f}{g}\right)(0)$

a. $-\frac{3}{4}$

c. $-\frac{4}{3}$

22. $(g \circ f)(x)$

22. _____

a. $25x^2 + 40x - 19$ **b.** $25x^2 - 40x + 19$

c. $25x^2 - 40x - 19$ **d.** $25x^2 + 40x + 19$

23. $(g \circ f)(1)$

a. -6

b. 4

c. 0

d. 1

24. $(f \circ g)(x)$

a. $5x^2 - 11$

b. $5x^2 + 11$

c. $5x^2 + 19$

d. $5x^2 - 12$

25. $(f \circ g)(0)$

25. _____

a. −1

b. 0

c. 11

CHAPTER 2, FORM F COLLEGE ALGEBRA

NAME_____DATE

Choose the best answer.

1a. Which of the following is the domain of $f(x) = \sqrt{x-1}$?

- **a.** [0,1]
- **b.** $\left(-\infty,1\right]$
- c. $[1,\infty)$
- **d.** $(-\infty,\infty)$

1b. Which of the following is the range of $f(x) = x^2 - 4$?

- **a.** $[-2,\infty)$
- **b.** $\left[-4,\infty\right)$
- c. [-4, 4]
- **d.** $[0,\infty)$

1c. Which of the following is the domain of $f(x) = \sqrt[3]{x-7}$?

1c. _____

- **a.** $(-\infty,\infty)$
- **b.** $(-\infty, 3]$
- c. $[0,\infty)$
- **d.** $[3, \infty)$

1d. Which of the following is the range of f(x) = |x| + 2?

1d. _____

- **a.** [-2, 2]
- **b.** [0, 2]
- c. $[2,\infty)$
- **d.** $[0,\infty)$

1e. Which of the following is the domain of $x = y^2$?

1e. _____

- **a.** $(-\infty,\infty)$
- **b.** $[0,\infty)$
- c. $(0,\infty)$
- **d.** $\left(-\infty,0\right]$

The graph shows the line that passes through (-7, -4) and (3, -2). Refer to it to answer Exercises 2-6.

2. What is the slope of the line?

- **a.** 0
- **b.** $-\frac{1}{5}$
- **d.** 5

3. What is the distance between the two points shown?

- **a.** $\sqrt{122}$
- **b.** $2\sqrt{26}$
- **c.** $2\sqrt{13}$ **d.** $2\sqrt{34}$

CHAPTER 2, FORM F

4. What are the coordinates of the midpoint of the *segment* joining the two points?

- **a.** $\left(\frac{1}{2}, -\frac{11}{2}\right)$ **a.** $\left(\frac{1}{2}, -\frac{11}{2}\right)$ **b.** (-2, -1) **c.** (-5, -1) **d.** (-2, -3)

- 5. Find the standard form of the equation of the line.

- **a.** 5x y = 17 **b.** 5x + y = -17 **c.** x 5y = 13 **d.** x + 5y = -13
- **6.** Find the standard form of the equation of the line.

- **a.** $f(x) = \frac{1}{5}x \frac{13}{5}$ **b.** f(x) = -5x + 17
- **c.** f(x) = 5x 17 **d.** $f(x) = \frac{1}{5}x + \frac{13}{5}$

Tell whether each graph is that of a function. Give the domain and range.

7.

- not a function; domain: $(-\infty, 0) \cup (0, \infty)$; range: $(-\infty, -2] \cup (0, \infty)$
- not a function; domain: $(-\infty, \infty)$; range: $(-\infty, \infty)$
- not a function; domain: $(-\infty,0)\cup(0,\infty)$; range: $(-\infty,\infty)$
- not a function; domain: $\left(-\infty,0\right)\cup\left(0,\infty\right)$; range: $\left(-\infty,-2\right]\cup\left(2,\infty\right)$

- not a function; domain: [-2,1]; range: $(-\infty,\infty)$
- not a function; domain: [-7,5]; range: [-2,1]b.
- not a function; domain: [-7,5]; range: $(-\infty,\infty)$
- not a function; domain: [-2,1]; range: [-7,5]

9. Suppose point *P* has coordinates (-3, 6).

What is the equation of the horizontal line through *P*?

a.
$$x = -3$$

b.
$$y = -3$$

c.
$$x = 6$$

d.
$$y = 6$$

10. Find the slope-intercept form of the equation of the line passing.

through (1,2) perpendicular to the graph of $y = -\frac{1}{8}x + \frac{1}{3}$.

a.
$$y = 8x - 3$$

b.
$$y = \frac{1}{8}x - \frac{1}{3}$$

c.
$$y = -8x + 3$$

a.
$$y = 8x - 3$$
 b. $y = \frac{1}{8}x - \frac{1}{3}$ **c.** $y = -8x + 3$ **d.** $y = -\frac{1}{8}x + \frac{17}{8}$

Graph each relation.

11.
$$f(x) = \frac{1}{2}|x+1|$$

a.

c.

12.
$$f(x) = \frac{1}{2}x - 2$$

12. _____

a.

y 1 1 1 1 1 1 1 1 1 1 1

b.

d.

c.

13.
$$f(x) = \begin{cases} -2x & \text{if } x < -1 \\ x + 3 & \text{if } x > -1 \end{cases}$$

13. _____

a.

b.

c.

- **14.** Explain how the graph of $y = \sqrt{x+3} + 1$ can be obtained from the graph of $y = \sqrt{x}$.
- 14. _____

- **a.** Translate 3 units to the right and 1 units up.
- **b.** Translate 3 units to the right and 1 units down.
- **c.** Translate 3 units to the left and 1 units up.
- **d.** Translate 3 units to the left and 1 units down.

- **15.** Determine the symmetries of the graph of the relation $4x^2 + 9y^2 = 36$.
- 15. _____

- \mathbf{a} . x-axis only
- **b.** *y*-axis only
- c. Origin only
- **d.** *x*-axis, *y*-axis, and origin

Given $f(x) = 6x^2 + 5x - 6$ and g(x) = 2x - 8, find each of the following. Simplify the expressions when possible.

- **16.** *f* (–3)
 - **a.** –9

b. 21

c. 33

- **d.** 51
- 17. $\frac{f(x+h)-f(x)}{h}$
 - **a.** 12x+6h+5
- **b.** 12x-6h-5
- **c.** -12x = 6h + 5 **d.** -12x + 6h 5
- **18.** $(f \circ g) \left(\frac{3}{2}\right)$
 - **a.** -131
- **b.** 119
- **c.** -181
- **d.** 169
- **19.** (f+g)(x)
 - **a.** $6x^2 + 7x 14$ **b.** $6x^2 7x 14$
 - **c.** $6x^2 + 7x 2$ **d.** $6x^2 3x 2$
- **20.** (f+g)(0)
 - **a.** −15
- **b.** −14
- **c.** −27
- **d.** 1

- 18. _____
- 20. _____