
CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

INSTRUCTOR'S SOLUTIONS MANUAL

INTRODUCTORY STATISTICS: EXPLORING THE WORD THROUGH DATA THIRD EDITION

Robert Gould

University of California, Los Angeles

Rebecca Wong

West Valley College

Colleen Ryan

Moorpark Community College

This work is protected by United States copyright laws and is provided solely for the use of instructors in teaching their courses and assessing student learning. Dissemination or sale of any part of this work (including on the World Wide Web) will destroy the integrity of the work and is not permitted. The work and materials from it should never be made available to students except by instructors using the accompanying text in their classes. All recipients of this work are expected to abide by these restrictions and to honor the intended pedagogical purposes and the needs of other instructors who rely on these materials.

The author and publisher of this book have used their best efforts in preparing this book. These efforts include the development, research, and testing of the theories and programs to determine their effectiveness. The author and publisher make no warranty of any kind, expressed or implied, with regard to these programs or the documentation contained in this book. The author and publisher shall not be liable in any event for incidental or consequential damages in connection with, or arising out of, the furnishing, performance, or use of these programs.

Reproduced by Pearson from electronic files supplied by the author.

Copyright © 2020 by Pearson Education, Inc. 221 River Street, Hoboken, NJ 07030. All rights reserved.

All rights reserved. No part of this publication may be reproduced, stored in a retrieval system, or transmitted, in any form or by any means, electronic, mechanical, photocopying, recording, or otherwise, without the prior written permission of the publisher. Printed in the United States of America.

ISBN-13: 978-0-13-519061-6 ISBN-10: 0-13-519061-4

CONTENTS

Chapter 1: Introduction to Data	
Section 1.2: Classifying and Storing Data Section 1.3: Investigating Data Section 1.4: Organizing Categorical Data Section 1.5: Collecting Data to Understand Causality. Chapter Review Exercises	3 3
Chapter 2: Picturing Variation with Graphs	
Section 2.1: Visualizing Variation in Numerical Data and Section 2.2: Summarizing Important Features of a Numerical Distribution 2.3: Visualizing Variation in Categorical Variables and Section 2.4: Summarizing Categorical Distributions	14
Chapter 3: Numerical Summaries of Center and Variation	
Section 3.1: Summaries for Symmetric Distributions Section 3.2: What's Unusual? The Empirical Rule and z-Scores Section 3.3: Summaries for Skewed Distributions Section 3.4: Comparing Measures of Center Section 3.5: Using Boxplots for Displaying Summaries Chapter Review Exercises	22 23 24
Chapter 4: Regression Analysis: Exploring Associations between Variables	
Section 4.1: Visualizing Variability with a Scatterplot	31 32 37
Chapter 5: Modeling Variation with Probability	
Section 5.1: What Is Randomness?	49 54 56
Chapter Review Exercises	38

Chapter 6: Modeling Random Events: The Normal and Binomial Mod	del
Section 6.1: Probability Distributions Are Models of Random Experiments	.67 .79
Chapter 7: Survey Sampling and Inference	
Section 7.1: Learning about the World through Surveys	.86 .88 .90 .94
Chapter 8: Hypothesis Testing for Population Proportions	
Section 8.1: The Essential Ingredients of Hypothesis Testing	.02 .07 .08
Chapter 9: Inferring Population Means	
Section 9.1: Sample Means of Random Samples	22 23 25 31
Chapter 10: Associations between Categorical Variables	
Section 10.1: The Basic Ingredients for Testing with Categorical Variables	.49
Section 10.4: Hypothesis Tests When Sample Sizes Are Small	
Chapter 11: Multiple Comparisons and Analysis of Variance	
Section 11.1: Multiple Comparisons	.75 .76 .80

Chapter 12: Experimental Design: Controlling Variation	
Section 12.1: Variation Out of Control	187
Section 12.2: Controlling Variation in Surveys	192
Section 12.3: Reading Research Papers	
Chapter 13: Inference without Normality	
Section 13.1: Transforming Data	197
Section 13.2: The Sign Test for Paired Data	
Section 13.3: Mann-Whitney Test for Two Independent Groups	201
Section 13.4: Randomization Tests	
Chapter Review Exercises	204
Chapter 14: Inference for Regression	
Section 14.1: The Linear Regression Model	209
Section 14.2: Using the Linear Model	
Section 14.3: Predicting Values and Estimating Means	
Chapter Review Exercises	

