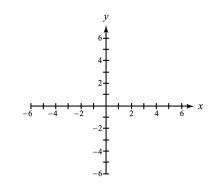

Test Bank for Intermediate Algebra with Applications and Visualization 3rd Edition by Rockswold

CLICK HERE TO ACCESS COMPLETE Test Bank

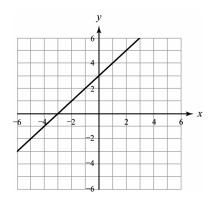
Test Bank

Chapter 2, Test Form A


Name:

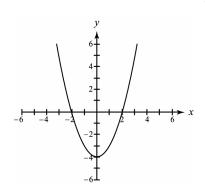
1. Evaluate f(-2) if $f(x) = 4 - 3x^2$.

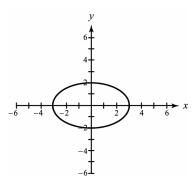
- 1. _____
- 2. Write a symbolic representation (formula) for a function *S* that calculates the number of seconds in *x* minutes. Evaluate *S*(4) and interpret your result.
- 2. _____


3.

3. Sketch a graph of $f(x) = x^2 - 2$.

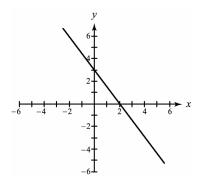



4. Use the graph of f to evaluate f(-1).



5. Determine the domain and range of f.

- 6. A function f is represented verbally by "Square the input xand then add 3." Give a symbolic representation of f.
- 7. Determine whether the graph represents a function.



8. Find the domain of $f(x) = \frac{3}{4}x + 7$.

- 9. Find the slope and y-intercept of the graph of $y = 3x \frac{5}{2}$. 9. _____

10. Find the slope of the line passing through $(\frac{1}{2}, -2)$ and (0, -3).

- 10. _____
- 11. Determine the slope of the line shown in the graph.

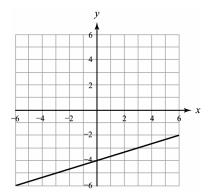
- 12. Write the slope-intercept form of a line with x-intercept -2 12. and y-intercept $\frac{3}{2}$.

- 13. Write the slope-intercept form of the line passing through (1,3) and $(\frac{1}{2},1)$.
- 13. _____
- 14. Let f be a linear function. Find the slope of the graph of f.

14.	

х	-4	-2	-1	0	1
f(x)	-6	0	3	6	9

15. Let f be a linear function. Find the x- and y-intercepts of the graph of f.


15.	
-	

х	-2	0	1	2	3
f(x)	8	4	2	0	-2

16. Give the slope-intercept form of a line parallel to y = 5 - 4x, passing through $(\frac{1}{2}, 1)$.

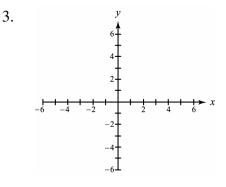
17. Find the slope-intercept form for the line shown in the graph. 17. ______

18. Use the graph in #17 to find the equation of a line that passes 18. _____ through the origin and is perpendicular to the given line.

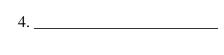
- 19. Find an equation of the vertical line passing through the point $\left(\frac{1}{2}, -\frac{3}{4}\right)$.
- 19. _____
- 20. Find an equation of the horizontal line passing through the point $\left(-\frac{2}{3},1\right)$.
- 20. _____

Chapter 2, Test Form B

Name:

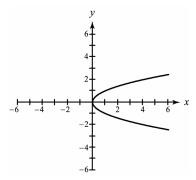

1. Evaluate f(-2) if f(x) = -3x + 1.

1. _____

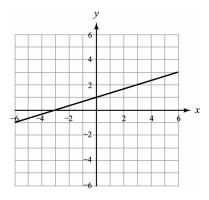

2. Write a symbolic representation (formula) for a function C that calculates the cost of x gallons of gasoline at \$2.50 per gallon. Evaluate C(10) and interpret your result.

2. _____

3. Sketch a graph of f(x) = x + 3.


4. Use the graph of f to evaluate f(2).

5. Determine the domain and range of f.



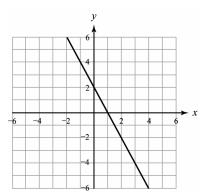
- 24
- 6. A function f is represented verbally by "Cube the input x and then subtract 4." Give a symbolic representation of f.
- 7. Determine whether the graph represents a function.
- 7. _____

8. Find the domain of $f(x) = \sqrt{x-5}$.

- 9. Find the slope and y-intercept of the graph of y = 2x 3.
- 10. Find the slope of the line passing through (1,3) and $(\frac{1}{2},1)$.
- 10. _____
- 11. Determine the slope of the line shown in the graph.
- 11. _____

- 12. Write the slope-intercept form of a line with *x*-intercept −1 12. _____ and y-intercept $\frac{5}{3}$.

- 13. Write the slope-intercept form of the line passing through 13. _____ the points $\left(\frac{3}{2},2\right)$ and $\left(1,\frac{1}{2}\right)$.
- 14. Let f be a linear function. Find the slope of the graph of f.


