

Test Bank for Building Java Programs 5th Edition by Reges

CLICK HERE TO ACCESS COMPLETE Test Bank

Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/
https://testbanks.ac/product/9780135862353-TEST-BANK-5/
https://testbanks.ac/product/9780135862353-TEST-BANK-5/
https://testbanks.ac/product/9780135862353-TEST-BANK-5/

1 of 9

Sample Final Exam #1
(Spring 2005; thanks to Stuart Reges)

1. Array Mystery
Consider the following method:

public static void arrayMystery(int[] a) {

 for (int i = 1; i < a.length; i++) {

 a[i] = i + a[i - 1] - a[i];

 }

}

Indicate in the right-hand column what values would be stored in the array after the method arrayMystery executes

if the integer array in the left-hand column is passed as a parameter to it.

Original Contents of Array Final Contents of Array

int[] a1 = {7};

arrayMystery(a1);

int[] a2 = {4, 3, 6};

arrayMystery(a2);

int[] a3 = {7, 4, 8, 6, 2};

arrayMystery(a3);

int[] a4 = {10, 2, 5, 10};

arrayMystery(a4);

int[] a5 = {2, 4, -1, 6, -2, 8};

arrayMystery(a5);

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

2 of 9

2. Reference Semantics Mystery
The following program produces 4 lines of output. Write the output below, as it would appear on the console.

public class BasicPoint {

 int x;

 int y;

 public BasicPoint() {

 x = 2;

 y = 2;

 }

}

public class ReferenceMystery {

 public static void main(String[] args) {

 int a = 7;

 int b = 9;

 BasicPoint p1 = new BasicPoint();

 BasicPoint p2 = new BasicPoint();

 addToXTwice(a, p1);

 System.out.println(a + " " + b + " " + p1.x + " " + p2.x);

 addToXTwice(b, p2);

 System.out.println(a + " " + b + " " + p1.x + " " + p2.x);

 }

 public static void addToXTwice(int a, BasicPoint p1) {

 a = a + a;

 p1.x = a;

 System.out.println(a + " " + p1.x);

 }

}

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

3 of 9

3. Inheritance Mystery
Assume that the following classes have been defined:

public class A extends B {

 public void method2() {

 System.out.print("a 2 ");

 method1();

 }

}

public class B extends C {

 public String toString() {

 return "b";

 }

 public void method2() {

 System.out.print("b 2 ");

 super.method2();

 }

}

public class C {

 public String toString() {

 return "c";

 }

 public void method1() {

 System.out.print("c 1 ");

 }

 public void method2() {

 System.out.print("c 2 ");

 }

}

public class D extends B {

 public void method1() {

 System.out.print("d 1 ");

 method2();

 }

}

Given the classes above, what output is produced by the following code?

C[] elements = {new A(), new B(), new C(), new D()};

for (int i = 0; i < elements.length; i++) {

 System.out.println(elements[i]);

 elements[i].method1();

 System.out.println();

 elements[i].method2();

 System.out.println();

 System.out.println();

}

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

4 of 9

4. File Processing
Write a static method named printStrings that takes as a parameter a Scanner holding a sequence of

integer/string pairs and that prints to System.out one line of output for each pair with the given String repeated

the given number of times. For example if the Scanner contains the following data:

6 fun. 3 hello 10 <> 2 25 4 wow!

your method should produce the following output:

fun.fun.fun.fun.fun.fun.

hellohellohello

<><><><><><><><><><>

2525

wow!wow!wow!wow!

Notice that there is one line of output for each integer/string pair. The first line has 6 occurrences of "fun.", the

second line has 3 occurrences of "hello", the third line has 10 occurrences of "<>", the fourth line has 2

occurrences of "25" the fifth line has 4 occurrences of "wow!". Notice that there are no extra spaces included in the

output. You are to exactly reproduce the format of this sample output. You may assume that the input values always

come in pairs with an integer followed by a String (which itself could be numeric, such as "25" above). If the

Scanner is empty (no integer/string pairs), your method should produce no output.

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

5 of 9

5. File Processing
Write a static method named reverseLines that accepts a Scanner containing an input file as a parameter and that

echoes the input file to System.out with each line of text reversed. For example, given the following input file:

If this method works properly,

the lines of text in this file

will be reversed.

Remember that some lines might be blank.

Your method should print the following output:

,ylreporp skrow dohtem siht fI

elif siht ni txet fo senil eht

.desrever eb lliw

.knalb eb thgim senil emos taht rebmemeR

Notice that some of the input lines can be blank lines.