CLICK HERE TO ACCESS THE COMPLETE Solutions

Chapter 1: Introduction to Data

Section 1.2: Classifying and Storing Data

- 1.1 There are eight variables: "Female", "Commute Distance", "Hair Color", "Ring Size", "Height", "Number of Aunts", "College Units Acquired", and "Living Situation".
- 1.2 There are eleven observations.
- 1.3 a. Living situation is categorical.
 - b. Commute distance is numerical.
 - c. Number of aunts is numerical.
- 1.4 a. Ring size is numerical.
 - b. Hair color is categorical.
 - c. Height is numerical.
- 1.5 Answers will vary but could include such things as number of friends on Facebook or foot length. Don't copy these answers.
- 1.6 Answers will vary but could include such things as class standing ("Freshman", "Sophomore", "Junior", or "Senior") or favorite color. *Don't copy these answers*.
- 1.7 0 = male, 1 = female. The sum represents the total number females in the data set.
- 1.8 There would be seven 1's and four 0's.
- 1.9 Female is categorical with two categories. The 1's represent females, and the 0's represent males. If you added the numbers, you would get the number of females, so it makes sense here.
- 1.10 a. F<u>reshman</u>
 _____0
 - 1 1
 - 1 1
 - 0
 - 1 0 0
 - b. numerical
 - c. categorical
- 1.11 a. The data is stacked.
 - b. 1 = male, 0 = female.

c.	Male	Female
	1916	9802
	183	153
	836	1221
	95	
	512	

- 2 Introductory Statistics: Exploring the World Through Data, 3rd edition
- 1.12 a. The data is unstacked.
 - b. Labels for columns will vary.

Gender	Age
1	29
1	23
1	30
1	32
1	25
0	24
0	24
0	32
0	35
0	23

- c. Gender is categorical; Age is numerical
- 1.13 a. Stacked and coded:

Calories	Sweet
90	1
310	1
500	1
500	1
600	1
90	1
150	0
600	0
500	0
550	0

The second column could be labeled "Salty" with the 1's being 0's and the 0's being 1's.

b. Unstacked:

Sweet	Salty
90	150
310	600
500	500
500	550
600	
90	

1.14 a. Stacked and coded:

Cost	Male
10	1
15	1
15	1
25	1
12	1
8	0
30	0
15	0
15	0

The second column could be labeled "Female" with the 1's being 0's and the 0's being 1's.

Chapter 1: Introduction to Data 3

b. Unstacked:

Male	Female
10	8
15	30
15	15
25	15
12	

Section 1.3: Investigating Data

- 1.15 Yes. Use College Units Acquired and Living Situation.
- 1.16 Yes. Use Female and Height.
- 1.17 No. Data on number of hours of study per week are not included in the table.
- 1.18 Yes. Use Ring Size and Height.
- 1.19 a. Yes. Use Date.
 - b. No. data on temperature are not included in the table.
 - c. Yes. Use Fatal and Species of Shark.
 - d. Yes. Use Location.
- 1.20 Use Time and Activity.

Section 1.4: Organizing Categorical Data

- 1.21 a. 33/40 = 82.5%
 - b. 32/45 = 71.1%
 - c. 33/65 = 50.8%
 - d. 82.5% of 250 = 206
- 1.22 a. 4/27 = 14.8%
 - b. 14/27 = 51.9%
 - c. 4/18 = 22.2%
 - d. 14.8% of 600 = 89 men
- 1.23 a. 15/38 = 39.5% of the class were male.
 - b. 0.64(234) = 149.994, so 150 men are in the class.
 - c. 0.40(x) = 20, so 20/0.40 = 50 total students in the class.
- 1.24 a. 0.35(346) = 121 male nurses.
 - b. 66/178 = 37.1% female engineers.
 - c. 0.65(x) = 169 so 169/0.65 = 260 lawyers in the firm.
- 1.25 The frequency of women 6, the proportion is 6/11, and the percentage is 54.5%.
- 1.26 The frequency is 8, the proportion is 8/11, and the percentage is 72.7%.

4 Introductory Statistics: Exploring the World Through Data, 3rd edition

1.27 a. and b.

	Men	Women	Total
Dorm	3	4	7
Commuter	2	2	4
Total	5	6	11

c.
$$4/6 = 66.7\%$$

d.
$$4/7 = 57.1\%$$

e.
$$7/11 = 63.6\%$$

f.
$$66.7\%$$
 of $70 = 47$

1.28 a. and b.

	Men	Women	Total
Brown	3	5	8
Black	2	0	2
Blonde	0	1	1
Total	5	6	11

c.
$$5/6 = 83.3\%$$

d.
$$5/8 = 62.5\%$$

e.
$$8/11 = 72.7\%$$

f.
$$83.3\%$$
 of $60 = 50$

1.29 1.26(x) = 160328 so 160328/1.26 = 127,244 personal care aids in 2014

1.30 .1295(x) = 3480000 so 3480000/.1295 = \$26,872,587.87 total candy sales

1.31

		Rank		Population		Rank
State	Prison	Prison	Population	(thousands)	Prison per 1000	Rate
California	136,088	1	39,144,818	39145	3.48	4
New York	52518	2	19,795,791	19796	2.65	5
Illinois	48278	3	12,859,995	12860	3.75	3
Louisiana	30030	4	4,670,724	4671	6.43	1
Mississippi	18793	5	2,992,333	29922	6.28	2

California has the highest prison population. Louisiana has the highest rate of imprisonment.

