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Problems and Solutions Section 1.1 (1.1 through 1.27) 

1.1 A spring-mass system has a mass of 100 kg and a stiffness of 10,000 N/m. What is 

its period of oscillation? 

Solution:  

wn =
k

m
=

10,000 N/m

100 kg
= 10 rad/s Þ T =

2p

wn

=
2p

10
= 0.62 s

 

1.2 The mass of a passenger car is about 2500 kg and has a stiffness of 161,255 N/m.  

Compare the frequency and period of the car empty to that if 181 kg of passengers 

are added to the car. 

Solution:  The frequency and period of the empty car are: 

wn =
k

m
=

161,255 N/m

2500 kg
= 8.031 rad/s Þ T =

2p

wn

=
2p

8.031
= 0.81 s 

With 181 kg of passengers the frequency and period become 

wn =
k

m
=

161,255 N/m

2681 kg
= 7.555 rad/s Þ T =

2p

wn

=
2p

7.555
= 0.78 s 

Thus in this case the difference in period of oscillation with and without the 

passengers is an imperceptible 3 hundredths of a second. For lighter cars this 

difference could become perceptible.  

1.3 Consider a simple pendulum (see Example 1.1.1) and compute the magnitude of the 

restoring force if the mass of the pendulum is 2 kg and the length of the pendulum 

is 0.5 m. Assume the pendulum is at the surface of the earth at sea level.  

Solution: From example 1.1.1, the restoring force of the pendulum is mgl sinq , 

which has maximum value 

mgl = 2 ×9.81×0.5
kg ×m ×m

sec2
= 9.81 N ×m  

1.4 Compute the period of oscillation of a pendulum of length 1 m at the North Pole 

where the acceleration due to gravity is measured to be 9.832 m/s2.  
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Solution: The natural frequency and period can be computed with the following 

relationships: 

 

 

 

 

 

1.5 The spring of Figure 1.2, repeated here as Figure P1.3, is loaded with mass of 15 kg 

and the corresponding (static) displacement is 0.01 m. Calculate the spring’s 

stiffness.  

 

Figure P1.3 

Solution: 

    Free-body diagram: 

 

 

m

k

kx

mg
 

 

From the free-body diagram and static 

equilibrium: 

 

 

kx = mg (g = 9.81m / s2 )

k = mg / x

=
15 × 9.81

0.01

N

m
= 14715 N/m
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1.6 The spring of Figure P1.3 is successively loaded with mass and the corresponding 

(static) displacement is recorded below.  Plot the data and calculate the spring’s 

stiffness. Note that the data contain some error.  Also calculate the standard 

deviation. 

m(kg) 10 11 12 13 14 15 16 

x(m) 1.14 1.25 1.37 1.48 1.59 1.71 1.82 

Solution: 

 Free-body diagram: 

 

 

m

k

kx

mg
  

 

 

 

0 1 2
10

15

20

m

x

From the free-body diagram and static 

equilibrium: 

 

 
kx = mg (g = 9.81m / s2 )

k = mg / x
 

 

m =
Ski

n
= 86.164  

The sample standard deviation in 

computed stiffness is: 

s =

(ki - m)2

i =1

n

å

n - 1
= 0.164
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Plot of mass in kg versus displacement in m    

Computation of slope from mg/x 

m(kg) x(m) k(N/m) 

10 1.14 86.05 

11 1.25 86.33 

12 1.37 85.93 

13 1.48 86.17 

14 1.59 86.38 

15 1.71 86.05 

16 1.82 86.24 

 

1.7 Consider the pendulum of Example 1.1.1 and compute the amplitude of the 

restoring force if the mass of the pendulum is 2 kg and the length of the pendulum 

is 0.5 m if the pendulum is at the surface of the moon. 

Solution: From example 1.1.1, the restoring force of the pendulum is mgl sinq , 

which has maximum value 

1.5 mgl = 2 ×
9.81

6
×0.5

kg ×m ×m

sec2
= 1.635 N ×m  

1.8 Consider the pendulum of Example 1.1.1 and compute the angular natural 

frequency (radians per second) of vibration for the linearized system if the mass of 

the pendulum is 2 kg and the length of the pendulum is 0.5 m if the pendulum is at 

the surface of the earth. What is the period of oscillation in seconds?   

Solution: The natural frequency and period are: 
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1.9 Derive the solution of  mx+ kx = 0  and plot the result for at least two periods for 

the case with n = 2 rad/s, x0 = 1 mm, and v0 = 5  mm/s. 

Solution: 

Given:   

  mx+ kx = 0  (1) 

Assume: x(t) = aert .  Then:  x = arert
and x = ar 2ert

.  Substitute into equation (1) to 

get:   

mar 2ert + kaert = 0

mr 2 + k = 0

r = ±
k

m
  i

 

Thus there are two solutions: 

x1 = c1e

k

m
i

æ

è
ç

ö

ø
÷ t

,  and  x2 = c2e
-

k

m
i

æ

è
ç

ö

ø
÷ t

where wn =
k

m
= 2 rad/s

 

The sum of x1 and x2 is also a solution so that the total solution is: 

x = x1 + x2 = c1e
2it + c2e

-2it  

Substitute initial conditions: x0 = 1 mm, v0 = 5  mm/s 

 

x 0( ) = c1 + c2 = x0 = 1 Þ c2 = 1- c1,   and  v 0( ) = x 0( ) = 2ic1 - 2ic2 = v0 = 5  mm/s

Þ -2c1 + 2c2 = 5 i.   Combining the two underlined expressions (2 eqs in 2 unkowns):

-2c1 + 2 - 2c1 = 5 i Þ c1 =
1

2
-

5

4
i,  and  c2 =

1

2
+

5

4
i
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Therefore the solution is: 

x =
1

2
-

5

4
i

æ

è
ç

ö

ø
÷ e2it +

1

2
+

5

4
i

æ

è
ç

ö

ø
÷ e-2it

Using the Euler formula to evaluate the exponential terms yields:

                           x =
1

2
-

5

4
i

æ

è
ç

ö

ø
÷ cos2t + i sin2t( ) +

1

2
+

5

4
i

æ

è
ç

ö

ø
÷ cos2t - i sin2t( )

Þ x(t) = cos2t +
5

2
sin2t =

3

2
sin 2t + 0.7297( )

 

 Using Mathcad the plot is: 

 

 

1.10 Solve  mx+ kx = 0  for k = 4 N/m, m = 1 kg, x0 = 1 mm, and v0 = 0.  Plot the 

solution. 

Solution: Here v0 = 0.  wn =
k

m
= 2 rad/s

æ

è
ç

ö

ø
÷ .  Calculating the initial conditions: 

 

x 0( ) = c1 + c2 = x0 = 1 Þ c2 = 1- c1

v 0( ) = x 0( ) = 2ic1 - 2ic2 = v0 = 0 Þ c2 = c1

c2 = c1 = 0.5

x t( ) =
1

2
e2 it +

1

2
e-2 it =

1

2
cos2t + i sin2t( ) +

1

2
cos2t - i sin2t( )

 

x(t)= cos (2t ) 

x t cos .2 t .
5

2
sin .2 t

0 5 10

2

2

x t

t
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The following plot is from Mathcad: 

Alternately students may use equation (1.10) directly to get 

x(t) =
22 (1)2 + 02

2
sin(2t + tan-1[

2 ×1

0
])

      = 1sin(2t +
p

2
) = cos2t

 

1.11 The amplitude of vibration of a spring-mass system is measured to be 1 mm. The 

phase shift from t = 0 is measured to be 2 rad and the frequency is found to be  

5 rad/s. Calculate the initial conditions that caused this vibration to occur. Assume 

the response is of the form x(t) = Asin(wnt +f). 

Solution: 

Given: A = 1mm, f = 2rad, w = 5rad/s . For an undamped system: 

 

x t( ) = Asin wnt + f( ) = 1sin 5t + 2( )    and

v t( ) = x t( ) = Awn cos wnt + f( ) = 5cos 5t + 2( )
 

Setting t = 0 in these expressions yields: 

x(0) = 1sin(2) = 0.9093 mm 

v(0) = 5 cos(2) = – 2.081 mm/s 

1.12 Determine the stiffness of a single-degree-freedom, spring-mass system with a 

mass of 100 kg such that the natural frequency is 10 Hz. 

x t cos .2 t

0 5 10

1

1

x t

t
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Solution: First change Hertz to radians and then use the formula for natural 

frequency: 

10 Hz = 10
cycle

sec

2p rad

cycle
= 20p  rad / sec

w
n

2 =
k

m
Þ k = mw

n

2 = 100kg(20p )2 1

sec2
= 394,784 N/m

 

1.13 Find the equation of motion for the system of Figure P1.11, and find the natural 

frequency. In particular, using static equilibrium along with Newton’s law, 

determine what effect gravity has on the equation of motion and the system’s 

natural frequency. Assume the block slides without friction. 

 

Figure P1.11 

Solution: 

Choosing a coordinate system along the plane with positive down the plane, the 

free-body diagram of the system for the static case is given and (a) and for the 

dynamic case in (b): 
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In the figures, N is the normal force and the components of gravity are determined 

by the angle  as indicated. From the static equilibrium: -kxs + mgsinq = 0 .  

Summing forces in (b) yields: 

 

Fiå = mx(t) Þ mx(t) = -k(x + xs) + mgsinq

                    Þ mx(t) + kx = -kxs + mgsinq = 0

                     Þ mx(t) + kx = 0

                                             Þ wn =
k

m
 rad/s

 

1.14 An undamped system vibrates with a frequency of 10 Hz and amplitude 1 mm.  

Calculate the maximum amplitude of the system's velocity and acceleration. 

Solution: 

Given: First convert Hertz to rad/s: wn = 2p fn = 2p 10( ) = 20p  rad/s.We also have 

that A= 1 mm. 

For an undamped system: 

x t( ) = Asin wnt +f( )  

and differentiating yields the velocity: v t( ) = Awn cos wnt +f( ) . Realizing that both 

the sin and cos functions have maximum values of 1 yields: 

 
vmax = Awn = 1 20p( ) = 62.8 mm/ s 

Likewise for the acceleration: a t( ) = -Awn

2 sin wnt +f( ) 

 
amax = Awn

2 = 1 20p( )
2

= 3948 mm/ s2 

1.15 Show by calculation that A sin (nt + ) can be represented as A1sin nt + A2 cosnt 

and calculate A1 and A2 in terms of A and . 

Solution: 

This trig identity is useful: sin a+ b( ) = sinacosb+ cosasinb 

Given: Asin wnt +f( ) = Asin wnt( )cos f( ) + Acos wnt( )sin f( ) 

             = A
1
sinw

n
t + A

2
cosw

n
t

where A
1

= Acosf       and A
2

= Asinf  
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1.16 Using the solution of equation (1.2) in the form  x(t) = A
1
sinw

n
t + A

2
cosw

n
t  

calculate the values of A1and A2 in terms of the initial conditions x0 and v0. 

Solution: 

Using the solution of equation (1.2) in the form 

x t( ) = A
1
sinw

n
t + A

2
cosw

n
t  

and differentiate to get: 

x(t) = w
n
A

1
cos(w

n
t) -w

n
A

2
sin(w

n
t)  

Now substitute the initial conditions into these expressions for the position and 

velocity to get: 

x
0

= x(0) = A
1
sin(0) + A

2
cos(0) = A

2

v
0

= x(0) = w
n
A

1
cos(0) -w

n
A

2
sin(0)

              = w
n
A

1
(1) -w

n
A

2
(0) = w

n
A

1

 

Solving for A1 and A2 yields: 

A
1

=
v

0

w
n

,  and A
2

= x
0
 

Thus  x(t) =
v0

wn

sinwnt + x0 coswnt  

1.17  Using the drawing in Figure 1.7, verify that equation (1.10) satisfies the initial 

velocity condition. 

Solution: Following the lead given in Example 1.1.2, write down the general 

expression of the velocity by differentiating equation (1.10): 

 

x(t) = Asin(wnt + f) Þ x(t) = Awn cos(wnt + f)

Þ v(0) = Awn cos(wn0 + f) = Awn cos(f)
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From the figure:  

  

Figure 1.7 

A = x0

2 +
v0

wn

æ

èç
ö

ø÷

2

,   cosf =

v0

wn

x0

2 +
v0

wn

æ

èç
ö

ø÷

2
 

Substitution of these values into the expression for v(0) yields 

v(0) = Awn cosf = x0

2 +
v0

wn

æ

èç
ö

ø÷

2

(wn)

v0

wn

x0

2 +
v0

wn

æ

èç
ö

ø÷

2
= v0

 

verifying the agreement between the figure and the initial velocity condition. 

1.18 A 0.5 kg mass is attached to a linear spring of stiffness 0.1 N/m. a) Determine the 

natural frequency of the system in hertz. b) Repeat this calculation for a mass of  

50 kg and a stiffness of 10 N/m. Compare your result to that of part a. 

Solution: From the definition of frequency and equation (1.12) 

a( )           wn =
k

m
=

0.5

0.1
= 0.447 rad/s

      fn =
wn

2p
=

2.236

2p
= 0.071 Hz

b( )             wn =
50

10
= 0.447rad/s, fn =

wn

2p
= 0.071 Hz

 

Part (b) is the same as part (a) thus very different systems can have same natural 

frequencies. 
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1.19 Derive the solution of the single degree of freedom system of Figure 1.4 by writing 

Newton’s law, ma = –kx, in differential form using adx = vdv and integrating twice. 

Solution:  Substitute a = vdv/dx into the equation of motion ma = –kx, to get  

mvdv = –kxdx.  Integrating yields: 

v2

2
= -wn

2 x2

2
+ c2 ,   where c is a constant

or     v2 = -wn

2x2 + c2 Þ

v =
dx

dt
= -wn

2x2 + c2 Þ

dt =
dx

-wn

2x2 + c2
,   write u = wnx to get:

t - 0 =
1

wn

du

c2 - u2ò =
1

wn

sin-1 u

c

æ

èç
ö

ø÷
+ c2

 

Here c2 is a second constant of integration that is convenient to write as  

c2 = –/n. Rearranging yields 

wnt + f = sin-1 wnx

c

æ

èç
ö

ø÷
Þ

wnx

c
= sin(wnt + f) Þ

               x(t) = Asin(wnt + f),    A =
c

wn

 

in agreement with equation (1.19). 

1.20 Determine the natural frequency of the two systems illustrated. 

m

k1 k2

                         

m

k1

k2

k3

 

(a)                                                   (b) 

Figure P1.18 

Solution:  

(a)  Summing forces from the free-body diagram in the x direction yields: 
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-k1x

+x

 -k2x

 

 

mx = -k1x - k2x Þ

mx + k1x + k2x = 0

mx + x k1 + k2( ) = 0, dividing by m yields:

x +
k1 + k2

m

æ

èç
ö

ø÷
x = 0

 

 Examining the coefficient of x 

yields: 

Free-body diagram for part a 

 

wn =
k1 + k2

m
 

 

(b)  Summing forces from the free-body diagram in the x direction yields: 

-k1x

-k2x

+x

-k3x

 

Free-body diagram for part b 

 

mx = -k1x - k2x - k3x,Þ

mx + k1x + k2x + k3x = 0 Þ

mx + (k1 + k2 + k3)x = 0 Þ x +
(k1 + k2 + k3)

m
x = 0

                     Þ wn =
k1 + k2 + k3

m

 

1.21* Plot the solution given by equation (1.11) for the case k = 1000 N/m and m = 10 kg 

for two complete periods for each of the following sets of initial conditions: a) x0 = 

0 m, v0 = 1 m/s, b) x0 = 0.01 m, v0 = 0 m/s, and c) x0 = 0.01 m, v0 = 1 m/s. 
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Solution:  Here we use Mathcad: 

a) all units in m, kg, s 

 

 

 

parts b and c are plotted in the above by simply changing the initial conditions as 

appropriate 

 

m 10

x0 0.0

T
.2 p

wn
fn

wn

.2 p

x t .A sin .wn t f

A .
1

wn

.x02 wn
2

v02

f atan
.wn x0

v0

0 0.5 1 1.5

0.2

0.1

0.1

0.2

x t

xb t

xc t

t

k 1000

v0 1
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1.22 A machine part is modeled as a pendulum connected to a spring as illustrated in 

Figure P1.21. Ignore the mass of pendulum’s rod and derive the equation of motion.  

Then following the procedure used in Example 1.1.1, linearize the equation of 

motion and compute the formula for the natural frequency. Assume that the rotation 

is small enough so that the spring only deflects horizontally. 

 

 

Figure P1.21 

Solution: Consider the free body diagram of the mass displaced from equilibrium: 

 

There are two forces acting on the system to consider, if we take moments about 

point O (then we can ignore any forces at O). This yields 

 

MOå = JOa Þ m 2q = -mg sinq - k sinq · cosq

             Þ m 2q + mg sinq + k 2 sinq cosq = 0
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Next consider the small  approximations to that .   Then the 

linearized equation of motion becomes: 

 
q(t) +

mg + k

m

æ

èç
ö

ø÷
q(t) = 0  

Thus the natural frequency is  

 
wn =

mg + k

m
 rad/s  

1.23 A pendulum has length of 250 mm.  What is the system’s natural frequency in 

Hertz? 