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

6 of 9

6. Array Programming
Write a static method isAllEven that takes an array of integers as a parameter and that returns a boolean value

indicating whether or not all of the values are even numbers (true for yes, false for no). For example, if a variable

called list stores the following values:

int[] list = {18, 0, 4, 204, 8, 4, 2, 18, 206, 1492, 42};

Then the call of isAllEven(list) should return true because each of these integers is an even number.

If instead the list had stored these values:

int[] list = {2, 4, 6, 8, 10, 208, 16, 7, 92, 14};

Then the call should return false because, although most of these values are even, the value 7 is an odd number.

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

7 of 9

7. Array Programming
Write a static method named isUnique that takes an array of integers as a parameter and that returns a boolean value

indicating whether or not the values in the array are unique (true for yes, false for no). The values in the list are

considered unique if there is no pair of values that are equal. For example, if a variable called list stores the

following values:

int[] list = {3, 8, 12, 2, 9, 17, 43, -8, 46, 203, 14, 97, 10, 4};

Then the call of isUnique(list) should return true because there are no duplicated values in this list.

If instead the list stored these values:

int[] list = {4, 7, 2, 3, 9, 12, -47, -19, 308, 3, 74};

Then the call should return false because the value 3 appears twice in this list. Notice that given this definition, a

list of 0 or 1 elements would be considered unique.

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

8 of 9

8. Critters
Write a class Ostrich that extends the Critter class from the Critters assignment, including its getMove and

getColor methods. An Ostrich object first stays in the same place for 10 moves, then moves 10 steps to either the

WEST or the EAST, then repeats. In other words, after sitting still for 10 moves, the ostrich randomly picks to go

west or east, then walks 10 steps in that same direction. Then it stops and sits still for 10 moves and repeats.

Whenever an Ostrich is moving (that is, whenever its last call to getMove returned a direction other than

Direction.CENTER), its color should be white (Color.WHITE). As soon as it stops moving, and initially when it

first appears in the critter world, its color should be cyan (Color.CYAN). When randomly choosing west vs. east, the

two directions should be equally likely.

You may add anything needed (fields, other methods) to implement the above behavior appropriately. All other

critter behavior not discussed here uses the default values.

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

9 of 9

9. Classes and Objects

Suppose that you are provided with a pre-written class Date as

described at right. (The headings are shown, but not the method

bodies, to save space.) Assume that the fields, constructor, and

methods shown are already implemented. You may refer to them

or use them in solving this problem if necessary.

Write an instance method named compareTo that will be placed

inside the Date class to become a part of each Date object's

behavior. The compareTo method accepts another Date as a

parameter and compares the two dates to see which comes first in

chronological order. It returns an integer with one of the

following values:

• a negative integer (such as -1) if the date represented by this

Date comes before that of the parameter

• 0 if the two Date objects represent the same month and day

• a positive integer (such as 1) if the date represented by this

Date comes after that of the parameter

For example, if these Date objects are declared in client code:

Date sep19 = new Date(9, 19);

Date dec15 = new Date(12, 15);

Date temp = new Date(9, 19);

Date sep11 = new Date(9, 11);

The following boolean expressions should have true results.

sep19.compareTo(sep11) > 0

sep11.compareTo(sep19) < 0

temp.compareTo(sep19) == 0

dec15.compareTo(sep11) > 0

Your method should not modify the state of either Date object

(such as by changing their day or month field values).

// Each Date object stores a single

// month/day such as September 19.

// This class ignores leap years.

public class Date {

 private int month;

 private int day;

 // Constructs a date with

 // the given month and day.

 public Date(int m, int d)

 // Returns the date's day.

 public int getDay()

 // Returns the date's month.

 public int getMonth()

 // Returns the number of days

 // in this date's month.

 public int daysInMonth()

 // Modifies this date's state

 // so that it has moved forward

 // in time by 1 day, wrapping

 // around into the next month

 // or year if necessary.

 // example: 9/19 -> 9/20

 // example: 9/30 -> 10/1

 // example: 12/31 -> 1/1

 public void nextDay()

 // your method would go here

}

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

1 of 3

Sample Final Exam #1 Key

1.
Call
int[] a1 = {7};

arrayMystery(a1);

int[] a2 = {4, 3, 6};

arrayMystery(a2);

int[] a3 = {7, 4, 8, 6, 2};

arrayMystery(a3);

int[] a4 = {10, 2, 5, 10};

arrayMystery(a4);

int[] a5 = {2, 4, -1, 6, -2, 8};

arrayMystery(a5);