The two answers are different because the state populations are different.

1.32 a. Miami: 4,919,000/2891 = 1701 Detroit: 3,903,000/3267 = 1195

Atlanta: 3,500,000/5083 = 689 Seattle: 2,712,000/1768 = 1534

Baltimore: 2,076,000/1768 = 1174

Ranks: 1- Miami, 2- Seattle, 3- Detroit, 4- Baltimore, 5- Atlanta

b. Atlanta

c. Miami

1.33

Year	%Uncovered
1990	$\frac{34,719}{249,778} = 13.9\%$
2000	$\frac{36,586}{279,282} = 13.1\%$
2015	$\frac{29758}{316574} = 9.4\%$

The percentage of uninsured people have been declining.

1.34

Year	% Subscribers
2012	$\frac{103.6}{114.7} = 90.3\%$
2013	$\frac{103.3}{114.1} = 90.5\%$
2014	$\frac{103.7}{115.7} = 89.6\%$
2015	$\frac{100.2}{116.5} = 86.0\%$
2016	$\frac{97.8}{116.4} = 84.0\%$

The percentage of cable subscribers rose slightly between 2012 and 2013 but has declined each year since then.

1.35

Year	%Older Population
2020	$\frac{54.8}{334} = 16.4\%$
2030	$\frac{70.0}{358} = 19.6\%$
2040	$\frac{81.2}{380} = 21.4\%$
2050	$\frac{88.5}{400} = 22.1\%$

The percentage of older population is projected to increase.

1.36

Year	%Older Population
2000	$\frac{4.0}{8.2} = 48.8\%$
2005	$\frac{3.6}{7.6} = 47.4\%$
2010	$\frac{3.6}{6.8} = 52.9\%$
2014	$\frac{3.2}{6.9} = 46.4\%$

The rate has fluctuating over this period, decreasing, then increasing, and then decreasing again.

- 6 Introductory Statistics: Exploring the World Through Data, 3rd edition
- 1.37 We don't know the percentage of female students in the two classes. The larger number of women at 8a.m. may just result from a larger number of students at 8 a.m., which may be because the class can accommodate more students because perhaps it is in a large lecture hall.
- 1.38 No, we need to know the population of each city so we can compare the rates.

Section 1.5 Collecting Data to Understand Causality

- 1.39 Observational study.
- 1.40 Controlled experiment.
- 1.41 Controlled experiment.
- 1.42 Controlled experiment.
- 1.43 Controlled experiment.
- 1.44 Observational study.
- 1.45 Anecdotal evidence are stories about individual cases. No cause-and effect conclusions can be drawn from anecdotal evidence.
- 1.46 These testimonials are anecdotal evidence. There is no control group and no comparison. No cause-and-effect conclusions can be drawn from anecdotal evidence.
- 1.47 This was an observational study, and from it you cannot conclude that the tutoring raises the grades. Possible confounders (answers may vary): 1. It may be the more highly motivated who attend the tutoring, and this motivation is what causes the grades to go up. 2. It could be that those with more time attend the tutoring, and it is the increased time studying that causes the grades to go up.
- 1.48 a. If the doctor decides on the treatment, you could have bias.
 - b. To remove this bias, randomly assign the patients to the different treatments.
 - c. If the doctor knows which treatment a patient had, that might influence his opinion about the effectiveness of the treatment.
 - d. To remove that bias, make the experiment double-blind. The talk-therapy-only patients should get a placebo, and no patients should know whether they have a placebo or antidepressant. In addition, the doctor should not know who took the antidepressants and who did not.
- 1.49 a. The sample size of this study is not large (40). The study was a controlled experiment and used random assignment. It was not double-blind since researchers new what group each participant was in.
 - b. The sample size of the study was small, so we should not conclude that physical activity while learning caused higher performance.
- 1.50 This is an observational study because researchers did not determine who received PCV7 and who did not. You cannot conclude causation from an observational study. We must assume that it is possible that there were confounding factors (such as other advances in medicine) that had a good effect on the rate of pneumonia.
- 1.51 a. Controlled experiment. Researchers used random assignment of subjects to treatment or control groups.
 - b. Yes. The experiment had a large sample size, was controlled, randomized, and double-blind; and used a placebo.
- 1.52 a. Observational study. There was no random assignment to treatment/control groups. The subjects kept a food diary and had their blood drawn.
 - b. We cannot make a cause-and-effect conclusion since this was an observational study.
- 1.53 No, this was not a controlled experiment. There was no random assignment to treatment/control groups and no use of a placebo.