Solution: 

Given:  l =250 mm 

Assumptions:  small angle approximation of sin 

From Window 1.1, the equation of motion for the pendulum is as 

follows: IOq + mgq = 0 , where 
 
IO = ml 2 Þq +

g

l
q = 0  

The coefficient of  yields the natural frequency as: 

29.8 m/s
6.26 rad/s

0.25 m
n

g

l
 = = =  

0.996 Hz
2

n
nf




= =  

1.24 The pendulum in Example 1.1.1 is required to oscillate once every second.  What 

length should it be? 

Solution: 

Given: f = 1 Hz  (one cycle per second) 

2n

g
f

l
 = =  

2 2

9.81
0.248

(2 ) 4

g
l m

f 
 = = =  
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1.25 The approximation of sin  = , is reasonable for  less than 10°. If a pendulum of 

length 0.5 m, has an initial position of  0) = 0, what is the maximum value of the 

initial angular velocity that can be given to the pendulum with out violating this 

small angle approximation? (be sure to work in radians) 

Solution:  From Window 1.1, the linear equation of the pendulum is 

( ) ( ) 0
g

t t = + =  

For zero initial position, the solution is given in equation (1.10) by 

 

 

 

since sin is always less then one.  Thus if we need  < 10°= 0.175 rad, then we need 

to solve: 

 

 

 

for v0 which yields: 

v0 < 0.773  rad/s. 

1.26 A machine, modeled as a simple spring-mass system, oscillates in simple harmonic 

motion.  Its acceleration is measured to have an amplitude of 10,000 mm/s2 with a 

frequency of 8 Hz.  Compute the maximum displacement the machine undergoes 

during this oscillation. 

Solution: the equations of motion for position and acceleration are: 

x = Asin(w
n
t +f)    and   x = -Aw

n

2 sin(w
n
t +f)  

Since the sin is max at 1, the maximum acceleration is  

Aw
n

2 = 10,000 mm/s2

w
n

= 2p f = 2p (8) = 16p  rad/s
 

 

  
q (t) =

v0

g
sin(

g
t) Þ q £

v0

g
 

175.0
81.9

5.00 =
v
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Solving for A yields: 

A =
10,000

w
n

2
=

10,000

(16p )2
= 3.96 mm  

1.27 Derive the relationships given in Window 1.4 for the constants a1 and a2 used in the 

exponential form of the solution in terms of the constants A1 and A2 used in sum of 

sine and cosine form of the solution.  Use the Euler relationships for sine and cosine 

in terms of exponentials as given following equation (1.18). 

Solution: Let  = t for ease of notation.  Then: 

2sinq j = eq j - eq j   and  2cosq = eq j + eq j

Þ A
1
sinq = A

1

eq j - eq j

2 j
and  A

2
cos = A

2

eq j + eq j

2

 

Adding these to in order to form x(t) yields: 

x(t) = A
1

eq j

2 j
- A

1

e-q j

2 j
+ A

2

eq j

2
+ A

2

e-q j

2

Þ x(t) = -A
1

eq j

2
j + A

1

e-q j

2
j + A

2

eq j

2
+ A

2

e-q j

2

Þ x(t) = (A
2
- A

1
j )

eq j

2
+ (A

1
j + A

2
)
e-q j

2

 

Comparing this last expression to x(t) = a
1
eq j + a

2
e-q j  yields: 

a
1

=
A

2
- A

1
j

2
  and   a

2
=

A
2
+ A

1
j

2
 

1.28 For a pendulum at the earth’s surface, plot the frequency versus the length of the 

pendulum for values of the length between 0 and 4 meters. 

Solution: Using the formula for frequency of a pendulum, typing in MATLAB  

>> L=0:1/100:4; 

>> x=sqrt((1./L)*9.81); % use the dot to perform element by element division 

>> plot(L,x) 

>> xlabel('lenght in meters') 

>> ylabel('frequency in rad/s') 
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Note how little the frequency changes once past a quarter of a meter 

1.29 Plot how the frequency changes in a 2500 kg car as the possible stiffness values 

range from 120,000 N/m to 170,000 N/m.  Express your answer in Hz. 

Solution:  Typing in MATLAB’s command window 

>> m=2500; 

>> K=120000:50000/500:170000; 

>> omega=sqrt((1/m).*K); 

>> w=omega/(2*pi); 

>> plot(K,w) 

>> xlabel('stiffness in N/m') 

>> ylabel('frequency in Hz') 
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So the frequency changes from 1.1 Hz to about 1.32 Hz. 

1.30 Consider the system of Problem 1.13 and Figure P1.13.  Suppose the surface of the 

plane provides Coulomb friction and determine the equation for vibration. 

Solution: Choosing a coordinate system along the plane with positive down the 

plane, the free-body diagram of the system for the static case is given and (a) and 

for the dynamic case in (b): 
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In the figures, N is the normal force and the components of gravity are determined 

by the angle  as indicated.  From the static equilibrium: -kxs + mgsinq = 0 .  

Summing forces in (b) yields: 
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Problems and Solutions for Section 1.2 and Section 1.3 (1.31 to 1.72) 

Problems and Solutions Section 1.2 (Numbers 1.31 through 1.48) 

1.31 The acceleration of a machine part modeled as a spring mass system is measured 

and recorded in Figure P 1.31. Compute the amplitude of the displacement of the 

mass. 

 

Figure P1.31 

Solution: From Window 1.3 the maximum amplitude of the acceleration versus 

time plot is just w
n

2 A
 
where A is the maximum amplitude of the displacement and 

the quantity to be determined here.  Looking at P1.31, not that the plot repeats 

itself twice after 2.5 s so that T = 2.5/2 = 1.25 s.   Also the plot has 1 m/s2 as its 

maximum value.  Thus w
n

2 A = 1 and 

A =
1

w
n

2
 m/s2 =

1 m/s2

2p

T

æ

èç
ö

ø÷

2

1

s2

=
T

2p

æ

èç
ö

ø÷

2

 m =
1.25

2p

æ

èç
ö

ø÷

2

 m = 0.0396 m  
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1.32  Resolve Example 1.2.1 using English Engineering Units. 

 Solution:  First change the mass given in kg into slugs using 1 lb-sec2/ 

ft = 14.5939 kg. So  

m= 49.2 ´10-3  kg ´  
1 lb ×sec2 / ft

14.5939 kg
= 3.37127 ´10-3 lb ×sec2 / ft  

 Using the conversions: 1 N  = 0.224808 lb and 1 m = 3.280839 ft, the stiffness 

becomes: 

k =
857.8 N

m
´

0.224808 lb

N
´

1 m

3.280839 ft
= 58.78

lb

ft
  

 Thus the frequency becomes 

wn =
58.78 lb/ft

3.37127 (lb/ft) ×sec2
= 132.05 rad/s  

 which agrees with the example as it should. 

 The period is of course the same.  To compute the maximum amplitude change 

mm to in using 1 millimeter = 0.039 370 078 74 inch.  So x0 = 10 mm = 0.39 in 

and the max amplitude becomes A =  0.39 in and the max acceleration becomes 

 

 Since the velocity is zero the phase is 90° and the solution is 

x(t) = 0.39cos(132t) in   

 Which is identical to the solution in mm. 

1.33 Referring to Example 1.2.2, determine the length in feet by using the formula for 

the period as done in the Example. 

 Solution: From the example the formula for the length of a pendulum is 

l =
gT2

4p 2
=

(32.174 ft/s2 ) 3 s( )
2

4p 2
= 7.335 ft  

 As a check 2.237 m = 2.237 m x (3.280 ft/m) = 7.339 ft a little difference in round 

off. 

1.34  Calculate the moon’s acceleration due to gravity in ft/s2. 

 Solution:  

gm = g / 6 = (32.174 ft/s2 ) / 6 = 5.362 ft/s2  
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1.35 A vibrating spring and mass system has a measured acceleration amplitude of 8 

mm/s2 and measured displacement amplitude of 2 mm. Calculate the systems 

natural frequency. 

 Solution: The amplitude of displacement is A = 2mm, and that of acceleration is 

w
n

2 A= 8 Þw
n

2 = 4 Þw
n

= 2 rad/s 

1.36 A spring-mass system has measured period of 5 seconds and a known mass of  

20 kg. Calculate the spring stiffness.  

 Solution: Using the basic formulas for period and frequency: 

T =
2p

w
n

=
2p

k

m

= 5 s Þ k =
2p

5

æ

èç
ö

ø÷

2

´m=
2p

5

æ

èç
ö

ø÷

2

20
kg

s2
 = 31.583 N/m  

1.37* Plot the solution of a linear, spring and mass system with frequency n =1 rad/s, 

x0 = 2 mm and v0 =  2 mm/s, for at least two periods. 

 Solution: From the formula in Window 1.2, the plot can be formed by computing: 

A =
1

wn

wn

2x0

2 + v0

2 = 2.8284 mm,  f = tan-1 wnx0

v0

æ

èç
ö

ø÷
= 0.7854 rad/s

  

x(t) = Asin(wnt + f) = 2.2sin(t + 0.7854)  

 The period is 2/n =2, so the plot needs to run to 4. 

 The solution in Matlab is 

 >> wn=1;x0=2;v0=2; 

 >> A=sqrt(wn^2*x0^2+v0^2)/wn; 

 >> p=atan2(wn*x0,v0); 

 >> figure 

 >> t=(0:0.01:4*pi); 

 >> x=A*sin(wn*t+pi/2); 

 >> plot(t,x) 

 >> xlabel('time in seconds') 

 >> ylabel('displacement in mm'  

 >> A 

 >>A = 2.8284 
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 >> p 

 p = 0.7854   

1.38* Compute the natural frequency and plot the solution of a spring-mass system with 

mass of 1 kg and stiffness of 4 N/m, and initial conditions of x0 = 2 mm and  

v0 = 0 mm/s, for at least two periods. 

 Solution: Working entirely in the command window of Matlab, and using the 

units of mm yields: 

 >> m=1;k=4;x0=2;v0=0; 

 >> wn=sqrt(k/m) 

 wn = 2 

 >> A=(1/wn)*sqrt(wn^2*x0^2+v0^2) 

 A = 2 

 >> figure 

 >> t=[0:0.01:6]; 

 >> x=A*sin(wn*t+pi/2); 

 >> plot(t,x) 

 >> xlabel('time in seconds') 

 >> ylabel('displacement in mm') 
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1.39 When designing a linear spring-mass system it is often a matter of choosing a 

spring constant such that the resulting natural frequency has a specified value.  

Suppose that the mass of a system is 4 kg and the stiffness is 100 N/m. How much 

must the spring stiffness be changed in order to increase the natural frequency by 

10%? 

Solution:  Given m = 4 kg and k = 100 N/m the natural frequency is  

wn =
100

4
= 5 rad/s  

Increasing this value by 10% requires the new frequency to be 5 x 1.1 = 5.5 rad/s.  

Solving for k given m and n yields: 

5.5 =
k

4
Þ k = (5.5)

2
(4) =121 N/m 

Thus the stiffness k must be increased by about 20%. 

1.40 The pendulum in the Chicago Museum of Science and Industry has a length of  

20 m and the acceleration due to gravity at that location is known to be 9.803 

m/s2. Calculate the period of this pendulum. 

 Solution: Following along through Example 1.2.2: 

T =
2p

w
n

=
2p

g / l
=

2p

9.803 / 20
= 9.975 s 

1.41 Calculate the RMS values of displacement, velocity and acceleration for the 

undamped single degree of freedom system of equation (1.19) with zero phase. 

 Solution:  Calculate RMS values 

 Let 

x t( ) = Asin wnt

˙ x t( ) = Awn coswnt

˙ ̇ x t( ) = -Aw n
2 sinwnt

 

Mean Square Value: x
2

=
T®¥
lim

1

T
x

2

0

T

ò (t) dt  

x
2
=

T®¥
lim

1

T
A

2
sin

2
wn t

0

T

ò dt =
T®¥
lim

A2

T
(1 - cos 2wn t

0

T

ò ) dt =
A2

2
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x
.

2
=

T®¥
lim

1

T
A

2
wn

2
cos

2
wn t

0

T

ò dt =
T®¥
lim

A2wn
2

T

1

2
(1 + cos 2wn t

0

T

ò ) dt =
A2wn

2

2
 

x
..

2
=

T®¥
lim

1

T
A

2
wn

4
sin

2
w n t

0

T

ò dt =
T®¥
lim

A2wn
4

T

1

2
(1 + cos 2wn t

0

T

ò ) dt =
A2wn

4

2
 

Therefore, 

 Axxrms
2

22 ==  

x
.

rms = x
.

2
=

2

2
Awn

 

x
..

rms = x
..

2
=

2

2
Awn

2
 

1.42 Calculate the coefficients A1 and A2 of the solution given in Window 1.4 and write 

down the solution in that form for the case x0 =1 mm, vo = 1mm/s and the natural 

frequency is 10 rad/s. 

 Solution:  

x0 = x(0) = A1 sin(0) + A2 cos(0) = A2 = 1 mm

v0 = v(0) = wnA1 cos(0) - A2wn sin(0) = 0.1 mm/s

        Þ A1 = (0.1 mm/s) / 10 rad/s Þ A1 = 0.01 mm

Þ x(t) = 0.01sin(10t) +1cos(10t)[ ]  mm
 

1.43 A foot pedal mechanism for a machine is crudely modeled as a pendulum 

connected to a spring as illustrated in Figure P1.43. The purpose of the spring is 

to keep the pedal roughly vertical. Compute the spring stiffness needed to keep 

the pendulum at 1° from the horizontal and then compute the corresponding 

natural frequency. Assume that the angular deflections are small, such that the 

spring deflection can be approximated by the arc length, that the pedal may be 

treated as a point mass and that pendulum rod has negligible mass. The values in 

the figure are m = 0.5 kg, g = 9.8 m/s2,  1 = 0.2 m and 2 = 0.3 m.   
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Figure P1.43 

Solution: You may want to note to your students, that many systems with springs are 

often designed based on static deflections, to hold parts in specific positions as in this 

case, and yet allow some motion.  The free-body diagram for the system is given in 

the figure.   

 

For static equilibrium the sum of moments about point O yields (1 is the static 

deflection): 

 

M0å = - 1q1 1( )k + mg 2 = 0

          Þ 1

2q1k = mg 2

           Þ k =
mg 2

1

2q1

=
0.5 ×9.8 ×0.3

0.2( )2 p

2

= 2106 N/m

  (1) 

 

Again take moments about point O to get the dynamic equation of motion: 

 
MOå = Jq = m 2

2q = - 1

2k(q +q1) + mg 2 = - 1

2kq + 1

2kq1 - mg 2q  
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 Next using equation (1) above for the static deflection yields: 

 

m 2

2q + 1

2kq = 0

                               Þ q + 1

2k

m 2

2

æ

èç
ö

ø÷
q = 0

                                            Þ wn = 1

2

k

m
=

0.2

0.3

2106

0.5
= 43.27  rad/s

 

1.44 An automobile is modeled as a 1000-kg mass supported by a spring of stiffness  

k = 400,000 N/m. When it oscillates it does so with a maximum deflection of  

10 cm. When loaded with passengers, the mass increases to as much as 1300 kg.  

Calculate the change in frequency, velocity amplitude, and acceleration amplitude 

if the maximum deflection remains 10 cm. 

 Solution: 

 Given: m1 = 1000 kg 

  m2 = 1300 kg 

k = 400,000 N/m  

xmax =  A  = 10 cm  

 

 

 

 

 

 

 

 

v1  =  An1  = 10  cm    20  rad/s  = 200 cm/s 

v2  =  An2  = 10  cm    17.54  rad/s  = 175.4 cm/s  

v  =  175.4 –  200  =  –24.6  cm/s 

 

a1  =  An1
2  = 10  cm    (20  rad/s)2  = 4000 cm/s2 

a2  =  An2
2  = 10  cm    (17.54  rad/s)2  = 3077 cm/s2 

a  =  3077 –  4000  =  –923  cm/s2 

srad
m

k
n /20

1000

000,400

1

1 ===w  

srad
m

k
n /54.17

1300

000,400

2

2 ===w  

srad /46.22054.17 -=-=wD  

Df =
Dw

2p
=

-2.46

2p
= 0.392 Hz 
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1.45 The front suspension of some cars contains a torsion rod as illustrated in Figure 

P1.45 to improve the car’s handling.  (a) Compute the frequency of vibration of 

the wheel assembly given that the torsional stiffness is 2000 N m/rad and the 

wheel assembly has a mass of 38 kg.  Take the distance x = 0.26 m.  

(b) Sometimes owners put different wheels and tires on a car to enhance the 

appearance or performance.  Suppose a thinner tire is put on with a larger wheel 

raising the mass to 45 kg. What effect does this have on the frequency? 