14.	

х	-2	0	2	3	4
f(x)	6	4	2	1	0

15. Let f be a linear function. Find the x- and y-intercepts of the graph of f.

х	-2	-1	0	1	2
f(x)	9	6	3	0	-3

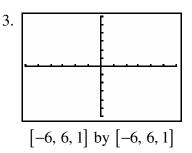
- 16. Give the slope-intercept form of a line perpendicular to 16. _____
- $y = -\frac{3}{5}x 2$, passing through (6, -2).
- 17. Find the slope-intercept form for the line shown in the graph. 17. ______

18. Use the graph in #17 to find the equation of a line that passes 18. _____ through the origin and is perpendicular to the given line.

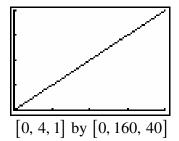
- 19. Find an equation of the vertical line passing through the point $\left(-\frac{2}{3},1\right)$.
- 19. _____
- 20. Find an equation of the horizontal line passing through the point $\left(\frac{3}{2}, -\frac{1}{2}\right)$.
- 20. _____

Chapter 2, Test Form C

Name:

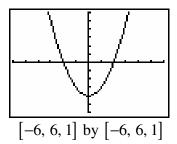

1. For the years 1890 to 1960, the median age for a man's first marriage can be modeled by f(x) = -0.0492x + 119.1, where x is the year. Find the median age in 1930. Round answer to the nearest year.

2. The median price of a single-family home during the years 1990 to 2000 can be approximated by P(x) = 5421x + 89,000, where x = 0 corresponds to the year 1990 and x = 10 corresponds to the year 2000. Find the median price of a single-family home in 1998.

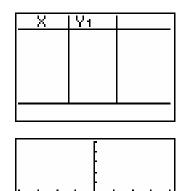


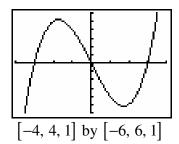
3. Use your graphing calculator to graph f(x) = -3x + 5.

4. Susan begins driving along a country road at a rate of 40 mph. 4. ______


The graph illustrates the distance from her place of origin

after t hours. How far has Susan traveled after 3 hours?


5. Determine the domain and range of f.


6. A function f is represented verbally by "Square the input x and then subtract 4." Give symbolic, numerical and graphical representations of f. Let x = -3, -2, -1, ..., 3 in the numerical representation (table) and let $-4 \le x \le 4$ for the graph.

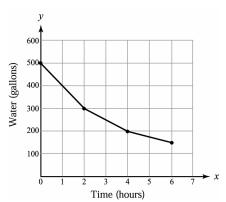
$$[-4, 4, 1]$$
 by $[-5, 5, 1]$

7. Determine whether the graph represents a function.

7. _____

8. Find the domain of f(x) = |x-2.5|.

8. _____


- 9. The monthly cost of operating a car can be modeled by the linear function C(x) = 0.39x + 395, where x represents the number of miles driven.
 - (a) Find the slope of the graph of the function. What does the slope represent?
 - (b) Find the *y*-intercept of the graph of the function. What does the *y*-intercept represent?
- 10. In 1994, tuition and fees at a public four-year college were \$2125. In 1997, tuition and fees increased to \$2689. What was the average yearly increase in fees from 1994 to 1997?
- 9. (a)_____

(b)_____

10. _____

11. The graph represents the amount of water (in gallons) remaining in a tank after t hours. At what rate was water being drained from the tank when $2 \le t \le 4$?

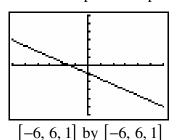
12. Write the slope-intercept form of a line with *x*-intercept 1.29 and *y*-intercept –2.58.

12.	

- 13. On Labor Day 2000, there were 24.8 travelers (in millions). On Labor Day 2004, there were 29.2 travelers (in millions). Let *x* represent the number of years since 2000. Write the slope-intercept equation of the line that passes through (0,24.8) and (4,29.2).
- 13. _____

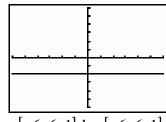
14. The following table shows equivalent temperatures in degrees Celsius and degrees Fahrenheit. This data can be modeled by a linear function. Use your graphing calculator to find the slope of the graph of that function.

|--|


C	-40°	0°	15°	35°	100°
F	-40°	32°	59°	95°	212°

- 15. (a) Find the *y*-intercept of the graph of the linear function modeled in #14.
 - (b) What does the y-intercept represent?

- 15. (a)_____
 - (b)____


- 16. Give the slope-intercept form of a line parallel to y = 1.28x 7.18, passing through (2, 3.17).
- 16. _____

17. Find the slope-intercept form for the line shown in the graph. 17. ______

- 18. Use the graph in #17 to find the equation of a line that passes 18. _____ through the origin and is parallel to the given line.
- 19. Find an equation of the horizontal line in the graph.