- 1.54 No. There was no control group and no comparison. From observation of 12 children it is not possible to come to a conclusion that the vaccine causes autism. It may simply be that autism is usually noticed at the same age the vaccine is given.
- 1.55 a. Intervention remission: 11/33 = 33.3%; Control remission: 3/34 = 8.8%
 - b. Controlled experiment. There was random assignment to treatment/control groups.
 - c. While this study did use random assignment to treatment/control groups, the sample size was fairly small (67 total) and there was no blinding in the experimental design. The difference in remission may indicate that the diet approach is promising and further research in this area is needed.
- 1.56 Ask whether there was random assignment to groups. Without random assignment there could be bias, and we cannot infer causation.
- 1.57 No. This is an observational study.
- 1.58 This is likely a conclusion from observational studies since it would not be ethical to randomly assign a subject to a group that drank large quantities of sugary drinks. Since this was likely based on observational studies, we cannot conclude drinking sugary beverages causes lower brain volume.

Chapter Review Exercises

- 1.59 a. 61/98 = 62.2%
 - b. 37/82 = 45.1%
 - c. Yes, this was a controlled experiment with random assignment. The difference in percentage of homes adopting smoking restrictions indicates the intervention may have been effective.
- 1.60 No. Cause-and-effect conclusions cannot be drawn from observational studies.
- 1.61 a. Gender (categorical) and whether students had received a speeding ticket (categorical)

b.

	Male	Female
Yes	6	5
No	4	10

- c. Men: 6/10=60%; Women: 5/15 = 33.3%; a greater percentage of men reported receiving a speeding ticket.
- 1.62 a. Gender (categorical) and whether students had driven over 100 mph (categorical).

b.

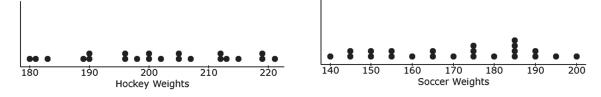
	Male	Female
Yes	6	5
No	3	10

- c. Men: 6/9 = 66.7%; Women: 5/15 = 33.3%; a greater percentage of men reported driving over 100 mph.
- 1.63 Answers will vary. Students should not copy the words they see in these answers. Randomly divide the group in half, using a coin flip for each woman: Heads she gets the vitamin D, and tails she gets the placebo (or vice versa). Make sure that neither the women themselves nor any of the people who come in contact with them know whether they got the treatment or the placebo ("double-blind"). Over a given length of time (such as three years), note which women had broken bones and which did not. Compare the percentage of women with broken bones in the vitamin D group with the percentage of women with broken bones in the placebo group.

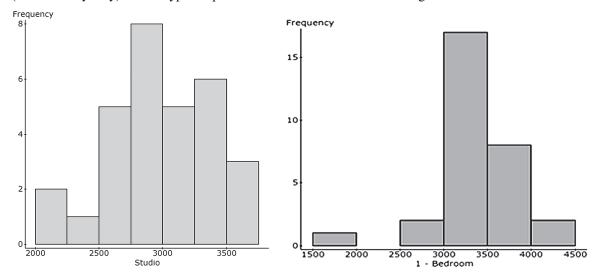
- 8 Introductory Statistics: Exploring the World Through Data, 3rd edition
- 1.64 Answers will vary. Students should not copy the words they see here. Randomly divide the group in half, using a coin flip for each person: Heads they get Coumadin, and tails they get aspirin (or vice versa). Make sure that neither the subjects nor any of the people who come in contact with them know which treatment they received ("double-blind"). Over a given length of time (such as three years), note which people had second strokes and which did not. Compare the percentage of people with second strokes in the Coumadin group with the percentage of people with second strokes in the aspirin group. There is no need for a placebo because we are comparing two treatments. However, it would be acceptable to have three groups, one of which received a placebo.
- 1.65 a. The treatment variable is mindful yoga participation. The response variable is alcohol use.
 - b. Controlled experiment (random assignment to treatment/control groups).
 - c. No, since the sample size was fairly small; however, the difference in outcomes for treatment/control groups may indicate that further research into the use of mindful yoga may be warranted.
- 1.66 a. The treatment variable was neurofeedback; the response variable is ADHD symptoms.
 - b. Controlled experiment (random assignment to treatment/control groups).
 - c. No because there were no significant differences in outcomes between any of the groups.
- 1.67 No. There was no control group and no random assignment to treatment or control groups.
- 1.68 a. Long course antibiotics: 39/238 = 16.4%; short course antibiotics: 77/229 = 33.6%.The longer course recipients did better.

b.

	10 days	5 days
Failure	39	77
Success	199	152

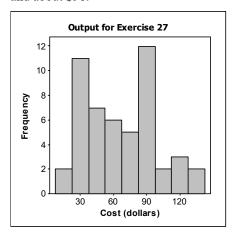

- c. Controlled experiment (random assignment to treatment/control groups).
- d. Yes. This was a controlled, randomized experiment with a large sample size.
- 1.69 a. LD: 8% tumors; LL: 28% tumors A greater percentage of the 24 hours of light developed tumors.
 - b. A controlled experiment. You can tell by the random assignment.
 - c. Yes, we can conclude cause and effect because it was a controlled experiment, and random assignment will balance out potential confounding variables.
- 1.70 a. 43/53, or about 81.1%, of the males who were assigned to Scared Straight we rearrested. 37/55, or 67.3%, of those receiving no treatment were rearrested So the group from Scared Straight had a higher arrest rate.
 - b. No, Scared Straight does not cause a lower arrest rate because the arrest rate was higher.