 

Figure P1.45 

 Solution:  (a) Ignoring the moment of inertial of the rod, and computing the 

moment of inertia of the wheel as   mx2, the frequency of the shaft mass system is  

wn =
k

mx2
=

2000 N × m

38 × kg (0.26 m)2
= 27.9 rad/s  

 (b)  The same calculation with 45 kg will reduce the frequency to 

wn =
k

mx2
=

2000 N × m

45 × kg (0.26 m)2
= 25.6 rad/s  

This corresponds to about an 8% change in unsprung frequency and could 

influence wheel hop etc. You could also ask students to examine the effect of 

increasing x, as commonly done on some trucks to extend the wheels out for 

appearance sake. 

1.46 A machine oscillates in simple harmonic motion and appears to be well modeled 

by an undamped single-degree-of-freedom oscillation. Its acceleration is 

measured to have an amplitude of 10,000 mm/s2 at 7 Hz. What is the machine's 

maximum displacement?  
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 Solution: 

 Given: amax = 10,000 mm/s2 @ 7 Hz 

The equations of motion for position and acceleration are: 

  

 

x = Asin(wnt + f)             (1.3)

x = -Awn

2 sin(wnt + f)      (1.5)
 

 The amplitude of acceleration is 000,102 =nAw  mm/s2 and n = 2f = 2(7) = 

14 rad/s, from equation (1.12). 

 The machine's displacement is A =
10,000

wn

2
=

10,000

(14p )2
= 5.169 mm

 

 

1.47 A simple undamped spring-mass system is set into motion from rest by giving it 

an initial velocity of 100 mm/s. It oscillates with a maximum amplitude of  

15 mm. What is its natural frequency? 

Solution: 

 Given: x0 = 0, v0 = 100 mm/s, A = 15 mm 

 From equation (1.9), 
n

v
A

w

0=  or wn =
100

15
= 6.667, so that:  n= 6.667 rad/s. 

1.48 An automobile exhibits a vertical oscillating displacement of maximum amplitude 

1 cm and a measured maximum acceleration of 2000 cm/s2.  Assuming that the 

automobile can be modeled as a single-degree-of-freedom system in the vertical 

direction, calculate the natural frequency of the automobile. 

Solution: 

 Given:  A = 1 cm. From equation (1.15) 

  cm/s 20002 == nAx w  

 Solving for n yields: 

  wn =
2000

1
= 44.72 rad/s

 

 

Problems Section 1.3  (Numbers 1.49 through 1.72) 

1.49 Consider a spring mass damper system, like the one in Figure 1.10, with the 

following values: m =10 kg, c = 3 N/s and k = 1000 N/m. a) Is the system 
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overdamped, underdamped or critically damped? b) Compute the solution if the 

system is given initial conditions x0 = 0.01 m and v0 = 0. 

 Solution: a) Using equation 1.30 the damping ratio is 

z =
c

2 km
=

3

2 10 ×1000
= 0.015 <1 

 Thus the system is underdamped. 

 b) Using equations (1.38) the amplitude and phase can be calculated from the 

initial conditions: 

A=
v0 + zwnx0( )

2
+ x0wd( )

2

w d

2
=

                         
1

9.999
(0.015 ×10 ×0.01)2 + 0.01×9.999( )2

= 0.01 m

 

  

f = tan-1 x
0
wd

v
0

+ zwnx
0

= tan-1 1- z2

z
= 1.556 rad  

 So the solution is Ae-zwnt sin wdt +f( ) = 0.01e-0.15t sin 9.999t +1.556( )  m. 

Note that for any system with v0 = 0 the phase is strictly a function of the damping 

ratio.  Also note that the code given below can be used to generate many problems 

for homework or quizzes by just rearranging the numbers, always making sure to 

keep the damping low enough to be underdamped.  Typing the following in the 

command window in Matlab: 

>> m=10;c=3;k=1000;x0=0.01;v0=0.0; 

>> wn=sqrt(k/m); 

>> z=c/(2*sqrt(k*m)); 

>> wd=wn*sqrt(1-z^2); 

>> A=sqrt(((v0+z*wn*x0)^2*(x0*wd)^2)/wd^2);p=atan2(wd*x0, 

(v0+z*wn*x0)); 

>> t=[0:0.1:30]; 

>> x=A*exp(-z*wn*t).*sin(wn*t+p); 

>> figure 

>> plot(t,x) 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780136809852-SOLUTIONS-5/


33 
Copyright © 2022 Pearson Education, Inc. 

>> xlabel('time in seconds') 

>> ylabel('displacement in m') 

 

1.50 Consider a spring-mass-damper system with equation of motion given by  

. Compute the damping ratio and determine if the system is 

overdamped, underdamped or critically damped. 

 Solution: The parameter values are m = 1, k = 2 and c = 0.2. From equation (1.30) 

the damping ratio is  

z =
c

2 km
=

0.2

2 2 ×1
= 0.0707 <1 

 Hence the system is underdamped. 

1.51 Consider the system 04 =++ xxx  for x0 = 1 mm, v0 = 0 mm/s.  Is this system 

overdamped, underdamped or critically damped? Compute the solution and 

determine which root dominates as time goes on (that is, one root will die out 

quickly and the other will persist. 

 Solution: From equation (1.30) the damping ratio is  

z =
c

2 km
=

4

2 1×1
= 2 >1 

 Hence the system is overdamped. 

 Given 0 mm, 1  where04 00 ===++ vxxxx
 

 

Substitute these into the equation of motion to get: 

 x = aert Þ x = arert Þ x = ar 2ert  
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ar 2ert + 4arert + aert = 0

Þ r 2 + 4r +1 = 0 Þ r1,2 = -2 ± 3
 

 So 

 
x = a1e

-2 + 3( ) t
+ a2e

-2 - 3( ) t

˙ x = - 2 + 3( )a1e
-2+ 3( ) t

+ - 2 - 3( )a2e
-2- 3( ) t

 

Applying initial conditions yields, 

 

 

Substitute equation (1) into (2) 

 

 

 

 Solve for a2 

      

Substituting the value of a2 into equation (1), and solving for a1 yields, 

 

 

 

\ x(t) =
v0 + 2 + 3( )x0

2 3
e

-2+ 3( ) t
+

-v0 + - 2 + 3( )x0

2 3
e

-2- 3( ) t
 

The response is dominated by the root:  -2 + 3    as the other root dies off 

very fast. 

1.52 Compute the solution to 022 =++ xxx  for x0 = 0 mm, v0 = 1 mm/s and write 

down the closed form expression for the response.   

 Solution:  

 The parameter values are m = 1, k = 2 and c = 2. From equation (1.30) the 

damping ratio is  

z =
c

2 km
=

2

2 2 ×1
= 0.707 <1 

x0 = a1 + a2 Þ x0 - a2 = a1 (1)

v0 = - 2 + 3( ) a1 + - 2 - 3( )a2 (2)
 

v0 = - 2 + 3( )(x0 - a2 ) + - 2 - 3( )a2

v0 = - 2 + 3( )x0 - 2 3 a2

 

a2 =
-v0 + - 2 + 3( ) x0

2 3
 

a1 =
v0 + 2 + 3( ) x0

2 3
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 Hence the system is underdamped. The natural frequency is  

wn =
k

m
=

2

1
= 2  

Thus equations (1.36) and (1.38) can be used directly or one can follow the last 

expression in Example 1.3.3: 

x(t) = e-zwnt v0 +zw nx0

w d

sinwdt + x0 coswdt
æ

èç
ö

ø÷

                                = e
-

1

2
2t v0

wd

sinwdt
æ

èç
ö

ø÷

 

 The damped natural frequency is 

wd = wn 1-z 2 = 2 × 1-
1

2
= 1 

 Thus the solution is 

x(t) = e- t sin t  mm  

Alternately use equations (1.36) and (1.38).  The plot is similar to figure 1.12. 

1.53 Derive the form of 1 and 2 given by equation (1.31) from equation (1.28) and 

the definition of the damping ratio. 

 Solution: 

 Equation (1.28): kmc
mm

c
4

2

1

2

2
2,1 -±-=l  

 Rewrite, l1,2 = -
c

2 m m

æ

èç
ö

ø÷
k

k

æ

è
ç

ö

ø
÷ ±

1

2 m m

k

k

æ

è
ç

ö

ø
÷

c

c

æ

èç
ö

ø÷
c2 - 2 km

2( ) c

c

æ

èç
ö

ø÷

2

 

 Rearrange, l1,2 = -
c

2 km

æ

èç
ö

ø÷
k

m

æ

è
ç

ö

ø
÷ ±

c

2 km

k

m

æ

è
ç

ö

ø
÷

1

c

æ

èç
ö

ø÷
c2 1-

2 km

c

æ

è
ç

ö

ø
÷

2é

ë

ê
ê

ù

û

ú
ú

 

 Substitute: 

wn =
k

m
 and z =

c

2 km
Þ l1,2 = -zwn ±zwn

1

c

æ

èç
ö

ø÷
c 1-

1

z 2

æ

èç
ö

ø÷

                                           Þ l1,2 = -zwn ± wn z 2 1-
1

z 2

æ

èç
ö

ø÷
é

ë
ê

ù

û
ú

                                           Þ l 1,2 = -zwn ± wn z 2 - 1
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1.54 Use the Euler formulas to derive equation (1.36) from equation (1.35) and to 

determine the relationships listed in Window 1.4. 

 Solution: 

 Equation (1.35): x t( ) = e
-zw nt

a1e( )
jw n 1-z

2
t

- a2e
- jw n 1-z

2
t
 

 From Euler,  

  

x t( ) = e-zw nt(a1 cos wn 1 -z 2 t( ) + a1 j sin wn 1 -z 2 t( )
                        + a2 cos wn 1 -z

2
t( ) - a2 j sin wn 1 -z

2
t( ))

= e
-zw nt

a1 + a2( )coswd t + j a1 - a2( )sinwd t

 

  Let:  A1=( )21 aa + , A2=( )21 aa - , then this last expression becomes 

  x t( ) = e
-zw nt

A1 cosw dt + A2 sinwdt 

  Next use the trig identity: 

  
2

11

21 tan,
A

A
AAA -=f+=  

  to get: x t( ) = e-zwnt Asin(wdt + f)
 

1.55 Using equation (1.35) as the form of the solution of the underdamped system, 

calculate the values for the constants a1 and a2 in terms of the initial conditions x0 

and v0. 

 Solution: 

 Equation (1.35):  

x t( ) = e
-zw nt

a1e
jw n 1-z

2
t
+ a2e

- jw n 1-z
2

t( ) 

˙ x t( ) = (-zwn + jwn 1- z
2

)a1e
-zwn + jwn 1-z

2( )t
+ (-zwn - jwn 1 -z

2
)a2 e

-zw n - j wn 1-z
2( )t

 

 Initial conditions 

  x0 = x(0 ) = a1 + a2 Þa1 = x0 - a2     (1) 

  v0 = ˙ x (0) = (-zw n + jwn 1 -z
2
)a1 +(-zwn - jwn 1 -z

2
)a2

 (2) 

 Substitute equation (1) into equation (2) and solve for a2 

  

v0 = -zwn + jw n 1-z 2( )(x0 - a2 ) + -zwn - jw n 1-z 2( )a2

v0 = -zwn + jw n 1-z
2( )x0 - 2 jw n 1- z

2
a2
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 Solve for a2 

  a2 =
-v0 -zwnx0 + jwn 1-z 2 x0

2 jwn 1-z 2
 

 Substitute the value for a2 into equation (1), and solve for a1 

a1 =
v0 + zwnx0 + jwn 1-z 2 x0

2 jwn 1-z 2
 

1.56 Calculate the constants A and  in terms of the initial conditions and thus verify 

equation (1.38) for the underdamped case. 

Solution:  

From Equation (1.36),  

x(t) = Ae
-zwnt

sin wdt + f( ) 

 Applying initial conditions (t  = 0) yields, 

f= sin0 Ax                   (1) 

        fw+fzw-== cossin00 AAxv dn
          (2) 

Next solve these two simultaneous equations for the two unknowns A and .  

From (1),   

fsin

0x
A=                 (3) 

Substituting (3) into (1) yields 

f

w
+zw-=

tan

0

00

x
xv d

n
   Þ   tanf =

x0wd

v0 +zwnx0

 .    

Hence,      

f = tan-1 x0wd

v0 +zwnx0

é

ë
ê

ù

û
ú            (4) 

From (3),   
A

x0sin =f                                                      (5) 

and From (4),  cosf =
v0 +zwnx0

x0w d( )
2

+ v0 +zwnx0( )
2    (6)  
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 Substituting (5) and (6) into (2) yields, 

2

2

0

2

00 )()(

d

dn xxv
A

w

wzw ++
=  

which are the same as equation (1.38)  

1.57 Calculate the constants a1 and a2 in terms of the initial conditions and thus verify 

equations (1.42) and (1.43) for the overdamped case. 

Solution: From Equation (1.41) 

 x t( ) = e
-zw nt

a1e
wn z

2
-1 t

+ a2e
-w n z

2
-1 t( ) 

taking the time derivative yields: 

˙ x t( ) = (-zwn +wn z
2

-1)a1e
-zw n +wn z

2
-1( )t

+ (-zwn -wn z
2

-1)a2 e
-zw n -w n z

2
-1( )t

 

 Applying initial conditions yields, 

 

x0 = x 0( ) = a1 + a2 Þ x0 - a2 = a1             (1)

v0 = x 0( ) = -zwn +wn z 2 - 1( )a1 + -zwn - wn z 2 - 1( )a2 (2)
        

   Substitute equation (1) into equation (2) and solve for a2 

                         

v0 = -zwn + wn z 2 -1( )(x0 - a2 ) + - zw n -wn z2 -1( )a2

v0 = -zwn + wn z
2

-1( ) x0 - 2wn z
2

-1 a2

        

 Solve for a2 

a2 =
-v0 -zwnx0 +wn z2 -1 x0

2wn z 2 -1
 

 Substitute the value for a2 into equation (1), and solve for a1 

a1 =
v0 +zwnx0 + wn z 2 -1 x0

2wn z 2 -1
 

1.58 Calculate the constants a1 and a2 in terms of the initial conditions and thus verify 

equation (1.46) for the critically damped case. 

Solution: 

From Equation (1.45), 

 x(t) = (a1 + a2t)e
-w nt

 

  Þ x0 = -wna1e
-wnt - wna2te

-wnt + a2e
-wnt  
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Applying the initial conditions yields: 

10 ax =    (1) 

and 

  
120 )0( aaxv nw-==   (2) 

solving these two simultaneous equations for the two unknowns a1 and a2.  

Substituting (1) into (2) yields,   

 
01 xa =  

  
002 xva nw+=   

which are the same as equation (1.46). 

1.59 Using the definition of the damping ratio and the undamped natural frequency, 

derive equitation (1.48) from (1.47). 

Solution:  

m

k
n =w   thus,  

2

n
m

k
w=  

km

c

2
=z  thus,  

n
m

km

m

c
zw=

z
= 2

2
 

Therefore, 0=++ x
m

k
x

m

c
x  

becomes,  

 ˙ ̇ x (t) + 2zwn
˙ x (t) +wn

2
x(t) = 0  

1.60 For a damped system, m, c, and k are known to be m = 1 kg, c = 2 kg/s,  

k = 10 N/m. Calculate the value of  and n. Is the system overdamped, 

underdamped, or critically damped? 

 Solution: 

Given: m = 1 kg, c = 2 kg/s, k = 10 N/m 

Natural frequency: srad
m

k
n /16.3

1

10
===w  

Damping ratio: 316.0
)1)(16.3(2

2

2
==

w
=z

m

c

n
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Damped natural frequency: 

  

w
d

= 10 1-
1

10

æ

è
ç

ö

ø
÷

2

= 3.0  rad/s  

Since 0 <  < 1, the system is underdamped. 

1.61 Plot x(t) for a damped system of natural frequency n = 2 rad/s and initial 

conditions x0 = 1 mm, v0 = 1 mm, for the following values of the damping ratio: 

  = 0.01,  = 0.2,  = 0.1,  = 0.4, and  = 0.8.  

 Solution: 

 Given: n = 2 rad/s, x0 = 1 mm, v0 = 1 mm, i = [0.01;  0.2;  0.1;  0.4;  0.8] 

 Underdamped cases: 

  \wdi = wn 1 - z i

2
 

 From equation 1.38, 

 Ai =
v0 +z iwnx0( )

2
+ x0wdi( )

2

wdi

2
  fi = tan

-1 x0wdi

v0 + ziwnx0

 

The response is plotted for each value of the damping ratio in the following using 

Matlab: 
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1.62 Plot the response x(t) of an underdamped system with n = 2 rad/s,  = 0.1, and  

v0 = 0 for the following initial displacements: x0 = 10 mm and x0 = 100 mm. 

Solution: 

Given: n = 2 rad/s,  = 0.1, v0 = 0, x0 = 10 mm and x0 = 100 mm. 