Final Contents of Array
{7}

{4, 2, -2}

{7, 4, -2, -5, -3}

{10, 9, 6, -1}

{2, -1, 2, -1, 5, 2}

2.
14 14
7 9 14 2

18 18
7 9 14 18

3.
b
c 1

a 2 c 1

b

c 1
b 2 c 2

c
c 1
c 2

b
d 1 b 2 c 2

b 2 c 2

4.
public static void printStrings(Scanner input) {
 while (input.hasNextInt()) {

 int times = input.nextInt();

 String word = input.next();
 for (int i = 0; i < times; i++) {

 System.out.print(word);
 }
 System.out.println();

 }
}

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

2 of 3

5.
public static void reverseLines(Scanner input) {

 while (input.hasNextLine()) {

 String text = input.nextLine();
 for (int i = text.length() - 1; i >= 0; i--) {

 System.out.print(text.charAt(i));
 }
 System.out.println();

 }
}

6.
public static boolean isAllEven(int[] list) {

 for (int i = 0; i < list.length; i++) {
 if (list[i] % 2 != 0) {
 return false;

 }
 }

 return true;

}

7.
public static boolean isUnique(int[] list) {
 for (int i = 0; i < list.length; i++) {
 for (int j = i + 1; j < list.length; j++) {

 if (list[i] == list[j]) {
 return false;
 }

 }
 }
 return true;

}

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

3 of 3

8.
import java.awt.*; // for Color

import java.util.*; // for Random

public class Ostrich extends Critter {

 private Random rand;
 private int steps;
 private boolean west; // true if going west; false if east

 private boolean hiding;

 public Ostrich() {

 rand = new Random();
 hiding = true;
 steps = 0;

 west = rand.nextBoolean(); // or call nextInt(2) and map 0=false, 1=true
 }

 public Color getColor() {
 if (hiding) {
 return Color.CYAN;

 } else {
 return Color.WHITE;
 }

 }

 public Direction getMove() {

 if (steps == 10) {
 steps = 0; // Pick a new direction and re-set the steps counter
 hiding = !hiding;

 west = rand.nextBoolean();
 }

 steps++;
 if (hiding) {
 return Direction.CENTER;

 } else if (west) {
 return Direction.WEST;

 } else {

 return Direction.EAST;
 }
 }

}

9. Two solutions are shown.
public int compareTo(Date other) {
 if (month < other.month || (month == other.month && day < other.day)) {

 return -1;
 } else if (month == other.month && day == other.day) {
 return 0;

 } else {
 return 1;
 }

}

public int compareTo(Date other) {

 if (month == other.month) {
 return day - other.day;
 } else {

 return month - other.month;
 }
}

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

1 of 8

Sample Midterm Exam #1

1. Expressions

For each expression in the left-hand column, indicate its value in the right-hand column. Be sure to list a constant of

appropriate type (e.g., 7.0 rather than 7 for a double, Strings in quotes, true/false for a boolean).

Expression Value

3 * 4 + 5 * 6 + 7 * -2 _________________________

1.5 * 2.0 + (5.5 / 2) + 5 / 4 _________________________

23 % 5 + 31 / 4 % 3 - 17 % (16 % 10) _________________________

"1" + 2 + 3 + "4" + 5 * 6 + "7" + (8 + 9) _________________________

345 / 10 / 3 * 55 / 5 / 6 + 10 / (5 / 2.0) _________________________

1 / 2 > 0 || 4 == 9 % 5 || 1 + 1 < 1 - 1 _________________________

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

2 of 8

2. Parameter Mystery

At the bottom of the page, write the output produced by the following program.

public class ParameterMystery {

 public static void main(String[] args) {

 String x = "java";

 String y = "tyler";

 String z = "tv";

 String rugby = "hamburger";

 String java = "donnie";

 hamburger(x, y, z);

 hamburger(z, x, y);

 hamburger("rugby", z, java);

 hamburger(y, rugby, "x");

 hamburger(y, y, "java");

 }

 public static void hamburger(String y, String z, String x) {

 System.out.println(z + " and " + x + " like " + y);

 }

}

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

3 of 8

3. If/Else Simulation

For each call of the method below, write the value that is returned:

public static int mystery(int a, int b) {

 int c;

 if (a > b) {

 c = a;

 } else if (b % a == 0) {

 c = b;

 } else {

 c = b + (a - (b % a));

 }

 return c;

}

Method Call Value Returned

mystery(4, 2) _______________________________

mystery(5, 4) _______________________________

mystery(5, 13) _______________________________

mystery(5, 17) _______________________________

mystery(4, 8) _______________________________

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

4 of 8

4. While Loop Simulation

For each call of the method below, write the output that is printed:

public static void mystery(int i, int j) {

 while (i != 0 && j != 0) {

 i = i / j;

 j = (j - 1) / 2;