Chapter 2: Picturing Variation with Graphs

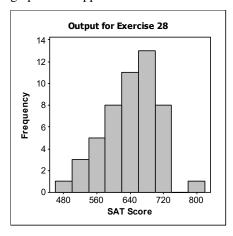

Section 2.1: Visualizing Variation in Numerical Data and Section 2.2: Summarizing Important Features of a Numerical Distribution

- 2.1 a. 4 people had resting pulse rates more than 100.
 - b. $\frac{4}{125}$ = 3.2% of the people had resting pulse rates of more than 100.
- 2.2 a. 8 people have glucose readings above 120 mg/dl.
 - b. 8 = 6.1% of these people have glucose readings above 120 mg/dl.
- 2.3 New vertical axis labels: $\frac{1}{25} = 0.04$, $\frac{2}{25} = 0.08$, $\frac{3}{25} = 0.12$, $\frac{4}{25} = 0.16$, $\frac{5}{25} = 0.20$
- 2.4 a. The bin width is 100.
 - b. The histogram is bimodal because two bins have a much higher relative frequency than the others.
 - c. About 19% (combine 6% and 13%). Due to the scale on the graph, any answer between 18% to 20% is acceptable.
- 2.5 Yes, since only about 7% of the pulse rates were higher than 90 bpm. Conclusion might vary, but students must mention that 7% of pulse rates were higher than 90 bpm.
- 2.6 No, because on roughly half of the days the post office served more than 250 customers, so 250 would not be unusual.
- 2.7 a. Both cereals have similar center values (about 110 calories). The spread of the dotplots differ.
 - b. Cereal from manufacturer K tend to have more variation.
- 2.8 a. Both distributions have more than one mode. The center for the coins from the United States is much larger than the center for other countries. The spreads are similar.
 - b. Coins in the United States tend to weigh more, as we conclude because the center of the distribution is higher for the United States coins.
- 2.9 Roughly bell shaped. The lower bound is 0, the mean will be a number probably below 9, but a few students might have slept quite a bit (up to 12 hours?) which creates a right-skew.
- 2.10 Roughly right-skewed (most students with no tickets, very few with many tickets).
- 2.11 It would be bimodal because the men and women tend to have different heights and therefore different arm spans.
- 2.12 It might be bimodal because private colleges and public colleges tend to differ in amount of tuition.
- 2.13 About 75 beats per minute.
- 2.14 About 500 Calories.
- 2.15 The BMI for both groups are right skewed. For the men it is maybe bimodal (hard to tell). The typical values for the men and women are similar although the value for the men appears just a little bit larger than the typical value for the women. The women's values are more spread out.
- 2.16 a. Both distributions are right skewed. They have similar typical values.
 - b. The men's distribution is more spread out and has a greater percentage of values that are considered high. So, the women's levels are somewhat better.

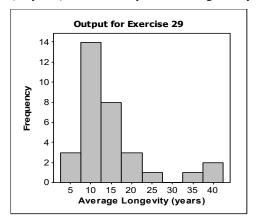
- 10 Introductory Statistics: Exploring the World Through Data, 3rd edition
- 2.17 a. The distribution is multimodal with modes at 12 years (high school), 14 years (junior college), 16 years (bachelor's degree), and 18 years (possible master's degree). It is also left-skewed with numbers as low as 0.
 - b. Estimate: 300 + 50 + 100 + 40 + 50, or about 500 to 600, had 16 or more years.
 - c. Between $\frac{500}{2018}$, or about 25%, and $\frac{600}{2018}$, or about 30%, have a bachelor's degree or higher. This is very similar to the 27% given.
- 2.18 a. The distribution is right-skewed.
 - b. About 2 or 3.
 - c. Between 80 and 100.
 - d. $\frac{80}{2000} = 4\%$ or $\frac{100}{2000} = 5\%$
- 2.19 Ford typically has higher monthly costs (the center is near 250 dollars compared with 225 for BMW) and more variation in monthly costs.
- 2.20 Both makes have similar typical mpg (around 23 mpg). BMW has more variation in mpg (more horizontal spread in the data).
- 2.21 1. The assessed values of homes would tend to be lower with a few higher values: This is histogram B.
 - 2. The number of bedrooms in the houses would be slightly skewed right: This is histogram A.
 - 3. The height of house (in stories) for a region would be that allows up to 3 stories would be histogram C.
- 2.22 1. The consumption of coffee by a person would be skewed right with many people who do not drink coffee and a few who drink a lot: This is histogram A.
 - 2. The maximum speed driven in a car would be roughly symmetrical with a few students who drive very fast: This is histogram C.
 - 3. The number of times a college student had breakfast would skew left with students who rarely eat breakfast: This is histogram B.
- 2.23 1. The heights of students would be bimodal and roughly symmetrical: This is histogram B.
 - 2. The number of hours of sleep would be unimodal and roughly symmetrical, with any outliers more likely being fewer hours of sleep: This is histogram A.
 - 3. The number of accidents would be left skewed, with most student being involved in no or a few accidents: This is histogram C.
- 2.24 1. The SAT scores would be unimodal and roughly symmetrical: This is histogram C.
 - 2. The weights of men and women would be bimodal and roughly symmetrical, but with more variation that SAT scores: This is histogram A.
 - 3. The ages of students would be left skewed, with most student being younger: This is histogram B.
- 2.25 Students should display a pair of dotplots or histograms. One graph for Hockey and one for Soccer. The hockey team tends to be heavier than the soccer team (the typical hockey player weighs about 202 pounds while the typical soccer player weighs about 170 pounds). The soccer team has more variation in weights than the hockey team because there is more horizontal spread in the data. Statistical Question (answers may vary): Are hockey players heavier than soccer players? Which type of athlete has the most variability in weight?