Underdamped case: 

 \wd = wn 1 - zi

2 = 2 1-0.12 = 1.99 rad/s 

 A =
v0 +zw nx0( )

2
+ x0wd( )

2

wd

2 = 1.01 x0
 

 f = tan
-1 x0wd

v0 + zwnx0

= 1.47 rad 

where 

 x(t) = Ae
-zwnt

sin wdt + f( ) 

The following is a plot from Matlab. 

 

1.63 Calculate the solution to 0=+- xxx  with x0 = 1 and v0 =0 for x(t) and sketch 

the response. 

Solution: This is a problem with negative damping which can be used to tie into 

Section 1.8 on stability, or can be used to practice the method for deriving the 

solution using the method suggested following equation (1.13) and eluded to at 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780136809852-SOLUTIONS-5/


42 
Copyright © 2022 Pearson Education, Inc. 

the start of the section on damping.   To this end let x(t) = Ae
lt

 the equation of 

motion to get: 

(l
2

- l +1)e
lt

= 0 

This yields the characteristic equation: 

l2 - l +1 = 0 Þ l =
1

2
±

3

2
j ,   where  j = -1  

There are thus two solutions as expected and these combine to form 

x(t) = e0.5t (Ae

3

2
jt

+ Be
-

3

2
jt

) 

Using the Euler relationship for the term in parenthesis as given in Window 1.4, 

this can be written as 

x(t) = e
0.5t

(A1 cos
3

2
t + A2 sin

3

2
t) 

Next apply the initial conditions to determine the two constants of integration:  

x(0) = 1 = A1(1) + A2(0) Þ A1 =1 

Differentiate the solution to get the velocity and then apply the initial velocity 

condition to get 

 

x(t) =

1

2
e0 (A1 cos

3

2
0 + A2 sin

3

2
0) + e0 3

2
(-A1 sin

3

2
0 + A2 cos

3

2
0) = 0

Þ A1 + 3(A2 ) = 0 Þ A2 = -
1

3
,

                        Þ x(t) = e0.5t (cos
3

2
t -

1

3
sin

3

2
t)

 

This function oscillates with increasing amplitude as shown in the following plot 

which shows the increasing amplitude.  This type of response is referred to as a 

flutter instability. Working in the command window of Matlab: 

>> t=(0:0.01:4*pi); 

>> x=(exp(0.5*t)).*(cos(t*sqrt(3)/2)–(1/sqrt(3))*sin(t*sqrt(3)/2)); 

>> plot(t,x) 

>> xlabel('time in seconds') 

>> ylabel('dimensionless displacement') 
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1.64 A spring-mass-damper system has mass of 100 kg, stiffness of 3000 N/m and 

damping coefficient of 300 kg/s. Calculate the undamped natural frequency, the 

damping ratio and the damped natural frequency.  Does the solution oscillate? 

 Solution: Working straight from the definitions: 

wn =
k

m
=

3000 N/m

100 kg
= 5.477 rad/s

z =
c

ccr

=
300

2 km
=

300

2 (3000)(100)
= 0.274

 

Since  is less then 1, the solution is underdamped and will oscillate.  The damped 

natural frequency iswd = wn 1 -z
2

= 5.27 rad/s. 

1.65 A sketch of a valve and rocker arm system for an internal combustion engine is 

give in Figure P1.65.  Model the system as a pendulum attached to a spring and a 

mass and assume the oil provides viscous damping in the range of  = 0.01. 

Determine the equations of motion and calculate an expression for the natural 

frequency and the damped natural frequency.  Here J is the rotational inertia of 

the rocker arm about its pivot point, k is the stiffness of the valve spring and m is 

the mass of the valve and stem.  Ignore the mass of the spring. 
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Figure P1.65 

 Solution: The model is of the form given in the figure. You may wish to give this 

figure as a hint as it may not be obvious to all students. 

 

 Taking moments about the pivot point yields: 

 

(J + m 2 )q(t) = -kx - cx = -k 2q - c 2q

             Þ (J + m 2 )q(t) + c 2q + k 2q = 0
 

 Next divide by the leading coefficient to get; 

 
q(t) +

c 2

J + m 2

æ

èç
ö

ø÷
q(t) +

k 2

J + m 2
q(t) = 0  

 From the coefficient of q, the undamped natural frequency is 

 
wn =

k 2

J + m 2
 rad/s  
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 From equation (1.37), the damped natural frequency becomes 

 

 This is effectively the same as the undamped frequency for any reasonable 

accuracy.  However, it is important to point out that the resulting response will 

still decay, even though the frequency of oscillation is unchanged.  So even 

though the numerical value seems to have a negligible effect on the frequency of 

oscillation, the small value of damping still makes a substantial difference in the 

response.  

1.66 A spring-mass-damper system has mass of 150 kg, stiffness of 1500 N/m and 

damping coefficient of 200 kg/s. Calculate the undamped natural frequency, the 

damping ratio and the damped natural frequency. Is the system overdamped, 

underdamped or critically damped? Does the solution oscillate? 

 Solution: Working straight from the definitions: 

wn =
k

m
=

1500 N/m

150 kg
= 3.162 rad/s

z =
c

ccr

=
200

2 km
=

200

2 (1500)(150)
= 0.211

 

This last expression follows from the equation following equation (1.29). Since  

is less then 1, the solution is underdamped and will oscillate.  The damped natural 

frequency iswd = wn 1 -z
2

= 3.091 rad/s, which follows from equation (1.37). 

1.67* The spring mass system of 150 kg mass, stiffness of 3000 N/m and damping 

coefficient of 300 Ns/m is given a zero initial velocity and an initial displacement 

of 0.1 m. Calculate the form of the response and plot it for as long as it takes to 

die out. 

Solution: Working from equation (1.38) and working in Matlab’s command 

window: 

>>m=150;c=300;k=3000;wn=sqrt(k/m);z=(1/2)*c/sqrt(m*k); 

>> wd=wn*sqrt(1-z^2);v0=0;x0=0.1; 

>> A=(1/wd)*sqrt((v0+z*wn*x0)^2+(x0*wd)^2); 
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>> t=(0:0.01:5); 

>> p=atan2(wd*x0,v0+z*wn*x0); 

>> x=A*sin(wd*t+p).*exp(-z*wn*t); 

>> plot(t,x) 

>> xlabel('time in seconds') 

>> ylabel(' displacement in meters') 

 

1.68* The spring mass system of 100 kg mass, stiffness of 1500 N/m and damping 

coefficient of 200 Ns/m is given an initial velocity of 10 mm/s and an initial 

displacement of –5 mm. Calculate the form of the response and plot it for as long 

as it takes to die out. How long does it take to die out? 

Solution: Referring to Example 1.3.5, the time it takes to die out is defined by the 

settling time 

Ts =
4

zwm

 . 

First compute n and : 

wn =
k

m
=

1500 N/m

100 kg
= 3.873 rad/s, z =

c

2 mk
= 0.258

Ts =
4

zw d

=
4

0.258 ×3.873
= 4.003 sec
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Thus in plotting the response time must run past 4.003 sec, say 4.2 sec. Now 

working from equation (1.38), the form of the response is programmed in the 

command window of Matlab: 

>> m=100;k=1500;c=200;wn=sqrt(k/m);z=(1/2)*c/sqrt(m*k); 

>> wd=wn*sqrt(1-z^2);v0=0.01;x0=-0.005; 

>> A=(1/wd)*sqrt((v0+z*wn*x0)^2+(x0*wd)^2); 

>> p=atan2(wd*x0,v0+z*wn*x0); 

>> t=(0:0.01:4.2); 

>> x=A*sin(wd*t+p).*exp(-z*wn*t); 

>> plot(t,x) 

>> xlabel('time in seconds') 

>> ylabel(' displacement in meters') 

 

1.69 Choose the damping coefficient of a spring-mass-damper system with mass of 

200 kg and stiffness of 2000 N/m such that it’s response will die out after 2 s, 

given a zero initial position and an initial velocity of 0.001 m/s. Plot the solution 

to see if our answer is reasonable. 
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Solution: Working with the settling time as given in Example 1.3.5 the settling 

time is given as  

Ts = 2 =
4

zwn

 so that z =
2

wn

=
c

2mwn

Þ c = 4m= 4(200) = 800 Ns/m  

where equation (1.30) is used to remove  in favor of c. As a check plot this in 

Matlab 

>> wd=wn*sqrt(1-z^2);v0=0.001;x0=0; 

>> A=(1/wd)*sqrt((v0+z*wn*x0)^2+(x0*wd)^2); 

>> p=atan2(wd*x0,v0+z*wn*x0); 

>> t=(0:0.01:4); 

>> x=A*sin(wd*t+p).*exp(-z*wn*t); 

>> plot(t, x) 

>> xlabel('time in seconds') 

>> ylabel(' displacement in meters') 

 

The plot clearly gets within 2% of zero. 

1.70 Derive the equation of motion of the system in Figure P1.70 and discuss the effect 

of gravity on the natural frequency and the damping ratio. 

m

c gk
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Solution: This requires two free body diagrams. One for the dynamic case and 

one to show static equilibrium. 

Dx

mg         x(t)            mg         y(t)

ky      cdy /dt                       kDx

 

    (a)   (b) 

From the free-body diagram of static equilibrium (b) we have that mg = kx, 

where x represents the static deflection.  From the free-body diagram of the 

dynamic case given in (a) the equation of motion is: 

m˙ ̇ y (t) + c˙ y (t) + ky(t) - mg = 0 

From the diagram, y(t) = x(t) +x. Since x is a constant, differentiating and 

substitution into the equation of motion yields: 

  

˙ y (t) = ˙ x (t)  and  ˙ ̇ y (t) = ˙ ̇ x (t)Þ

m˙ ̇ x (t) + c˙ x (t) + kx(t) + (kDx - mg)

= 0

     = 0  

where the last term is zero from the relation resulting from static equilibrium.  

Dividing by the mass yields the standard form 

˙ ̇ x (t) + 2zwn
˙ x (t) +wn

2
x(t) = 0 

It is clear that gravity has no effect on the damping ratio  or the natural 

frequency n. Not that the damping force is not present in the static case because 

the velocity is zero. 

1.71 Derive the equation of motion of the system in Figure P1.71 and discuss the effect 

of gravity on the natural frequency and the damping ratio.  You may have to make 

some approximations of the cosine.  Assume the bearings provide a viscous 

damping force only in the vertical direction. (From the A. Diaz-Jimenez, South 

African Mechanical Engineer, Vol. 26, pp. 65-69, 1976) 
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h

m

A

k 

0

 

 Solution: First consider a free-body diagram of the system: 

 x(t)

c ˙ x (t )
  kD

 

Let α be the angel between the damping and stiffness force. The equation of 

motion becomes 

  m˙ ̇ x (t) = -c˙ x (t) - k(D +ds)cosa  

From static equilibrium, the free-body diagram (above with c = 0 and stiffness 

force ks) yields: Fx = 0 = mg- kdscosaå .  Thus the equation of motion 

becomes 

  ṁ  ̇ x +c˙ x +kD cosa = 0    (1) 

Next consider the geometry of the dynamic state: 

   h

   x        q

  

    

a

  + D
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 From the definition of cosine applied to the two different triangles: 

  
cosa =

h
   and  cosq =

h+ x

+ D
   

Next assume small deflections so that the angles are nearly the same cos α = cos 

, so that 

  

h
»

h+ x

+ D
Þ D » x

h
Þ D »

x

cosa
 

For small motion, then this last expression can be substituted into the equation of 

motion (1) above to yield: 

ṁ  ̇ x +c˙ x +kx = 0, α and x small 

Thus the frequency and damping ratio have the standard values and are not 

effected by gravity. If the small angle assumption is not made, the frequency can 

be approximated as 

wn =
k

m
cos

2
a +

g

h
sin

2
a ,    z =

c

2mwn

 

as detailed in the reference above.  For a small angle these reduce to the normal 

values of 

wn =
k

m
,    and  z =

c

2mwn

 

as derived here. 

1.72 An Embraer ERJ-145 has a mass of 12,007 kg when empty. The three landing 

gear suspension systems share the load evenly. When loaded with 4000 kg the 

suspension system pictured deflects 0.2 m. What value of viscous damping in the 

suspension system would cause the system to be critically damped? 

Solution: First calculate the undamped natural frequency from the static 

deflection by realizing that the slop of the curve in Figure 1.4 can be used to 

determine the ratio of k = mg/ where  is the static deflection. Then 

wn =
k

m
=

mg

d

1

m
=

g

d
=

9.81 m/s2

0.2 m
= 7.004 rad/s  

From equation (1.30) with  = 1,  

c = 2zmwn = 2(1)(4000 kg) 7.004 rad/s( ) = 56,032 kg/s (N ×s/m) 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780136809852-SOLUTIONS-5/


52 
Copyright © 2022 Pearson Education, Inc. 

Problems and Solutions Section 1.4 (problems 1.73 through) 

1.73 Calculate the frequency of the compound pendulum of Figure P1.73 if a mass mT 

is added to the tip, by using the energy method. Assume the mass of the pendulum 

is evenly distributed so that its center of gravity is in the middle of the pendulum 

of length l. 

 

Figure P1.73 A compound pendulum with a tip mass. 

 Solution Adding a tip mass adds both kinetic and potential energy to the system. 

 If the mass of the pendulum bar is m, and it is lumped at the center of mass the 

energies become: 

 Potential Energy:               

 

U =
1

2
( - cosq)mg+ ( - cosq)mtg

   =
2

(1- cosq)(mg+ 2mtg)

 

 Kinetic Energy:             

 

T =
1

2
Jq 2 +

1

2
Jtq

2 =
1

2

m 2

3
q 2 +

1

2
mt

2q 2

                              = (
1

6
m+

1

2
mt )

2q 2

 

 Conservation of energy (Equation 1.51) requires T + U = constant: 

  2
(1- cosq)(mg + 2mtg) + (

1

6
m+

1

2
mt )

2 ˙ q 
2

= C 

 Differentiating with respect to time yields:  

 

2
(sinq)(mg + 2mtg)q + (

1

3
m+ mt )

2qq = 0

      Þ (
1

3
m+ mt ) q +

1

2
(mg + 2mtg)sinq = 0
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 Rearranging and approximating using the small angle formula sin  ~ , yields: 

 

q(t) +

m

2
+ mt

1

3
m+ mt

g
æ

è

ç
ç
ç

ö

ø

÷
÷
÷

q(t) = 0 Þ wn =
3m+ 6mt

2m+ 6mt

g
 rad/s  

 Note that this solution makes sense because if mt = 0 it reduces to the frequency 

of the pendulum equation for a bar, and if m = 0 it reduces to the frequency of a 

massless pendulum with only a tip mass.   

1.74 Calculate the total energy in a damped system with frequency 2 rad/s and 

damping ratio  = 0.01 with mass 10 kg for the case x0 = 0.1 m and v0 = 0. Plot 

the total energy versus time. 

 Solution: Given:  n = 2 rad/s,  = 0.01, m = 10 kg, x0 = 0.1 m, v0 = 0. 

 Calculate the stiffness and damped natural frequency: 

k = mwn

2
=10(2)

2
= 40 N/m

wd = wn 1-z 2 = 2 1 -0.012 = 2 rad/s
 

 The total energy of the damped system is 

E(t ) =
1

2
m˙ x 

2
(t) +

1

2
kx(t)  

 where 
x(t) = Ae-0.02 t sin(2 t +f )

˙ x (t) = -0.02Ae-0.02 t sin(2 t + f) + 2Ae-0.02t cos(2t + f)
 

 Applying the initial conditions to evaluate the constants of integration yields: 

 

x(0) = 0.1 = Asinf

x(0) = 0 = -0.02Asinf + 2Acosf

Þf = 1.57 rad,   A = 0.1  m
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 Substitution of these values into E(t) yields: 

 

1.75 Use the energy method to calculate the equation of motion and natural frequency 

of an airplane's steering mechanism for the nose wheel of its landing gear.  The 

mechanism is modeled as the single-degree-of-freedom system illustrated in 

Figure P1.75. 

mx

 

r

J
k1

k 2

(Steering wheel)

(Tire–wheel
assembly)

 

 The steering wheel and tire assembly are modeled as being fixed at ground for 

this calculation.  The steering rod gear system is modeled as a linear spring and 

mass system (m, k2) oscillating in the x direction.  The shaft-gear mechanism is 

modeled as the disk of inertia J and torsional stiffness k2.  The gear J turns 

through the angle  such that the disk does not slip on the mass.  Obtain an 

equation in the linear motion x. 