 System.out.print(i + " " + j + " ");

 }

 System.out.println(i);

}

Method Call Output

mystery(5, 0); _______________________________

mystery(3, 2); _______________________________

mystery(16, 5); _______________________________

mystery(80, 9); _______________________________

mystery(1600, 40); _______________________________

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

5 of 8

5. Assertions

For the following method, identify each of the three assertions in the table below as being either ALWAYS true,

NEVER true or SOMETIMES true / sometimes false at each labeled point in the code. (You may abbreviate these

choices as A/N/S respectively.)

public static int mystery(int x) {

 int y = 1;

 int z = 0;

 // Point A

 while (y <= x) {

 // Point B

 y = y * 10;

 z++;

 // Point C

 }

 // Point D

 z--;

 // Point E

 return z;

}

 y > x z < 0 z > 0

Point A

Point B

Point C

Point D

Point E

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

6 of 8

6. Programming

Write a static method named hasMidpoint that accepts three integers as parameters and returns true if one of the

integers is the midpoint between the other two integers; that is, if one integer is exactly halfway between them. Your

method should return false if no such midpoint relationship exists.

The integers could be passed in any order; the midpoint could be the 1st, 2nd, or 3rd. You must check all cases.

Calls such as the following should return true :
hasMidpoint(4, 6, 8)

hasMidpoint(2, 10, 6)

hasMidpoint(8, 8, 8)

hasMidpoint(25, 10, -5)

Calls such as the following should return false :
hasMidpoint(3, 1, 3)

hasMidpoint(1, 3, 1)

hasMidpoint(21, 9, 58)

hasMidpoint(2, 8, 16)

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

7 of 8

7. Programming

Write a static method named sequenceSum that prints terms of the following mathematical sequence:

 ...
6

1

5

1

4

1

3

1

2

1
1 ++++++ (also written as 



=1

1
i i

)

 Your method should accept a real number as a parameter representing a limit, and should add and print terms of the

sequence until the sum of terms meets or exceeds that limit. For example, if your method is passed 2.0, print terms

until the sum of those terms is at ≥ 2.0. You should round your answer to 3 digits past the decimal point.

 The following is the output from the call sequenceSum(2.0);

1 + 1/2 + 1/3 + 1/4 = 2.083

 (Despite the fact that the terms keep getting smaller, the sequence can actually produce an arbitrarily large sum if

enough terms are added.) If your method is passed a value less than 1.0, no output should be produced. You must

match the output format shown exactly; note the spaces and pluses separating neighboring terms. Other sample calls:

Calls sequenceSum(0.0); sequenceSum(1.0); sequenceSum(1.5);

Output 1 = 1.000 1 + 1/2 = 1.500

Call sequenceSum(2.7);

Output 1 + 1/2 + 1/3 + 1/4 + 1/5 + 1/6 + 1/7 + 1/8 = 2.718

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

8 of 8

8. Programming

Write a static method named favoriteLetter that accepts two parameters: a Scanner for the console, and a

favorite letter represented as a one-letter String. The method repeatedly prompts the user until two consecutive

words are entered that start with that letter. The method then prints a message showing the last word typed.

 You may assume that the user will type a single-word response to each prompt. Your code should be case-sensitive;

for example, if the favorite letter is a, you should not stop prompting if the user types words that start with an A. For

example, the following logs represent the output from two calls to your method: (User input is underlined.)

Call Scanner console = new Scanner(System.in);
favoriteLetter(console, "y");

Scanner console = new Scanner(System.in);
favoriteLetter(console, "A");

Output Looking for two "y" words in a row.
Type a word: hi
Type a word: bye
Type a word: yes
Type a word: what?
Type a word: yellow
Type a word: yippee
"y" is for "yippee"

Looking for two "A" words in a row.
Type a word: I
Type a word: love
Type a word: CSE142!
Type a word: AND
Type a word: PROGRAMS
Type a word: are
Type a word: always
Type a word: Absolutely
Type a word: Awesome
"A" is for "Awesome"

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

1 of 3

Sample Midterm Exam #1 Key

Also check out Practice-It to test solving these problems or to type in your own solution to see if it works!