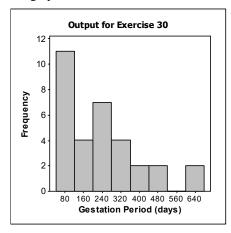


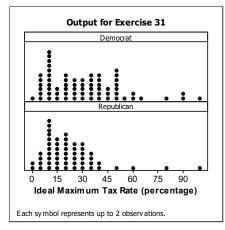
2.26 (Answers may vary). Which type of apartment tends to cost more? See histograms.

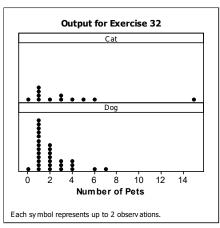


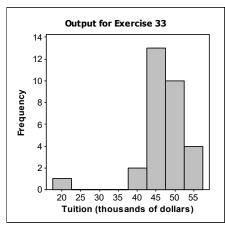
Studio apartments tend to be less expensive and have more variation in price than do one-bedrooms.

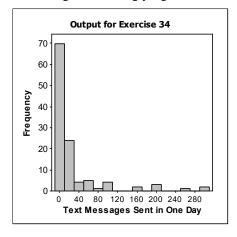

2.27 See histogram. The shape will depend on the binning used. The histogram is bimodal with modes at about \$30 and about \$90.

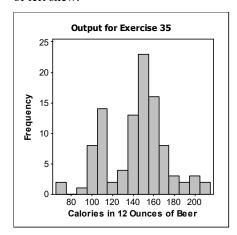

2.28 See histogram. The shape will depend on the binning used. The 800 score could be an outlier or not, and the graph could appear left-skewed or not.

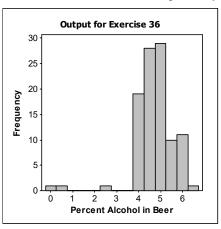

- 12 Introductory Statistics: Exploring the World Through Data, 3rd edition
- 2.29 See histogram. The histogram is right-skewed. The typical value is around 12 (between 10 and 15) years, and there are three outliers: Asian elephant (40 years), African elephant (35 years), and hippo (41 years). Humans (75 years) would be way off to the right; they live much longer than other mammals.


2.30 The histogram is right-skewed and also bimodal (at least with this grouping). The modes are at about 80 days and 240 days. The typical value is about 240 days (between 160 and 320 days). There are two outliers at more than 600 days, the Asian elephant and the African elephant. Humans (266 days) would be near the middle of the graph.

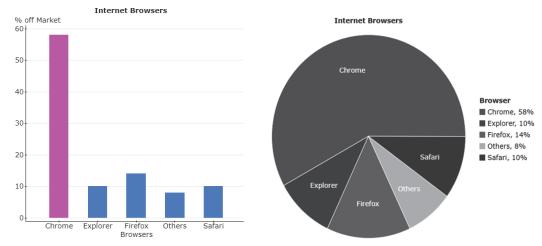

2.31 Both graphs are multimodal and right-skewed. The Democrats have a higher typical value, as shown by the fact that the center is roughly around 35 or 40%, while the center value for the Republicans is closer to 20 to 30%. Also note the much larger proportion of Democrats who think the rate should be 50% or higher. The distribution for the Democrats appears more spread out because the Democrats have more people responding with both lower and higher percentages.