 Solution: From kinematics: x = rq,Þ ˙ x = r ˙ q  

 Kinetic energy: 22

2

1

2

1
xmJT += q  
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 Potential energy: 2

1

2

2
2

1

2

1
qkxkU +=  

 Substitute 
r

x
=q : 2

2

12

2

22

2 2

1

2

1

2

1

2

1
x

r

k
xkxmx

r

J
UT +++=+  

 Derivative: 
( )

0=
+

dt

UTd
 

  

 

J

r 2
xx + mxx + k2xx +

k1

r 2
xx = 0

J

r 2
+ m

æ
è

ö
ø

x + k2 +
k1

r 2

æ
è

ö
ø

x
é

ëê
ù

ûú
x = 0

 

 Equation of motion: 
J

r
2 + m

æ 
è 

ö 
ø 
˙ ̇ x + k2 +

k1

r
2

æ 
è 

ö 
ø 

x = 0  

 Natural frequency: 

  

w
n

=

k
2

+
k

1

r 2

J

r 2
+ m

=
k

1
+ r 2k

2

J + mr 2
 

1.76 Consider the pendulum and spring system of Figure P1.76. Here the mass of the 

pendulum rod is negligible. Derive the equation of motion using the energy 

method. Then linearize the system for small angles and determine the natural 

frequency. The length of the pendulum is l, the tip mass is m, and the spring 

stiffness is k. 

 

Figure P1.76 A simple pendulum connected to a spring 

 Solution:  Writing down the kinetic and potential energy yields: 

 

T =
1

2
ml 2q 2 ,    U =

1

2
kx2 + mgh

                   U =
1

2
kl 2 sin2 q + mgl (1- cosq)
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 Here the soring deflects a distance lsin , and the mass drops a distance  

l(1 –cos). Adding up the total energy and taking its time derivative yields: 

 

d

dt

1

2
ml 2q 2 +

1

2
kl 2 sin2q + mgl cosq

æ
è

ö
ø

= (ml 2q)q + (kl 2 sinq cosq)q - mgl sinqq = 0

Þ ml 2q + kl 2 sinq cosq - mgl sinq = 0

 

 For small , this becomes 

 

ml 2q + kl 2q - mglq = 0

Þq +
kl - mg

ml
q = 0

             Þ w n =
kl - mg

ml
 rad/s

 

1.77 Consider the pendulum of Figure 1.22 in Example 1.4.8. Repeat the solution 

given there only this time linearize the energy by assuming small  before writing 

down the Lagrange equation and calculate the frequency. Compare your answer to 

that in the example. 

 Solution: From the example the potential energy is 

U =
1

2
l 2ksinq + mgl 1- cosq( )  

 For small angles this becomes 

U =
1

2
l 2kq + mgl 1-1( ) =

1

2
l 2kq  

 Thus the Lagrangian is 

 

 Substitution into the Lagrange formulation yields 
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 Which is very different from the frequency found in Example 1.4.8 and misses the 

effect of the pendulums inertia and that of gravity.  Thus it is important not to 

linearize too early when using the Lagrangian method. 

1.78 A control pedal of an aircraft can be modeled as the single-degree-of-freedom 

system of Figure P1.78.  Consider the lever as a massless shaft and the pedal as a 

lumped mass at the end of the shaft.  Use the energy method to determine the 

equation of motion in  and calculate the natural frequency of the system.  

Assume the spring to be unstretched at  = 0. 

m

l2

l1

k

 

 

Figure P1.78 

 Solution: In the figure let the mass at  = 0 be the lowest point for potential 

energy.  Then, the height of the mass m is (1-cos ) 2.  

     Kinematic relation:  x = 1θx =  

     Kinetic Energy: 
  
T =

1

2
m˙ x 

2
=

1

2
m 2

2 ˙ q 
2
 

     Potential Energy: 
  
U =

1

2
k( 1q)

2
+ mg 2(1 - cosq ) 

     Taking the derivative of the total energy yields: 

  

d

dt
(T +U) = m 2

2 ˙ q ̇  ̇ q + k( 1
2
q) ˙ q + mg 2 (sinq ) ˙ q = 0

 

     Rearranging, dividing by d/dt and approximating sin with  yields: 

2 2

2 1 2( ) 0m k mg + + =  

 
2

1 2

2

2

n

k mg

m


+
 =  
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1.79 To save space, two large pipes are shipped one stacked inside the other as 

indicated in Figure P1.79. Calculate the natural frequency of vibration of the 

smaller pipe (of radius R1) rolling back and forth inside the larger pipe (of radius 

R).  Use the energy method and assume that the inside pipe rolls without slipping 

and has a mass m. 

TRUCKER

Truck bed

Small pipe

Large pipe

(a)

R 1

R
O

O '

a

a'

b

 

mg

(b)  

Figure P1.79 

 Solution: Let  be the angle that the line between the centers of the large pipe and 

the small pipe make with the vertical and let  be the angle that the small pipe 

rotates through.  Let R be the radius of the large pipe and R1 the radius of the 

smaller pipe. Then the kinetic energy of the system is the translational plus 

rotational of the small pipe.  The potential energy is that of the rise in height of 

the center of mass of the small pipe. 

R        q  

R – R1

y

R1 x

 

 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780136809852-SOLUTIONS-5/


59 
Copyright © 2022 Pearson Education, Inc. 

From the drawing:  

y + (R- R1)cosq + R1 = R

     Þ y = (R- R1)(1- cosq)

               Þ ˙ y = (R- R1)sin(q) ˙ q  

Likewise examination of the value of x yields: 

x = (R- R1)sinq

       Þ ˙ x = (R- R1)cosq ˙ q  

Let  denote the angle of rotation that the small pipe experiences as viewed in the 

inertial frame of reference (taken to be the truck bed in this case). Then the total 

kinetic energy can be written as: 

T = Ttrans + Trot =
1

2
m˙ x 2 +

1

2
m˙ y 2 +

1

2
I0

˙ b 2

     =
1

2
m(R- R1 )

2
(sin

2
q + cos

2
q) ˙ q 

2
+

1

2
I0

˙ b 
2

                           Þ T =
1

2
m(R - R1)

2 ˙ q 
2

+
1

2
I0

˙ b 
2

 

The total potential energy becomes just: 

V = mgy = mg(R- R1)(1- cosq) 

Now it remains to evaluate the angle  Let α be the angle that the small pipe 

rotates in the frame of the big pipe as it rolls (say) up the inside of the larger pipe.  

Then 

 =  – α  

were α is the angle “rolled” out as the small pipe rolls from a to b  in figure P1.56. 

The rolling with out slipping condition implies that arc length a’b must equal arc 

length ab.  Using the arc length relation this yields that 1θ = α.R R  Substitution of 

the expression  =  – α yields: 

Rq = R1(q - b ) = R1q - R1b Þ (R- R1 )q = -R1b

    Þ b =
1

R1

(R1 - R)q  and   ˙ b =
1

R1

(R1 - R) ˙ q 
 

 which is the relationship between angular motion of the small pipe relative to the 

ground () and the position of the pipe (). Substitution of this last expression into 

the kinetic energy term yields: 
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T =
1

2
m(R- R1)

2 ˙ q 
2

+
1

2
I0(

1

R1

(R1 - R) ˙ q )
2

            Þ  T = m(R- R1)
2 ˙ q 2

 

 Taking the derivative of T + V  yields 

d

dq
T + V( ) = 2m(R- R1 )2 ˙ q ̇  ̇ q + mg(R- R1 )sinq ˙ q = 0

         Þ 2m(R- R1)
2 ˙ ̇ q + mg(R- R1 )sinq = 0

 

 Using the small angle approximation for sine this becomes 

2m(R- R1)
2 ˙ ̇ q + mg(R- R1)q = 0

         Þ ˙ ̇ q +
g

2(R- R1)
q = 0

                   Þ w n =
g

2(R- R1 )

 

1.80 Consider the example of a simple pendulum given in Example 1.4.2. The 

pendulum motion is observed to decay with a damping ratio of  = 0.001.  

Determine a damping coefficient and add a viscous damping term to the 

pendulum equation. 

 Solution: From example 1.4.2, the equation of motion for a simple pendulum is 

0=+ qq
g

 

 So 
 
wn =

g
. With viscous damping the equation of motion in normalized form 

becomes: 

˙ ̇ q + 2zwn
˙ q +wn

2
q = 0  or with z as given :

                     Þ ˙ ̇ q + 2 .001( )w n
˙ q + wn

2q = 0
 

 The coefficient of the velocity term is 

 

c

J
=

c

m 2
= .002( )

g

c = 0.002( )m g 3
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1.81 Determine a damping coefficient for the disk-rod system of Example 1.4.3.  

Assuming that the damping is due to the material properties of the rod, determine 

c for the rod if it is observed to have a damping ratio of  = 0.01. 

 Solution: The equation of motion for a disc/rod in torsional vibration is 

0=+ qq kJ  

 or 

 

q +wn

2q = 0 where wn =
k

J
 

 Add viscous damping: 

 

q + 2zwnq +wn

2q = 0

q + 2 .01( )
k

J
q +wn

2q = 0
 

 From the velocity term, the damping coefficient must be 

  

c

J
= 0.02( )

k

J

   Þ c = 0.02 kJ

 

1.82 The rod and disk of Window 1.1 are in torsional vibration.  Calculate the damped 

natural frequency if J = 1000 m2   kg, c = 20 N  m s/rad, and k = 400 Nm/rad. 

 Solution: The equation of motion is 

0=++ qqq kcJ  

 The damped natural frequency is 

wd = wn 1-z 2  

 where wn =
k

J
=

400

1000
= 0.632 rad/s 

 and z =
c

2 kJ
=

20

2 400 ´1000
= 0.0158  

 Thus the damped natural frequency is wd = 0.632 rad/s  
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1.83 Consider the system of P1.83, which represents a simple model of an aircraft 

landing system.  Assume, x = r. What is the damped natural frequency? 

 

Figure P1.83 

 Solution: Ignoring the damping and using the energy method the equation of 

motion is 

 

T =
1

2
Jq 2 +

1

2
mx2 ,   U =

1

2
kx2 ,   q =

x

r

d

dt
T +U( ) =

d

dt

1

2
J

x

r 2

2

+
1

2
mx2 +

1

2
kx2æ

èç
ö

ø÷

Þ
J

r 2
xx + mxx + kxx

 

 Thus the undamped equation of motion is: 

m+
J

r
2

æ 
è 

ö 
ø 
˙ ̇ x + kx = 0 

 From examining the equation of motion the natural frequency is: 

wn =
k

meq

=
k

m+
J

r 2

 

 An add hoc way do to this is to add the damping force to get the damped equation 

of motion: 

m+
J

r
2

æ 
è 

ö 
ø 
˙ ̇ x + c˙ x + kx = 0  
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 The value of  is determined by examining the velocity term: 

c

m+
J

r 2

= 2zwn Þ z =
c

m+
J

r 2

1

2
k

m+
J

r 2

                Þ z =
c

2 k m+
J

r 2

æ

èç
ö

ø÷

 

 Thus the damped natural frequency is 

wd = wn 1-z 2 =
k

m+
J

r 2

1-
c

2 k m+
J

r 2

æ

èç
ö

ø÷

æ

è

ç
ç
ç
ç

ö

ø

÷
÷
÷
÷

2

                       Þ wd =
k

m+
J

r 2

-
c2

4 m+
J

r 2

æ

èç
ö

ø÷

2
=

r

2(mr 2 + J)
4(kmr 2 + kJ) - c2r 2

 

1.84 Consider Problem 1.83 with k = 400,000 N/m, m = 1500 kg, J = 100 m2kg/rad,  

r = 25 cm, and c = 8000 kg/s. Calculate the damping ratio and the damped natural 

frequency. How much effect does the rotational inertia have on the undamped 

natural frequency? 

 Solution: From problem 1.74: 

z =
c

2 k m+
J

r 2

æ
è

ö
ø

 and wd =
k

m+
J

r 2

-
c2

4 m+
J

r 2

æ
è

ö
ø

2  

 Given: 

k = 4 ´105  N/m

m= 1.5 ´103  kg

J = 100 m2kg/rad

r = 0.25 m and

c = 8 ´103  N ×s/m
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 Inserting the given values yields 

z = 0.114 and wd = 11.29 rad/s 

 For the undamped natural frequency, wn =
k

m+ J / r 2
 

 With the rotational inertia, wn = 11.36 rad/s  

 Without rotational inertia, wn = 16.33 rad/s 

 The effect of the rotational inertia is that it lowers the natural frequency by almost 

19%. 

1.85 Use Lagrange’s formulation to calculate the equation of motion and the natural 

frequency of the system of Figure P1.85. Model each of the brackets as a spring 

of stiffness k, and assume the inertia of the pulleys is negligible. 

 

Figure P1.85        

 Solution: Let x denote the distance mass m moves, then each spring will deflects 

a distance x/4. Thus the potential energy of the springs is  

  

U = 2 ´
1

2
k

x

4

æ

èç
ö

ø÷

2

=
k

16
x2

 

 The kinetic energy of the mass is  

   
T =

1

2
mx2
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 Using the Lagrange formulation in the form of Equation (1.64): 

   

d

dt

¶

¶x

1

2
mx2

æ

èç
ö

ø÷

æ

è
ç

ö

ø
÷ +

¶

¶x

kx2

16

æ

è
ç

ö

ø
÷ = 0 Þ

d

dt
mx( ) +

k

8
x = 0

                                 Þ mx +
k

8
x = 0 Þ w

n
=

1

2

k

2m
 rad/s

 

1.86 Use Lagrange’s formulation to calculate the equation of motion and the natural 

frequency of the system of Figure P1.86. This figure represents a simplified 

model of a jet engine mounted to a wing through a mechanism which acts as a 

spring of stiffness k and mass ms. Assume the engine has inertia J and mass m and 

that the rotation of the engine is related to the vertical displacement of the engine, 

x(t) by the “radius” r0 (i.e. 
  
x = r

0
q ). 

 

Figure P1.86 

 Solution: This combines Examples 1.4.1 and 1.4.4.  The kinetic energy is  

   

T =
1

2
mx2 +

1

2
Jq 2 + T

spring
=

1

2
m+

J

r
0

2

æ

è
ç

ö

ø
÷ x2 + T

spring
 

 The kinetic energy in the spring (see example 1.4.4) is 

   
T

spring
=

1

2

m
s

3
x2  

 Thus the total kinetic energy is  

   

T =
1

2
m+

J

r
0

2
+

m
s

3

æ

è
ç

ö

ø
÷ x2
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 The potential energy is just  

  
U =

1

2
kx2

 

 Using the Lagrange formulation of Equation (1.64) the equation of motion results 

from: 

   

d

dt

¶

¶x

1

2
m+

J

r
0

2
+

m
s

3

æ

è
ç

ö

ø
÷ x2

æ

è
ç

ö

ø
÷

æ

è
ç
ç

ö

ø
÷
÷

+
¶

¶x

1

2
kx2

æ

èç
ö

ø÷
= 0

                           Þ m+
J

r
0

2
+

m
s

3

æ

è
ç

ö

ø
÷ x + kx = 0

                                          Þ w
n

=
k

m+
J

r
0

2
+

m
s

3

æ

è
ç

ö

ø
÷

 rad/s

 

1.87 Consider the inverted simple pendulum connected to a spring of Figure P1.68. 

Use Lagrange’s formulation to derive the equation of motion. 

 Solution: The energies are (see the solution to 1.68): 

 
T =

1

2
ml 2q 2 ,    U =

1

2
kx2 + mgh 

 Choosing  as the generalized coordinate, the spring compresses a distance x = l 

sin  and the mass moves a distance h = l cos  from the reference position. So 

the Lagrangian becomes: 

 
L = T -U =

1

2
ml 2q 2 -

1

2
kl 2 sin2q - mgl cosq  

 The terms in Lagrange’s equation are 

 

¶L

¶q
= ml 2q ,   

¶L

¶q
= -kl 2 sinq cosq + mgl sinq  
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 Thus from the Lagrangian the equation of motion is 

 

d

dt

¶L

¶q

æ

èç
ö

ø÷
-
¶L

¶q
= ml 2q + kl 2 sinq cosq - mgl sinq = 0

                      Þ q +
lk - mg

ml

æ
è

ö
ø
q = 0

 

 Where the last expression is the linearized version for small . 

1.88 Lagrange’s formulation can also be used for non-conservative systems by adding 

the applied non-conservative term to the right side of equation (1.63) to get  

   

d

dt

¶T

¶q
i

æ

è
ç

ö

ø
÷ -

¶T

¶q
i

+
¶U

¶q
i

+
¶R

i

¶q
i

= 0 

 Here Ri is the Rayleigh dissipation function defined in the case of a viscous 

damper attached to ground by 

   
R

i
=

1

2
cq

i

2
 

 Use this extended Lagrange formulation to derive the equation of motion of the 

damped automobile suspension driven by a dynamometer illustrated in Figure 

P1.88.  Assume here that the dynamometer drives the system such that x = r. 