1. Expressions

Expression
3 * 4 + 5 * 6 + 7 * -2

1.5 * 2.0 + (5.5 / 2) + 5 / 4

23 % 5 + 31 / 4 % 3 - 17 % (16 % 10)

"1" + 2 + 3 + "4" + 5 * 6 + "7" + (8 + 9)

345 / 10 / 3 * 55 / 5 / 6 + 10 / (5 / 2.0)

1 / 2 > 0 || 4 == 9 % 5 || 1 + 1 < 1 - 1

Value
28

6.75

-1

"123430717"

24.0

true

2. Parameter Mystery

tyler and tv like java

java and tyler like tv

tv and donnie like rugby

hamburger and x like tyler

tyler and java like tyler

3. If/Else Simulation

Method Call Value Returned
mystery(4, 2)

mystery(5, 4)

mystery(5, 13)

mystery(5, 17)

mystery(4, 8)

4

5

15

20

8

4. While Loop Simulation

Method Call Output
mystery(5, 0);

mystery(3, 2);

mystery(16, 5);

mystery(80, 9);

mystery(1600, 40);

5

1 0 1

3 2 1 0 1

8 4 2 1 2 0 2

40 19 2 9 0 4 0

5. Assertions

 y > x z < 0 z > 0

Point A SOMETIMES NEVER NEVER

Point B NEVER NEVER SOMETIMES

Point C SOMETIMES NEVER ALWAYS

Point D ALWAYS NEVER SOMETIMES

Point E ALWAYS SOMETIMES SOMETIMES

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

2 of 3

6. Programming (five solutions shown)

public static boolean hasMidpoint(int a, int b, int c) {

 double mid = (a + b + c) / 3.0;

 if (a == mid || b == mid || c == mid) {

 return true;

 } else {

 return false;

 }

}

public static boolean hasMidpoint(int a, int b, int c) {

 double mid = (a + b + c) / 3.0;

 return (a == mid || b == mid || c == mid);

}

public static boolean hasMidpoint(int a, int b, int c) {

 return (a == (b + c) / 2.0 || b == (a + c) / 2.0 || c == (a + b) / 2.0);

}

public static boolean hasMidpoint(int a, int b, int c) {

 int max = Math.max(a, Math.max(b, c));

 int min = Math.min(a, Math.min(b, c));

 double mid = (max + min) / 2.0;

 return (a == mid || b == mid || c == mid);

}

public static boolean hasMidpoint(int a, int b, int c) {

 return (a - b == b - c || b - a == a - c || a - c == c - b);

}

7. Programming (one solution shown)

public static void sequenceSum(double limit) {

 if (limit >= 1) {

 System.out.print("1");

 int denomenator = 1;

 double sum = 1.0;

 while (sum < limit) {

 denomenator++;

 sum += 1.0 / denomenator;

 System.out.print(" + 1/" + denomenator);

 }

 System.out.printf(" = %.3f\n", sum);

 }

}

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

3 of 3

8. Programming (three solutions shown)

public static void favoriteLetter(Scanner console, String letter) {

 System.out.println("Looking for two \"" + letter + "\" words in a row.");

 int count = 0;

 String word = "";

 while (count < 2) {

 System.out.print("Type a word: ");

 word = console.next();

 if (word.startsWith(letter)) {

 count++;

 } else {

 count = 0;

 }

 }

 System.out.println("\"" + letter + "\" is for \"" + word + "\"");

}

// uses two Strings instead of count, and uses forever/break loop

public static void favoriteLetter(Scanner console, String letter) {

 System.out.println("Looking for two \"" + letter + "\" words in a row.");

 System.out.print("Type a word: ");

 String word1 = console.next();

 System.out.print("Type a word: ");

 String word2 = console.next();

 while (!(word1.startsWith(letter) && word2.startsWith(letter))) {

 word1 = word2;

 System.out.print("Type a word: ");

 word2 = console.next();

 }

 System.out.println("\"" + letter + "\" is for \"" + word2 + "\"");

}

// uses do/while loop

public static void favoriteLetter(Scanner console, String letter) {

 System.out.println("Looking for two \"" + letter + "\" words in a row.");

 int count = 0;

 String word;

 do {

 System.out.print("Type a word: ");

 word = console.next();

 if (word.startsWith(letter)) {

 count++;

 } else {

 count = 0;

 }

 } while (count < 2);

 System.out.println("\"" + letter + "\" is for \"" + word + "\"");

}

CLICK HERE TO ACCESS THE COMPLETE Test Bank

https://testbanks.ac/product/9780135862353-TEST-BANK-5/

	final-01-05sp.pdf
	Sample Final Exam #1 (Spring 2005; thanks to Stuart Reges)

	final-01-05sp-key.pdf
	Sample Final Exam #1 Key

	midterm-01-06au.pdf
	Sample Midterm Exam #1

	midterm-01-06au-key.pdf
	Sample Midterm Exam #1 Key