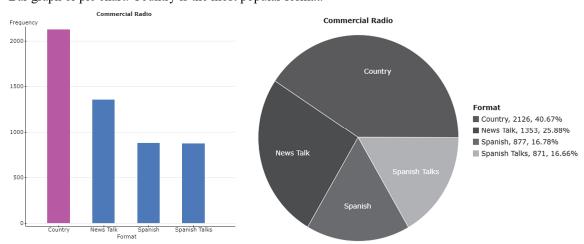

2.32 Both distributions are right-skewed. A large outlier did represent a cat lover, but typically, cat lovers and dog lovers both seem to have about 2 pets, although there are a whole lot of dog lovers with one dog.


2.33 The distribution appears left-skewed because of the low-end outlier at about \$20,000 (Brigham Young University).


2.34 The histogram is strongly right-skewed, with outliers.

- 14 Introductory Statistics: Exploring the World Through Data, 3rd edition
- 2.35 With this grouping the distribution appears bimodal with modes at about 110 and 150 calories. (With fewer—that is, wider—bins, it may not appear bimodal.) There is a low-end outlier at about 70 calories. There is a bit of left skew.


2.36 The distribution is left-skewed primarily because of the outliers at about 0% alcohol.

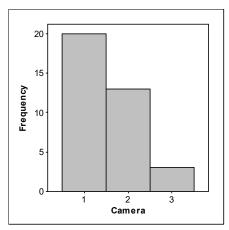

Section 2.3: Visualizing Variation in Categorical Variables and Section 2.4: Summarizing Categorical Distributions

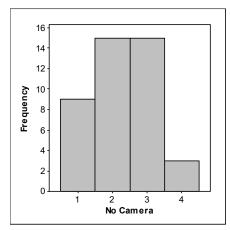
- 2.37 No, the largest category is Wrong to Right, which suggests that changes tend to make the answers more likely to be right.
- 2.38 a. About 7.5 million.
 - b. About 5 million.
 - c. No, overweight and obesity do not result in the highest rate. That is from high blood pressure.
 - d. This is a Pareto chart.
- 2.39 A bar graph with the least variability would be one in which most children favored one particular flavor (like chocolate). A bar graph with most variability, would be one in which children were roughly equally split in their preference. with 1/3 choosing vanilla, 1/3 chocolate, 1/3 strawberry.
- 2.40 Least amount of variability would be one where most of the applicants had the same education goal (like transfer). Most variability would be one where applicants were roughly equally divided among the five choices.

- 2.41 a. "All of the Time" was the most frequent response.
 - b. The difference is about 10%. It is easier to see in the bar chart.
- 2.42 a. About 30%.
 - b. About 7%. It is easier to use the bar chart.
- 2.43 a. 40–59-year old's.
 - b. The obesity rates for women are slightly higher in the 20–39 and 60+ groups. The obesity rate for men is higher in the 40–59 age group.
- 2.44 a. Fitness rates are slightly higher in the West than in the other three regions.
 - b. In all regions aerobic fitness rates were higher than muscle strengthening rates.
- 2.45 Bar graph or pie chart. Chrome controls the highest market share.

2.46 Bar graph or pie chart. Country is the most popular format.

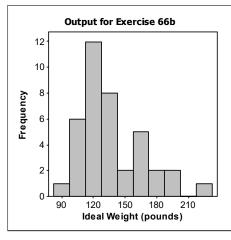
Section 2.5: Interpreting Graphs

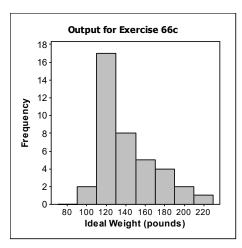

2.47 This is a histogram, which we can see because the bars touch. The software treated the values of the variable *Garage* as numbers. However, we wish them to be seen as categories. A bar graph or pie chart would be better for displaying the distribution.


- 16 Introductory Statistics: Exploring the World Through Data, 3rd edition
- 2.48 The graph is a histogram (the bars touch), and histograms are used for numerical data. But this data set is categorical, and the numbers (1, 2, and 3) represent categories. A more appropriate graph would be a bar graph or pie graph.
- 2.49 Hours of sleep is a numerical variable. A histogram or dotplot would better enable us to see the distribution of values. Because there are so many possible numerical values, this pie chart has so many "slices" that it is difficult to tell which is which.
- 2.50 a. This is a bar chart (or bar graph), as you can see by the separation between bars.
 - b. These numerical data would be better shown as a pair of histograms (with a common horizontal axis) or a pair of dotplots. Bar graphs are for categorical data.
- 2.51 Those who still play tended to have practiced more as teenagers, which we can see because the center of the distribution for those who still play is about 2 or 2.5 hours, compared to only about 1 or 1.5 hours for those who do not. The distribution could be displayed as a pair of histograms or a pair of dotplots.
- 2.52 a. Gender is categorical and Hours on Cell Phone is also categorical.
 - b. Because in this data set both variables are categorical, the bar chart is appropriate.
 - c. You could make two histograms (or two dotplots) for the data because the time would be numerical. It would be ideal to use a common horizontal axis for easy comparison of the two graphs.
 - d. The distributions show that the women tend to talk more. (The mode for women is 4–8 hours, and the mode for the men is 0–4 hours.)