 

Figure P1.88 
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 Solution: The kinetic energy is 

   
T =

1

2
mx2 +

1

2
Jq 2 =

1

2
(m+

J

r 2
)x2

 

 The potential energy is: 

  
U =

1

2
kx2

 

 The Rayleigh dissipation function is 

   
R=

1

2
cx2

 

 The Lagrange formulation with damping becomes 

   

d

dt

¶T

¶q
i

æ

è
ç

ö

ø
÷ -

¶T

¶q
i

+
¶U

¶q
i

+
¶R

i

¶q
i

= 0

          Þ
d

dt

¶

¶x

1

2
(m+

J

r 2
)x2

æ

èç
ö

ø÷

æ

è
ç

ö

ø
÷ +

¶

¶x

1

2
kx2

æ

èç
ö

ø÷
+

¶

¶x

1

2
cx2

æ

èç
ö

ø÷
= 0

                                         Þ (m+
J

r 2
)x + cx + kx = 0

 

1.89 Consider the disk of Figure P1.89 connected to two springs. Use the energy 

method to calculate the system’s natural frequency of oscillation for small angles 

(t). 

m    mass

x(t)

 (t)

kk s

a

r

 

Figure P1.89 

 Solution: 

 Known: x = rq, ˙ x = r ˙ q  and 2

2

1
mrJo =  
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 Kinetic energy: 

 

Trot =
1

2
Joq

2 =
1

2

mr 2

2

æ

èç
ö

ø÷
q 2 =

1

4
mr 2q 2

Ttrans =
1

2
mx2 =

1

2
mr 2q 2

T = Trot + Ttrans =
1

4
mr 2q 2 +

1

2
mr 2q 2 =

3

4
mr 2q 2

 

 Potential energy: U = 2
1

2
k a+ r( )q[ ]

2æ
è

ö
ø

= k a+ r( )2
q 2  

 Conservation of energy: 

 

T +U =  Constant

d

dt
T +U( ) = 0

d

dt

3

4
mr 2q 2 + k a+ r( )2

q 2æ
è

ö
ø

= 0

3

4
mr 2 2qq( ) + k a+ r( )2

2qq( ) = 0

3

2
mr 2q + 2k a+ r( )2

q = 0

 

 Natural frequency: 

w n =
keff

meff

=
2k a+ r( )2

3

2
mr 2

w n = 2
a+ r

r

k

3m
 rad/s

 

1.90 A pendulum of negligible mass is connected to a spring of stiffness k at halfway 

along its length, l, as illustrated in Figure P1.90. The pendulum has two masses 

fixed to it, one at the connection point with the spring and one at the top.  Derive 

the equation of motion using the Lagrange formulation, linearize the equation and 

compute the systems natural frequency. Assume that the angle remains small 

enough so that the spring only stretches significantly in the horizontal direction. 
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Figure P1.90 

 Solution: Using the Lagrange formulation the relevant energies are: 

 

T =
1

2
m1

l

2

æ
è

ö
ø

2

q 2 +
1

2
m2l

2q 2

U =
1

2
kx2 + m1gh1 + m2gh2

 

 From the trigonometry of the drawing: 

x =
l

2
sinq ,   h1 =

l

2
cosq ,   h2 = l cosq  

 So the potential energy writing in terms of  is: 

U =
1

2
k

l

2
sinq

æ
è

ö
ø

2

+ m1g
l

2
cosq + m2gl cosq  

 Setting L = T-U and taking the derivatives required for the Lagrangian yields: 

 

d

dt

¶L

¶q

æ

èç
ö

ø÷
=

d

dt

1

2
m1

l

2

æ
è

ö
ø

2

q 2 +
1

2
m2l

2q 2
æ

èç
ö

ø÷

             =
d

dt

1

4
m1l

2q + m2l
2q

æ
è

ö
ø

=
m1l

2 + 4m2l
2

4
q

 

-
¶L

¶q
=

kl

2
sinq cosq -

l

2
m1gsinq - m2gl sinq  

 Thus the equation of motion becomes 

 

m1l
2 + 4m2l

2

4
q +

kl

2
sinq cosq -

l

2
m1gsinq - m2gl sinq = 0  
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 Linearizing for small  this becomes 

 

m1l
2 + 4m2l

2

4
q + (

kl

2
-

l

2
m1g- m2gl )q = 0  

 So the natural frequency is 

wn =
2k - 2m1g- 4m2g

m1l + 4m2l
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Problems and Solutions Section 1.5 (1.91 through 1.105)  

1.91 A bar of negligible mass fixed with a tip mass forms part of a machine used to 

punch holes in a sheet of metal as it passes past the fixture as illustrated in Figure 

P1.91. The impact to the mass and bar fixture causes the bar to vibrate and the 

speed of the process demands that frequency of vibration not interfere with the 

process. The static design yields a mass of 50 kg and that the bar be made of steel 

of length 0.25 m with a cross sectional area of 0.01 m2. Compute the system’s 

natural frequency. 

 

Figure P1.91 A bar model of a punch fixture. 

Solution: From equation (1.63) 

wn =
EA

lm
=

2.0 ´1011( ) 0.01( )

50 0.25( )

(N/m2)m2

kg ×m
= 1.26 ´104 rad/s  

This is about 2000 Hz, which is likely too high to be a problem but could cause 

some undesirable noise. 

1.92 Consider the punch fixture of Figure P1.91. If the system is giving an initial 

velocity of 10 m/s, what is the maximum displacement of the mass at the tip if the 

mass is 1000 kg and the bar is made of steel of length 0.25 m with a cross 

sectional area of 0.01 m2? 

Solution: First compute the frequency: 

wn =
EA

lm
=

2.0 ´1011( ) 0.01( )

1000 0.25( )

(N/m2)m2

kg ×m
= 2.828 ´103rad/s 
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From equation (1.9) the maximum amplitude is  

  

A
max

=
wn

2x
0
2 + v

0
2

wn 
=

v
0

wn

=
10

2828

m/s

1/s
= 0.0035 m , 

or about 0.35 mm, not much. 

1.93 Consider the punch fixture of Figure P1.91. If the punch strikes the mass off 

center it is possible that the steel bar may vibrate in torsion. The mass is 1000 kg 

and the bar 0.25 m-long, with a square cross section of 0.1 m on a side. The mass 

polar moment of inertia of the tip mass is 10 kg/m2. The polar moment of inertia 

for a square bar is b4/6, where b is the length of the side of the square.  Compute 

both the torsion and longitudinal frequencies.  Which is larger?  

Solution: First compute the longitudinal frequency of the bar: 

wn =
EA

lm
=

2.0 ´1011( ) 0.01( )

1000 0.25( )

(N/m2)m2

kg ×m
= 2.828 ´103rad/s 

Next compute the torsional frequency of the bar (square cross section): 

wn =
GJp

lJ
=

8 ´108(0.14 / 6)

0.25 ´10
= 73.03 rad/s  

In this case the torsional frequency is lower and should be considered in any 

design. 

1.94 A 3,000 kg/m spring is compressed 5 cm (at the surface of the earth).  How much 

force was used to compress it? 

Solution: From the definition of static deflection: 

D =
mg

k
=

F

k
Þ F = Dk = (0.05 m)(3,000 N/m) = 150 N  

1.95 The Mars’ exploration rover squats (deflects) 5 cm when it is set down on the test 

track at JPL (See Figure P1.95). How much will it squat when it is set down on 

the surface of Mars? 
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Solution: Using the static deflection formula from Example 1.5.7: 

DE =
mgE

k
,  DM =

mgM

k
 

Here the subscript E refers to values at earth and the subscript M refers to values 

on Mars. Dividing the expression for deflection on Mars by that on Earth yields 

DM

DE

=

mgM

k
mgE

k

=
gM

gE

Þ DM =
gM

gE

DE =
0.38gE

gE

DE = 0.38(0.05) = 0.019 m  

Students can find the g on Mars from Google. 

1.96 A helicopter landing gear consists of a metal framework rather than the coil 

spring based suspension system used in a fixed-wing aircraft.  The vibration of the 

frame in the vertical direction can be modeled by a spring made of a slender bar 

as illustrated in Figure 1.24, where the helicopter is modeled as ground. Here  

l = 0.4 m, E = 20  1010 N/m2, and m = 100 kg.  Calculate the cross-sectional area 

that should be used if the natural frequency is to be fn = 500 Hz. 

Solution:  From equation (1.63) 

 wn =
k

m
=

EA

lm
 (1) 

and 

wn = 500 Hz
2p rad

1 cycle

æ 

è 
ç ö 

ø 
= 3142 rad/s 

Solving (1) for A yields: 

A=
wn

2lm

E
=

3142( )2
.4( ) 100( )

20 ´1010
= 0.001974

A» 0.0020 m2 = 20cm2

 

1.97 The frequency of oscillation of a person on a diving board can be modeled as the 

transverse vibration of a beam as indicated in Figure 1.27.  Let m be the mass of 

the diver (m = 100 kg) and l = 1.5 m. If the diver wishes to oscillate at 3 Hz, what 

value of EI should the diving board material have? 
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Solution: From equation (1.67), 

wn
2

=
3EI

ml
3  

and 

wn = 3Hz
2p rad

1 cycle

æ 

è 
ç ö 

ø 
= 6p rad/s 

Solving for EI 

  
EI =

w
n

2ml 3

3
=

6p( )
2

100( ) 1.5( )
3

3
= 3.997 ´104  Nm2  

1.98 Consider four springs, labeled k1, k2, k3 and k4 connected in series. Compute the 

formula for the equivalent stiffness. 

Solution:  Basically add one more step to Example 1.5.8 to get 

1

keq

=
1

k1

+
1

k2

+
1

k3

+
1

k4

=
k2k3k4 + k1k3k4 + k1k2k4 + k1k2k3

k1k2k3k4

                   Þ keq =
k1k2k3k4

k2k3k4 + k1k3k4 + k1k2k4 + k1k2k3

 

1.99 Consider the spring system of Figure 1.33. Let k1 = k5 = k2 =100 N/m,  

k3 = 50 N/m, and k4 = 1 N/m. What is the equivalent stiffness? 

Solution: Given: k1 = k2 = k5 = 100 N/m,k3 = 50 N/m,  k4 = 1 N/m 

From Example 1.5.4 

keq = k1 + k2 + k5 +
k3k4

k3 + k4

                        Þ keq = 300.98 N/m

 

1.100 Springs are available in stiffness values of 10, 100, and 1000 N/m. Design a 

spring system using these values only, so that a 100-kg mass is connected to 

ground with frequency of about 1.5 rad/s. 

Solution: Using the definition of natural frequency: 

wn =
keq

m
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With m = 100 kg and n = 1.5 rad/s the equivalent stiffness must be: 

keq = mwn

2
= 100( ) 1.5( )

2
= 225 N/m 

There are many configurations of the springs given and no clear way to determine 

one configuration over another. Here is one possible solution. Choose two 100 

N/m springs in parallel to get 200 N/m, then use four 100 N/m springs in series to 

get an equivalent spring of 25 N/m to put in parallel with the other 3 springs since 

keq =
1

1

k1

+
1

k2

+
1

k3

+
1

k4

=
1

4 100
= 25 

Thus using six 100 N/m springs in the following arrangement will produce an 

equivalent stiffness of 225 N/m 

 

 
 

1.101 Calculate the natural frequency of the system in Figure 1.33(a) if k1 = k2 = 0.  

Choose m and nonzero values of k3, k4, and k5 so that the natural frequency is  

100 Hz. 

Solution: Given:  k1 = k2 = 0 and wn = 2p 100( ) = 628.3 rad/s  

From Figure 1.29, the natural frequency is 

wn =
k5k3 + k5k4 + k3k4

m k3 + k4( )
and keq = k5 +

k3k4

k3 + k4

æ 

è 
ç ö 

ø 
÷  

Equating the given value of frequency to the analytical value yields: 

wn

2
= 628.3( )

2
=

k5k3 + k5k4 + k3k4

m k3 + k4( )
 

1 

 

2 

 

3 

 

4 

5 6 
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Any values of k3, k4, k5, and m that satisfy the above equation will do. Again, the 

answer is not unique.  One solution is 

kg 127.0 and N/m, 000,50 N/m, 1,N/m 1 543 ==== mkkk  

1.102* Example 1.4.4 examines the effect of the mass of a spring on the natural 

frequency of a simple spring-mass system.  Use the relationship derived there and 

plot the natural frequency (normalized by the natural frequency, n, for a 

massless spring) versus the percent that the spring mass is of the oscillating mass.  

Determine from the plot (or by algebra) the percentage where the natural 

frequency changes by 1% and therefore the situation when the mass of the spring 

should not be neglected.  

Solution: The solution here depends on the value of the stiffness and mass ratio 

and hence the frequency.  Almost any logical discussion is acceptable as long as 

the solution indicates that for smaller values of ms, the approximation produces a 

reasonable frequency.  Here is one possible answer.  For 
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From this plot, for these values of m and k, a 10 % spring mass causes less then 

a 1 % error in the frequency. 

1.103 Calculate the natural frequency and damping ratio for the system in Figure P1.103 

given the values m = 10 kg, c = 100 kg/s, k1 = 4000 N/m, k2 = 200 N/m and  

k3 = 1000 N/m. Assume that no friction acts on the rollers. Is the system 

overdamped, critically damped or underdamped? 

m

k2 k3

k 1

c

 

Figure P1.103 

Solution: Following the procedure of Example 1.5.4, the equivalent spring 

constant is:   

  

keq = k1 +
k2k3

k2 + k3

= 4000 +
(200)(1000)

1200
= 4167 N/m 

Then using the standard formulas for frequency and damping ratio: 

  

wn =
keq

m
=

4167

10
= 20.412 rad/s

z =
c

2mwn

=
100

2(10)(20.412)
= 0.245

 

Thus the system is underdamped. 

1.104 Calculate the natural frequency and damping ratio for the system in Figure 

P1.104. Assume that no friction acts on the rollers. Is the system overdamped, 

critically damped or underdamped?. 

 

Figure P1.104 
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Solution: Again using the procedure of Example 1.5.4, the equivalent spring 

constant is:   

keq = k1 + k2 + k3 +
k4k5

k4 + k5

= (10 +1 + 4 +
2 ´3

2 +3
)kN/m = 16.2 kN/m  

Then using the standard formulas for frequency and damping ratio: 

wn =
keq

m
=

16.2 ´103

10
= 40.25 rad/s

z =
c

2mwn

=
1

2(10)(40.25)
= 0.001242 » 0.001

 

Thus the system is underdamped, in fact very lightly damped. 

1.105 A manufacturer makes a cantilevered leaf spring from steel (E = 2  1011 N/m2) 

and sizes the spring so that the device has a specific frequency. Later, to save 

weight, the spring is made of aluminum (E = 7.1  1010 N/m2). Assuming that the 

mass of the spring is much smaller than that of the device the spring is attached 

to, determine if the frequency increases or decreases and by how much. 

Solution:  Use equation (1.67) to write the expression for the frequency twice:  

  
wal =

3Eal

m
3    and wsteel =

3Esteel

m
3

 rad/s 

Dividing yields: 

  

wal

wsteel

=

3Eal

m 3

3Esteel

m 3

=
7.1 ´1010

2 ´10
11 = 0.596 

Thus the frequency is decreased by about 40% by using aluminum.  
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Problems and Solutions Section 1.6 (1.106 through 1.113)  

1.106 The displacement of a vibrating spring-mass-damper system is recorded on an  

x – y plotter and reproduced in Figure P1.106. The y coordinate is the 

displacement in cm and the x coordinate is time in seconds. From the plot 

determine the natural frequency, the damping ratio and the damped natural 

frequency. 

 

P1.106 A plot of displacement versus time for a vibrating system. 

Solution: From the plot, the period is T =4 seconds. Thus the damped natural 

frequency is  

wd =
2p

T
=

2p

4 s
= 1.5708 rad/s  

Using the formula for log decrement and noting from the plot that the first peak is 

about y(t1) = 0.74 cm and the second peak is about y(t2) = 0.2 cm yields 

d = ln
0.74

0.2

æ
è

ö
ø

= 1.3083  

Using equation (1.83) the damping ration is then: 

 

z =
d

4p2 + d2
= 0.2039  
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The undamped natural frequency is  

wn =
wd

1-z 2
=

1.5709

1- (0.2039)2
»1.6046 rad/s 

1.107 Show that the logarithmic decrement is equal to 

d =
1

n
ln

x0

xn

 

where xn  is the amplitude of vibration after n cycles have elapsed. 

Solution: 

 

  

ln
x t( )

x t + nT( )

é

ë

ê
ê

ù

û

ú
ú

= ln
Ae

-zw
n
t
sin w

d
t + f( )

Ae
-zw

n
t+ nt( )

sin w
d
t + w

d
nT + f( )

é

ë

ê
ê

ù

û

ú
ú
 (1) 

Since nwdT = n 2p( ),  sin wdt + nwdT +f( ) = sin wdt + f( ) 

Hence, Eq. (1) becomes 

  

ln
Ae

-zw
n
t
sin w

d
t + f( )

Ae
-zw

n
t+nT( )

e
-zw

n
nt

sin w
d
t + w

d
nt + f( )

é

ë

ê
ê

ù

û

ú
ú

= ln e
zw

n
nT( ) = nzw

n
T  

Since 

  

ln
x t( )

x t + T( )

é

ë

ê
ê

ù

û

ú
ú

= zw
n
T = d , 

Then 

  

ln
x t( )

x t + nT( )

é

ë

ê
ê

ù

û

ú
ú

= nd  

Therefore, 

d =
1

n
ln

xo

xn

¬ original amplitude

¬ amplitude n cycles later
 

Here x0 = x(0). 
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1.108 Derive the equation (1.78) for the trifalar suspension system. 