Chapter Review Exercises

- 2.53 Since the data are numerical, a pair of histograms or dotplots could be used, one for the males and one for the females. A statistical question is Who slept more on average, men or women?"
- 2.54 Since the data are categorical, a side-by-side bar chart could be used. Examples of statistical questions: Which major has the greatest percentage of men? Which major is most popular among women, and is this different than for men?
- 2.55 a. The diseases with higher rates for HRT were heart disease, stroke, pulmonary embolism, and breast cancer. The diseases with lower rates for HRT were endometrial cancer, colorectal cancer, and hip fracture.
 - b. Comparing the rates makes more sense than comparing just the numbers, in case there were more women in one group than in the other.
- 2.56 a. South Korea and the United States have the highest rate of access to the Internet.
 - b. China and Thailand have the highest percentage of music purchased over the Internet.
- 2.57 The vertical axis does not start at zero and exaggerates the differences. Make a graph for which the vertical axis starts at zero.
- 2.58 In histograms the bars should generally touch, and these don't touch. Also, we cannot see the top of the range because "More" is a poor label. Change the numbers on the horizontal axis and increase the width of the bins so as to make the bars touch.
- 2.59 The shapes are roughly bell-shaped and symmetric; the later period is warmer, but the spread is similar. This is consistent with theories on global warming. The difference is 57.9 56.7 = 1.2, so the difference is only a bit more than 1 degree Fahrenheit.
- 2.60 The typical percentage of students with jobs at the top schools is higher than the percentage for the bottom 91 schools. In other words, you are more likely to find a job if you went to a law school in the top half of the rankings. Both histograms are left-skewed. Also, the range for the bottom schools is wider, because it goes down to lower employment rates.


- 2.61 a. A smaller percentage favor nuclear energy in 2016.
 - b. The Republicans show the most change.
 - A side-by-side bar graph (Republican 2010 adjacent to Republican 2016) would make the comparison easier.
- 2.62 A greater percentage of people think stem cell research is morally acceptable in 2017 than in 2002.
- 2.63 The created 10-point dotplot will vary, but the dotplot for this exercise should be right-skewed.
- 2.64 The created 10-point dotplot will vary, but the dotplot for this exercise should be not be skewed.
- 2.65 Graphs will vary. Histograms and dotplots are both appropriate. For the group without a camera the distribution is roughly symmetrical, and for the group with a camera it is right-skewed. Both are unimodal. The number of cars going through a yellow light tends to be less at intersections with cameras. Also, there is more variation in the intersections without cameras.



2.66 a. You might expect bimodality because men tend to have ideal weights that are larger than women's ideal weights.

b. and c.

Graphs may vary, depending on technology and the choice of bins for the second histogram. On the two graphs given here, the bin width for the first is 15 pounds and for the second is 20 pounds. The first distribution is bimodal and the second is not.

2.67 Both distributions are right-skewed. The typical speed for the men (a little above 100 mph) is a bit higher than the typical speed for the women (which appears to be closer to 90 mph). The spread for the men is larger primarily because of the outlier of 200 mph for the men.

CLICK HERE TO ACCESS THE COMPLETE Solutions

- 18 Introductory Statistics: Exploring the World Through Data, 3rd edition
- 2.68 Both graphs are relatively symmetric and unimodal. The center for the men is larger than the center for the women, showing that men tend to wear larger shoes than women. The spread is a bit more for women because their sizes range from about 5 to about 10 whereas the men's sizes range from about 8 to about 12. There are no outliers in either group.
- 2.69 The distribution should be right-skewed.
- 2.70 Since most of the physician's patients probably do not smoke and a few may be heavy smokers, the distribution should be right-skewed with lots of zeros and a few high numbers.
- 2.71 a. The tallest bar is Wrong to Right, which suggests that the instruction was correct.
 - b. For both instructors, the largest group is Wrong to Right, so it appears that changes made tend to raise the grades of the students.
- 2.72 a. The raw numbers would be affected by how many were in each group, and that might hide the rate. For example, because there are many more old women than old men, that information would hide the rates.
 - b. The males up to about 64 have a higher rate of visits to the ER. From 65 to 74 the rates are about the same, and for 75 and up the rates are higher for the women.
- 2.73 a. Facebook (only about 5% used it less often than weekly).
 - b. LinkedIn (only about 20% used it daily).
 - c. Facebook (around 75% were in one category—daily).
- 2.74 a. Facebook is used most frequently by men and women.
 - b. Facebook is used most frequently by both genders. Pinterest is used least by males, while Instagram is used least by females.
- 2.75 a. Histogram or dotplot
 - b. Side-by-side barplots showing gender frequencies separately for each zip code.
- 2.76 a. Stacked or side-by-side histograms or dotplots. Ideally histograms would show relative frequencies.
 - b. Bar chart by zip code frequency.