Solution: Using the notation given for Figure 1.33, and the following geometry: 

r

q

r q
f

l

r q

l h

 

Write the kinetic and potential energy to obtain the frequency: 

Kinetic energy: Tmax =
1

2
Io

˙ q 
2

+
1

2
I ˙ q 

2
 

From geometry, qrx =  and ˙ x = r ˙ q  

Tmax =
1

2
Io + I( )

˙ x 2

r
2  

Potential Energy: 

Umax = mo + m( )g l - l cosf( )  

Two term Taylor Series Expansion of cos » 1-
f2

2
: 

Umax = mo + m( )gl
f2

2

æ 

è 
ç ö 

ø 
 

For geometry, sin 
l

rq
f = , and for small , sin  =  so that  

l

rq
=  

Umax = mo + m( )gl
r

2
q

2

2l 2

æ 

è 
ç ö 

ø 

Umax = mo + m( )g
r 2q 2

2l

æ 

è 
ç ö 

ø 
 where rq = x

Umax =
mo + m( )g

2l
x

2
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Conservation of energy requires that: 

Tmax = Umax     Þ

1

2

Io + I( )
r 2

˙ x 2 =
mo + m( )g

2l
x2

 

At maximum energy, x = A and ˙ x = wnA 

1

2

Io + I( )
r 2

wn
2
A

2
=

mo + m( )g
2 l

A
2

             Þ Io + I( ) =
gr 2 mo + m( )

wn
2
l

 

Substitute wn = 2p fn =
2p

T
 

I o + I( ) =
gr 2 mo + m( )

2p / T( )2
l

I =
gT2r 2 mo + m( )

4p 2l
- I o

 

were T is the period of oscillation of the suspension. 

1.109 A prototype composite material is formed and hence has an unknown modulus.  

An experiment is performed consisting of forming it into a cantilevered beam of 

length 1 m and I = 10-9 m4 with a 10-kg mass attached at its end.  The system is 

given an initial displacement and found to oscillate with a period of 0.5 s.  

Calculate the modulus E. 

Solution:  Using equation (1.65) for a cantilevered beam, 

T =
2p

wn

= 2p
ml 3

3EI
 

Solving for E and substituting the given values yields 

E =
4p 2ml 3

3T2I
=

4p 2 10( ) 1( )
3

3 .5( )
2

10-9( )
                    Þ E = 5.75 ´1011  N/m2
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1.110 The free response of a 1000-kg car with stiffness of k = 400,000 N/m is observed 

to be of the form given in Figure 1.36.  Modeling the car as a single-degree-of-

freedom oscillation in the vertical direction, determine the damping coefficient if 

the displacement at t1 is measured to be 2 cm and 0.22 cm at t2. 

Solution:  Given:  x1 = 2 cm and x2 = 0.22 cm where t2 = T + t1 

Logarithmic Decrement: d = ln
x1

x2

= ln
2

0.22
= 2.207  

Damping Ratio: 
( )

331.0
207.24

207.2

4 2222
=

+
=

+
=

pdp

d
z  

Damping Coefficient: c = 2z km = 2 0.331( ) 400,000( ) 1000( ) = 13,240 kg/s 

1.111 A pendulum decays from 10 cm to 1 cm over one period.  Determine its damping 

ratio. 

Solution: Using Figure 1.36: x1 = 10 cm and x2 = 1 cm 

Logarithmic Decrement: 303.2
1

10
lnln

2

1 ===
x

x
d  

Damping Ratio: z =
d

4p 2 +d 2
=

2.303

4p 2 + 2.303( )2
= 0.344  

1.112 The relationship between the log decrement  and the damping ratio  is often 

approximated as  =2. For what values of  would you consider this a good 

approximation to equation (1.82)? 

Solution: From equation (1.82), 
21

2

z

pz
d

-
=  

For small , pzd 2=  

A plot of these two equations is shown: 
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The lower curve represents the approximation for small , while the upper curve 

is equation (1.82).  The approximation appears to be valid to about  = 0.3. 

1.113 A damped system is modeled as illustrated in Figure 1.10.  The mass of the 

system is measured to be 5 kg and its spring constant is measured to be 5000 N/m.  

It is observed that during free vibration the amplitude decays to 0.25 of its initial 

value after five cycles.  Calculate the viscous damping coefficient, c. 

Solution: 

Note that for any two consecutive peak amplitudes, 

 
xo

x1

=
x1

x2

=
x2

x3

=
x3

x4

=
x4

x5

= e
d
 by definition 

 \
xo

x5

=
1

0.25
=

x0

x1

×
x1

x2

×
x2

x3

×
x3

x4

×
x4

x5

= e
5d

 

So, 

 ( ) 277.04ln
5

1
==d  
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and 

 044.0
4 22

=
+

=
dp

d
z  

Solving for c, 

 
c = 2z km = 2 0.044( ) 5000 5( )

Þ c = 13.914 N-s/m
 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780136809852-SOLUTIONS-5/


87 
Copyright © 2022 Pearson Education, Inc. 

Problems and Solutions Section 1.7 (1.114 through 1.122)  

1.114 Consider the system of Example 1.7.2 consisting of a helical spring of stiffness 

103 N/m attached to a 10-kg mass. Place a dashpot parallel to the spring and 

choose its viscous damping value so that the resulting damped natural frequency 

is reduced to 9 rad/s.  

Solution: 

The frequency of oscillation is wd = wn 1 -z
2
 

From example 1.7.2: m= 10 kg,  k = 103  N/m, andwn =
1000

10
= 10 rad/s  

So, 9 = 10 1 -z
2

 

Þ 0.9 = 1 -z
2

Þ (0.9)
2

=1 -z
2
 

 
z = 1- 0.9( )

2

= 0.436 

Then  

c = 2mwnz = 2(10)(10)(0.436) = 87.2 kg/s 

1.115 For an underdamped system, x0 = 0 mm and v0 = 10 mm/s. Determine m, c, and k 

such that the amplitude is less than 1 mm. 

Solution:  Note there are multiple correct solutions. The expression for the 

amplitude is: 

A
2

= x0

2
+

(vo + zwnxo)2

w d

2

for xo = 0 Þ A =
vo

wd

< 0.001 m Þ wd >
vo

0.001
=

0.01

0.001
= 10
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So 

wd =
k

m
1-z 2( ) >10

Þ
k

m
1- z2( ) >100,Þ k = m

100

1 -z 2

 

(1)  Choose z = 0.01 Þ
k

m
> 100.01 

(2)  Choose m= 1 kg Þ k > 100.01   

(3)  Choose k = 144 N/m >100.01  

Þ wn = 144
rad

s
= 12

rad

s

Þ wd = 11.99
rad

s

Þ c = 2mzwn = 2.4 
kg

s

 

1.116 Repeat problem 1.115 if the mass is restricted to be between 10 kg < m < 15 kg. 

Solution: Referring to the above problem, the relationship between m and k is 

k >1.01x10–4 m 

after converting to meters from mm.  Choose m =10 kg and repeat the calculation 

at the end of Problem 1.115 to get n (again taking  = 0.01).  Then k = 1000 N/m 

and: 

Þ wn =
1.0 ´ 10

3

10

rad

s
=10 

rad

s

Þ wd = 9.998  
rad

s

Þ c = 2mzwn = 2.000 
kg

s

 

1.117 Use the formula for the torsional stiffness of a shaft from Table 1.1 to design a  

1-m shaft with torsional stiffness of 105 Nm/rad. 

Solution: Referring to equation (1.64) the torsional stiffness is 
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kt =

GJp
 

Assuming a solid shaft, the value of the shaft polar moment is given by 

Jp =
pd 4

32
 

Substituting this last expression into the stiffness yields:  

  
kt =

Gpd4

32
 

Solving for the diameter d yields 

  
d =

kt 32( )

Gp

æ 

è 
ö 
ø 

1
4

 

Thus we are left with the design variable of the material modulus (G). Choose 

steel, then solve for d.  For steel G = 8  1010 N/m2. From the last expression the 

numerical answer is 

  

d =

105 Nm

rad
32( ) 1m( )

8 ´1010 N

m2

æ

èç
ö

ø÷
p( )

é

ë

ê
ê
ê
ê

ù

û

ú
ú
ú
ú

1
4

= 0.0597 m  

1.118 Consider designing a helical spring made of aluminum, such that when it is 

attached to a 10-kg mass the resulting spring-mass system has a natural frequency 

of 10 rad/s. Thus repeat Example 1.7.2 which uses steel for the spring and note 

any difference. 

Solution: 

For aluminum G = 25  109 N/m2 

From example 1.7.2, the stiffness is k = 103 = 
3

4

64nR

Gd
 and d = .01 m 

So,  
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10
3

=
25 ´109( ) .01( )

4

64nR
3  

Solving for nR3 yields:  nR3 = 3.906  10–3m3 

Choose R = 10 cm = 0.1 m, so that 

  

n =
3.906 ´ 10-3

0.1( )
3

= 4 turns  

Thus, aluminum requires 1/3 fewer turns than steel.  

1.119 Try to design a bar that has the same stiffness as the helical spring of Example 

1.7.2 (i.e., k = 103 N/m). This amounts to computing the length of the bar with its’ 

cross sectional area taking up about the same space at the helical spring (R = 10 

cm).  Note that the bar must remain at least 10 times as long as it is wide in order 

to be modeled by the stiffness formula given for the bar in Figure 1.24. 

Solution: 

From Figure 1.21, 
l

EA
k =  

For steel, E= 210 ´ 10
9
 N/m

2
 

From Example 1.7.2, k = 103 N/m 

So,  10
3

=
210 ´109( )A

l
 

                   l = 2.1 ´10
8( )A 

If A = 0.01 m2 (10 cm2), then 

 l = 2.1´108( ) 10-2( ) = 2.1´106 m   

Not very practical at all. Sometimes in the course of design, the requirements 

cannot be met. 

1.120 Repeat Problem 1.119 using plastic (E = 1.40  109 N/m2) and rubber (E = 7  106 

N/m2). Are any of these feasible? 
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Solution: 

From problem 1.53, 
l

EA
k   N/m 103 ==  

For plastic, E= 1.40 ´ 10
9
 N/m

2
 

So, m 140=l  

For rubber, E= 7 ´10
6
 N/m

2
 

So, m 7.0=l  

Rubber may be feasible, plastic would not.  

1.121 Consider the diving board of Figure P1.121. For divers, a certain level of static 

deflection is desirable, denoted by . Compute a design formula for the 

dimensions of the board (b, h and ) in terms of the static deflection, the average 

diver’s mass, m, and the modulus of the board. 

 

Figure P1.121 

Solution: From Figure 1.16 (b),  Dk = mg holds for the static deflection.  The 

period is: 

 

  

T =
2p

w
n

= 2p
m

k
= 2p

m

mg / D
= 2p

D

g
                            (1) 

From Figure 1.27, we also have that 

 

   

T =
2p

w
n

= 2p
m 3

3EI
                                            (2) 

Equating (1) and (2) and replacing I with the value from the figure yields: 
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2p
m 3

3EI
= 2p

12m 3

3Ebh3
= 2p

D

g
Þ

3

bh3
=

DE

4mg
 

Alternately just use the static deflection expression and the expression for the 

stiffness of the beam from Figure 1.28 to get 

   

Dk = mg Þ D
3EI

3
= mg Þ

3

bh3
=

DE

4mg
 

1.122 In designing a vehicle suspension system using a “quarter car model” consisting 

of a spring, mass and damper system, studies show the a desirable damping ratio 

is  = 0.25. If the model has a mass of 750 kg and a frequency of 15 Hz, what 

should the damping coefficient be? 

Solution:  First convert the 15 Hz to rad/sec: 

wn = 15
cycle

sec

2p  rad

cycle
= 94.25

rad

sec
 

Next use equation for the damping ratio 

z =
c

2mwn

Þ c = 2zmwn

   Þ c = 2 ×0.25 ×750 ×94.25 = 35,343.75 kg/s
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Problems and Solutions Section 1.8 (1.123 through 1.127)  

1.123 Consider the system of Figure P1.123. (a) Write the equations of motion in terms 

of the angle, , the bar makes with the vertical. Assume linear deflections of the 

springs and linearize the equations of motion. (b) Discuss the stability of the 

linear system’s solutions in terms of the physical constants, m, k, and  .  Assume 

the mass of the rod acts at the center as indicated in the figure. 

 

Figure P1.123 

Solution: Note that from the geometry, the springs deflect a distance 

   kx = k( sinq) and the cg is a distance   2 cosq  up from the horizontal line 

through point 0 taken as zero gravitational potential. Thus the total potential 

energy is 

   
U = 2 ´

1

2
k( sinq)2 +

mg

2
cosq  

Using the inertia for a thin rod of length l rotating about its end, the total kinetic 

energy is 

   
T =

1

2
J

O
q 2 =

1

2

m 2

3
q 2 

The Lagrange equation (1.64) becomes 

   

d

dt

¶T

¶q

æ

èç
ö

ø÷
+
¶U

¶q
=

d

dt

m 2

3
q

æ

è
ç

ö

ø
÷ + 2k sinq cosq -

1

2
mg sinq = 0 
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Using the linear, small angle approximations  sinq » q   and  cosq » 1 yields 

   

a)    
m 2

3
q + 2k 2 -

mg

2

æ

èç
ö

ø÷
q = 0 

Since the leading coefficient is positive the sign of the coefficient of  determines 

the stability.  

b)                    

   

if   4k - mg > 0 Þ 4k > mg Þ  the system is stable

if   4k = mg Þ q(t) = at + bÞ  the system is unstable

if   4k - mg < 0 Þ 4k < mg Þ  the system is unstable

 

Note that physically these results state that the system’s response is stable as long 

as the spring stiffness is large enough to overcome the force of gravity. 

1.124 Consider the inverted pendulum of Figure 1.42 as discussed in Example 1.8.1 and 

repeated here as Figure P1.112. Assume that a dashpot (of damping rate c) also 

acts on the pendulum parallel to the two springs.  How does this affect the 

stability properties of the pendulum? 

 

Figure P1.124 The inverted pendulum of Example 1.8.1 
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Solution: The equation of motion is found from the following FBD: 

m

l

c

k k

0

q

F dash

mg

2Fsp +

 

Moment about O: SMo = I ˙ ̇ q  

ml
2 ˙ ̇ q = mgl sinq - 2

kl

2
sinq

l

2
cosq

æ 
è 

ö 
ø 

- c
l

2
˙ q 

æ 
è 

ö 
ø 

l

2
cosq

æ 
è 

ö 
ø 
 

When  is small, sin   and cos  1 

ml 2 ˙ ̇ q +
cl

2

4
˙ q +

kl
2

2
- mgl

æ 

è 
ç ö 

ø 
q = 0

ml ˙ ̇ q +
cl

4
˙ q +

kl

2
- mg

æ 
è 

ö 
ø 
q = 0

 

For stability, 
kl

2
> mg and c  > 0. 

 The result of adding a dashpot is to make the system asymptotically stable. 

1.125 Replace the massless rod of the inverted pendulum of Figure 1.42 with a solid 

object compound pendulum of Figure 1.21(b). Calculate the equations of 

vibration and discuss values of the parameter relations for which the system is 

stable. 
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Solution: 

m2

m1

k k

0

q

m2g

2Fsp +

 

Moment about O:  qIM o =S  

m1g
l

2
sinq + m2gl sinq - 2

kl

2
sinq

l

2
cosq

æ 
è 

ö 
ø 

=
1

3
m1l

2
+ m2l

2æ 
è 

ö 
ø 

˙ ̇ q  

When  is small, sin   and cos  1. 

m1

3
+ m2

æ 
è 

ö 
ø 
l 2 ˙ ̇ q +

kl
2

2
-

m1

2
gl - m2 gl

æ 

è 
ç ö 

ø 
q = 0

m1

3
+ m2

æ 
è 

ö 
ø 
l ˙ ̇ q +

kl

2
-

m1

2
+ m2

æ 
è 

ö 
ø 
g

é 

ë ê 
ù 

û ú 
q = 0

 

For stability, 
kl

2
>

m1

2
+ m2

æ 
è 

ö 
ø 

g. 

1.126 A simple model of a control tab for an airplane is sketched in Figure P1.125.  The 

equation of motion for the tab about the hinge point is written in terms of the 

angle  from the centerline to be 

   Jq + (c- f
d
)q + kq = 0. 

Here J is the moment of inertia of the tab, k is the rotational stiffness of the hinge, 

c is the rotational damping in the hinge and 
  fd

q   is the negative damping 

provided by the aerodynamic forces (indicated by arrows in the figure). Discuss 

the stability of the solution in terms of the parameters c and fd . 
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Figure P1.126 A simple model of an airplane control tab 

Solution: The stability of the system is determined by the coefficient of  q  since 

the inertia and stiffness terms are both positive. There are three cases 

Case 1  c - fd > 0 and the system’s solution is of the form 
  
q(t) = e-at sin(w

n
t + f) 

and the solution is asymptotically stable. 

Case 2 c - fd < 0 and the system’s solution is of the form 
  
q(t) = eat sin(w

n
t + f)  

and the solution oscillates and grows without bound, and exhibits flutter 

instability as illustrated in Figure 1.38. 

Case 3 c = fd  and the system’s solution is of the form 
  
q(t) = Asin(w

n
t + f) and 

the solution is stable as illustrated in Figure 1.39. 

1.127* In order to understand the effect of damping in design, develop some sense of 

how the response changes with the damping ratio by plotting the response of a 

single degree of freedom system for a fixed amplitude, frequency and phase as 

 changes through the following set of values  = 0.01, 0.05, 0.1, 0.2, 0.3 and 0.4.  

That is plot the response x(t) = e-10z t sin(10 1-z 2 t) for each value of . 

Solution: Any plotting program can be used (Grapher, Excel, Matlab, etc.). Here 

is a Matcad version. If assigned it’s good to discuss the differences as the 

damping increases. 
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Problems and Solutions Section 1.9 (1.128 through 1.134)  

1.128* Compute and plot the response to  x = -3x,  x(0) =1 using Euler’s method for time 

steps of 0.1 and 0.5. Also plot the exact solution and hence reproduce Figure 1.43.  

Solution: The code is given here in Mathcad, which can be run repeatedly with 

different t to see the importance of step size.  Matlab and Mathematica can also 

be used to show this. 
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1.129* Use numerical integration to solve the system of Example 1.7.3 with m = 1361 kg, 

k = 2.688 x 105 N/m, c = 3.81 x 103 kg/s subject to the initial conditions x(0) = 0 

and v(0) = 0.01 mm/s. Compare your result using numerical integration to just 

plotting the analytical solution (using the appropriate formula from Section 1.3) 

by plotting both on the same graph. 

Solution: The solution is shown here in Mathcad using an Euler integration.  This 

can also been done in the other codes or the Toolbox: 
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1.130* Consider again the damped system of Problem 1.117 and design a damper (that is 

calculate a value for c) such that the oscillation dies out after 2 seconds. There are 

at least two ways to do this. Here it is intended to solve for the response 

numerically, following Examples 1.9.2 or 1.9.3, using different values of the 

damping parameter c until the desired response is achieved. Compare this to using 

the settling time definition of Example 1.3.5.  

Solution: Working directly in Mathcad (or use one of the other codes).  Changing 

c until the response dies out within about 2 sec yields c =6500 kg/s or  = 0.17. 
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From Example 1.3.5  

TS =
4

zwn

 and from Eq. 1.30: c = 2zmwn

 

Setting Ts=2 s implies n = 2 so that 

c = 2m(zwn) = 4m= 4(1361) = 5,444 kg/s

 

This is consistent with the numerical search but a little tighter. 

1.131* Repeat Problem 1.130 for the initial conditions x(0) = 0.1 m and v(0) = 0.01 

mm/s. 

Solution: Trick question: changing the initial conditions does not change the 

settling time, which is just a function of  and n. Hence the values determined in 

the previous problem will still reduce the response within 2 seconds. 

1.132* A spring and damper are attached to a mass of 100 kg in the arrangement given in 

Figure 1.10. The system is given the initial conditions x(0) = 0.1 m and v(0) = 1 

mm/s. Design the spring and damper (i.e. choose k and c) such that the system 

will come to rest in 2 s and not oscillate more than two complete cycles.  Try to 

keep c as small as possible.  Also compute . 

Solution: In performing this numerical search on two parameters, several 

underdamped solutions are possible. Students will note that increasing k will 

decrease . But increasing k also increases the number of cycles, which is limited 

to two.  A solution with c = 350 kg/s and k =2000 N/m is illustrated. 
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1.133* Repeat Example 1.7.1 by using the numerical approach of the previous problems. 

Solution: The following Mathcad session can be used to solve this problem by 

varying the damping for the fixed parameters given in Example 1.7.1. 
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1.134* Repeat Example 1.7.1 for the initial conditions x(0) = 0.01 m and v(0) = 1 mm/s. 

Solution: The above Mathcad session can be used to solve this problem by 

varying the damping for the fixed parameters given in Example 1.7.1.  For the 

given values of initial conditions, the solution to Problem 1.133 also works in this 

case.  Note that if x(0) gets too large, this problem will not have a solution.   

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780136809852-SOLUTIONS-5/


105 
Copyright © 2022 Pearson Education, Inc. 

Problems and Solutions Section 1.10 (1.135 through 1.136)  

1.135 A 2-kg mass connected to a spring of stiffness 103 N/m has a dry sliding friction 

force (Fc) of 3 N.  As the mass oscillates, its amplitude decreases 20 cm.  How 

long does this take? 

Solution: With m = 2kg, and k = 1000 N/m the natural frequency is just 

wn =
1000

2
= 22.36 rad/s  

From equation (1.101): slope =  
  

-2mmgw
n

pk
=

-2F
c
w

n

pk
=

Dx

Dt
 

Solving the last equality for t yields:  

Dt =
-Dxpk

2 fcwn

=
-(0.20)(p )(103)

2(3)(22.36)
= 4.68 s 

1.136 Consider the system of Figure 1.46 with m = 5 kg and k = 9  103 N/m with a 

friction force of magnitude 6 N.  If the initial amplitude is 4 cm, determine the 

amplitude one cycle later as well as the damped frequency. 

Solution: Given m= 5 kg,  k = 9 ´10
3
 N/m,  fc = 6 N,  x0 = 0.04 m, the amplitude 

after one cycle is x1 = x0 -
4 fc
k

= 0.04 -
(4)(6)

9 ´10
3 = 0.0373 m 

Note that the damped natural frequency is the same as the natural frequency in the 

case of Coulomb damping, hence wn =
k

m
=

9 ´103

5
= 42.43 rad/s  

1.137* Compute and plot the response of the system of Figure P1.137 for the case where 

x0 = 0.1 m, v0 = 0.1 m/s,  = 0.05, m = 250 kg,  = 20° and k =3000 N/m. How 

long does it take for the vibration to die out? 
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Figure P1.137 

Solution: Choose the x y coordinate system to be along the incline and 

perpendicular to it.  Let s denote the static friction coefficient, k the coefficient 

of kinetic friction and  the static deflection of the spring.  A drawing indicating 

the angles and a free-body diagram is given in the figure: 

 

For the static case 

  
F

xå = 0 Þ kD = m
s
N + mgsinq,  and  F

yå = 0 Þ N = mgcosq  

For the dynamic case 

   
F

xå = mx = -k(x + D) + m
s
N + mgsinq - m

k
N

x

| x |
 

Combining these three equations yields 

   

mx + m
k
mgcosq

x

x
+ kx = 0  

Note that as the angle  goes to zero the equation of motion becomes that of a 

spring mass system with Coulomb friction on a flat surface as it should.   
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mgFs

Fn

Ff

mgFs

Fn

Ff

x 

y 

Answer: The oscillation dies out after about 0.9 s. This is illustrated in the 

following Mathcad code and plot. 

X
0.1

0.1
k 3000 m 250 m 0.05

D ,t X

X1

.
k

m
X0

...cos 20 deg m g
X1

X1

Z rkfixed ,,,,X 0 10 5000 D

t
< >

Z
0

x
< >

Z
1

0 0.5 1 1.5 2

0.05

0.05

0.1

0.15

x

t  

Alternate Solution (Courtesy of Prof. Chin An Tan of Wayne State University): 

Static Analysis: 

In this problem, ( )x t  is defined as the displacement of the mass from the equilibrium 

position of the spring-mass system under friction.  Thus, the 

first issue to address is how to determine this equilibrium 

position, or what is this equilibrium position.  In reality, the 

mass is attached onto an initially unstretched spring on the 

incline.  The free body diagram of the system is as shown.  

The governing equation of motion is: 
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where  is defined as the displacement measured from the unstretched position of the 

spring.  Note that since the spring is initially unstretched, the spring force  is zero 

initially.  If the coefficient of static friction  is sufficiently large, i.e., , then 

the mass remains stationary and the spring is unstretched with the mass-spring-friction in 

equilibrium.  Also, in that case, the friction force , not necessarily equal 

to the maximum static friction.  In other words, these situations may hold at equilibrium: 

(1) the maximum static friction may not be achieved; and (2) there may be no 

displacement in the spring at all.  In this example,  and one would expect 

that  (not given) should be smaller than 0.364 since  (very small).  Thus, one 

would expect the mass to move downward initially (due to weight overcoming the 

maximum static friction).  The mass will then likely oscillate and eventually settle into an 

equilibrium position with the spring stretched. 

 

Dynamic Analysis: 

The equation of motion for this system is: 

 

where  is the displacement measured from the equilibrium position. Define 

 and .  Employing the state-space formulation, we transform the 

original second-order ODE into a set of two first-order ODEs.  The state-space equations 

(for MATLAB code) are: 
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MATLAB Code: 

 
x0=[0.1, 0.1]; 

ts=[0, 5]; 

[t,x]=ode45('f1_93',ts,x0); 

plot(t,x(:,1), t,x(:,2)) 

title('problem 1.93'); grid on; 

xlabel('time (s)');ylabel('displacement (m), velocity (m/s)'); 

 

%--------------------------------------------- 

function xdot = f1_93(t,x) 

% computes derivatives for the state-space ODEs 

m=250; k=3000; mu=0.05; g=9.81; 

angle = 20*pi/180; 

xdot(1) = x(2); 

xdot(2) = -k/m*x(1) - mu*g*cos(angle)*sign(x(2)); 

% use the sign function to improve computation time 

xdot = [xdot(1); xdot(2)]; 

 

Plots for  and  cases are shown.  From the  simulation results, 

the oscillation dies out after about 0.96 seconds (using ginput(1) command to 

estimate).  Note that the acceleration may be discontinuous at  due to the nature of 

the friction force. 

 

Effects of : 

Comparing the figures, we see that reducing  leads to more oscillations (takes longer 

time to dissipate the energy).  Note that since there is a positive initial velocity, the mass 

is bounded to move down the incline initially.  However, if  is sufficiently large, there 

may be no oscillation at all and the mass will just come to a stop (as in the case of 

).  This is analogous to an overdamped mass-damper-spring system.  On the 

other hand, when  is very small (say, close to zero), the mass will oscillate for a long 

time before it comes to a stop. 
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Discussion on the ceasing of motion: 

Note that when motion ceases, the mass reaches another state of equilibrium.  In both 

simulation cases, this occurs while the mass is moving upward (negative velocity).  Note 

that the steady-state value of ( )x t  is very small, suggesting that this is indeed the true 

equilibrium position, which represents a balance of the spring force, weight component 

along the incline, and the static friction. 
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1.138* Compute and plot the response of a system with Coulomb damping of equation 

(1.90) for the case where x0 = 0.5 m, v0 = 0,  = 0.1, m = 100 kg and k =1500 

N/m.  How long does it take for the vibration to die out? 

Solution: Here the solution is computed in Mathcad using the following code.  

Any of the codes may be used.  The system dies out in about 3.2 sec. 
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1.139* A mass moves in a fluid against sliding friction as illustrated in Figure P1.139.  

Model the damping force as a slow fluid (i.e., linear viscous damping) plus 

Coulomb friction because of the sliding, with the following parameters: m = 250 

kg,  =0.01, c = 25 kg/s and k =3000 N/m .  a) Compute and plot the response to 

the initial conditions: x0 = 0.1 m, v0 = 0.1 m/s. b) Compute and plot the response 

to the initial conditions: x0 = 0.1 m, v0 = 1 m/s.  How long does it take for the 

vibration to die out in each case? 

Fluid

k/2 k/2

m

 

Figure P1.139 

Solution: A free-body diagram yields the equation of motion. 

 mg

N

x(t)

fc1

fc2

 kx(t)

 

 

 

m˙ ̇ x (t) + mmgsgn( ˙ x ) + c˙ x (t) + kx(t) = 0 

where the vertical sum of forces gives 

the magnitude N = mg for the 

Coulomb force as in figure 1.43.

The equation of motion can be solved by using any of the codes mentioned or by using 

the toolbox.  Here a Mathcad session is presented using a fixed order Runge Kutta 

integration.  Note that the oscillations die out after 4.8 seconds for v0=0.1 m/s for the 

larger initial velocity of v0=1 m/s the oscillations go on quite a bit longer ending only 

after about 13 seconds.   While the next problem shows that the viscous damping can be 

changed to reduce the settling time, this example shows how dependent the response is 

on the value of the initial conditions.  In a linear system the settling time, or time it takes 

to die out is only dependent on the system parameters, not the initial conditions.  This 

makes design much more difficult for nonlinear systems. 
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1.140* Consider the system of Problem 1.39 part (a), and compute a new damping 

coefficient, c, that will cause the vibration to die out after one oscillation. 

Solution: Working in any of the codes, use the simulation from the last problem 

and change the damping coefficient c until the desired response is obtained.  A 

Mathcad solution is given which requires an order of magnitude higher damping 

coefficient, 

c = 275 kg/s 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780136809852-SOLUTIONS-5/


114 
Copyright © 2022 Pearson Education, Inc. 

 

 

1.141 Compute the equilibrium positions of Ý Ý x + n

2
x + x

2
= 0.   How many are there? 

Solution: The equation of motion in state space form is 

˙ x 1 = x2

˙ x 2 = -wn
2x1 - bx1

2
 

The equilibrium points are computed from: 

x2 = 0

-wn
2 x1 - bx1

2 = 0
 

Solving yields the two equilibrium points: 

  

x
1

x
2
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ê
ê
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é
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ê
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1.142 Compute the equilibrium positions of Ý Ý x + n

2
x − 

2
x

3
+ x

5
= 0.  How many are 

there? 

Solution: The equation of motion in state space form is 

˙ x 1 = x2

˙ x 2 = -wn
2x1 + b2x1

3 - gx1

5
 

The equilibrium points are computed from: 

x2 = 0

-wn
2 x1 + b2 x1

2 - gx1

5 = 0
 

Solving yields the five equilibrium points (one for each root of the previous 

equation). The first equilibrium (the linear case) is: 

x1

x2

é 

ë ê 
ù 

û ú 
=

0

0

é 

ë ê 
ù 

û ú 
  

Next divide  by x1 to obtain: 

 

which is quadratic in x1
2 and has the following roots which define the remaining 

four equilibrium points: x2  = 0 and 

x1 = ±
-b 2 + b 4 - 4gwn

2

-2g

x1 = ±
-b 2 - b 4 - 4gwn

2

-2g

 

Thus there are 5 equilibrium.  Of course some disappear for certain combinations 

of the coefficients. 

1.143* Consider the pendulum example 1.10.3 with length of 1 m an initial conditions of 

0 =/10 rad and Ý  0 = 0 .  Compare the difference between the response of the 

linear version of the pendulum equation (i.e. with sin() = ) and the response of 

the nonlinear version of the pendulum equation by plotting the response of both 

for four periods. 
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Solution: First consider the linear solution.  Using the formula’s given in the text 

the solution of the linear system is just:q(t) = 0.314sin(3.132t + p
2) .  The 

following Mathcad code, plots the linear solution on the same plot as a numerical 

solution of the nonlinear system. 
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Note how the amplitude of the nonlinear system is growing.  The difference 

between the linear and the nonlinear plots are a function of the ration of the linear 

spring stiffness and the nonlinear coefficient, and of course the size of the initial 

condition.  It is work it to investigate the various possibilities, to learn just when 

the linear approximation completely fails. 

1.144* Repeat Problem 1.143 if the initial displacement is 0 = /2 rad. 

Solution: The solution in Mathcad is: 

 

Here both solutions oscillate around the “stable” equilibrium, but the nonlinear 

solution is not oscillating at the natural frequency and is increasing in amplitude. 
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1.145 If the pendulum of Example 1.10.3 is given an initial condition near the 

equilibrium position of 0 =  rad and Ý  0 = 0 , does it oscillate around this 

equilibrium? 

Solution The pendulum will not oscillate around this equilibrium as it is unstable.  

Rather it will “wind” around the equilibrium as indicated in the solution to 

Example 1.10.4.   

1.46* Calculate the response of the system of Problem 1.132 for the initial conditions of 

x0 = 0.01 m, v0 = 0, and a natural frequency of 3 rad/s and for  = 100,  = 0. 

Solution: In Mathcad the solution is given using a simple Euler integration as 

follows: 

:=100 

 

A .
1

w

.w
2

x
0

2
w 3

x
0

v
0

0.01

0

Dt 0.01
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The other codes may be used to compute this solution as well. 

1.147* Repeat problem 1.146 and plot the response of the linear version of the system  

( =0) on the same plot to compare the difference between the linear and 

nonlinear versions of this equation of motion. 

Solution: The solution is computed and plotted in the solution of Problem 1.146.  

Note that the linear solution starts out very close to the nonlinear solution.  The 

two solutions however diverge.  They look similar, but the nonlinear solution is 

growing in amplitude and period. 

q
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This is the linear solution (t) 
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