- 20. From 1980 to 1997, the number of U.S. marriages (in millions) could be modeled by f(x) = 2.4, where x represents the years since 1980. Estimate the number of marriages in 1986.
- 20. _____

Chapter 2, Test Form D

Name:

1. Evaluate f(-3) if $f(x) = -x^2 + 2$.

1. _____

(a) 11

(b) -7

(c) -11

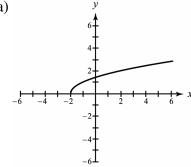
(d) -1

2. Evaluate f(2) if f(x) = -5x + 6.

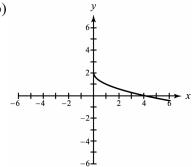
2. _____

(a) -4

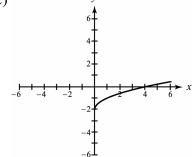
(b) -16

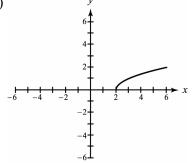

(c) 16

(d) 4

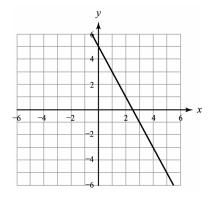

3. Sketch a graph of $f(x) = \sqrt{x} - 2$.

3. _____


(a)

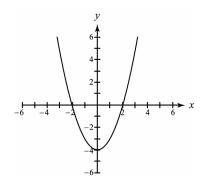

(b)

(c)



(d)

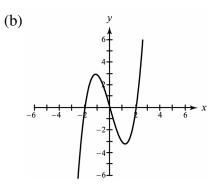
4. Use the graph of f to evaluate f(1).

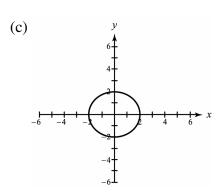


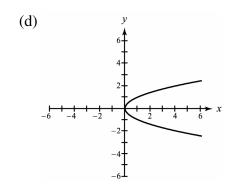
- (a) 2
- (b) 7
- (c) 1
- (d) 3

5. Determine the range of f.

- (a) $-4 \le y \le 2$ (b) $-2 \le y \le 2$ (c) $y \ge -4$
- (d) all real numbers
- 6. A function f is represented verbally by "Cube the input x and then add 4." 6. Give a symbolic representation of f.
 - (a) $f(x) = \sqrt[3]{x+4}$


(c) $f(x) = x^3 + 64$


(b) $f(x) = x^3 + 4$ (d) $f(x) = (x+4)^3$


7. Determine which graph represents a function.

7. _____

8. Find the domain of $f(x) = -\frac{2x}{x+4}$.

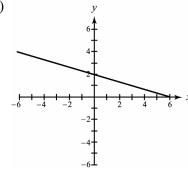
8. _____

9

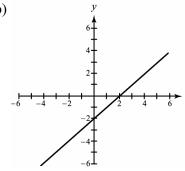
- (a) $x \neq -4$
- (b) $x \le 4$
- (c) $x \neq 0$
- (d) $x \ge 0$
- 9. Find the slope and y-intercept of the graph of the linear equation $y = 3x \frac{5}{2}$.
 - (a) $m = 3; \left(\frac{5}{6}, 0\right)$

(b) $m = -\frac{1}{3}; \left(-\frac{5}{2}, 0\right)$

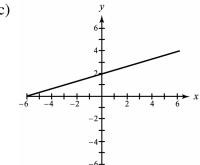
(c) $m = -\frac{1}{3}$; $\left(0, \frac{5}{6}\right)$

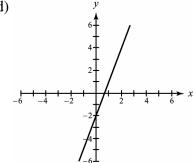

- (d) $m = 3; \left(0, -\frac{5}{2}\right)$
- 10. Find the slope of the line passing through $\left(\frac{3}{2},2\right)$ and $\left(1,\frac{1}{2}\right)$.

10. _____


- (a) 1
- (b) 3
- (c) $\frac{1}{3}$
- (d) -1

11. Determine which line has a slope of $\frac{1}{3}$.


(a)


(b)

(c)

(d)

12. Write the slope-intercept form of the line with x-intercept 3 and y-intercept $\frac{3}{4}$.

(a)
$$y = -\frac{1}{4}x + 3$$

(b)
$$y = 4x - 12$$

(b)
$$y = 4x - 12$$
 (c) $y = -\frac{1}{4}x + \frac{3}{4}$ (d) $y = 4x + 3$

(d)
$$y = 4x + 3$$

13. Find the slope-intercept form of the line passing through $(\frac{1}{2}, -2)$ and (0, -3).

(a)
$$y = \frac{1}{2}x + \frac{5}{4}$$
 (b) $y = \frac{1}{2}x - 3$ (c) $y = 2x - 3$ (d) $y = 2x + 1$

(b)
$$y = \frac{1}{2}x - 3$$

(c)
$$y = 2x - 3$$

(d)
$$y = 2x + 1$$

14. Let f be a linear function. Find the slope of the graph of f.

14. _____

х	-2	0	1	2	4
у	8	4	2	0	-4

(a)
$$-2$$

$$(c) -4$$

15. Let f be a linear function. Find the x- and y-intercepts of the graph of f.

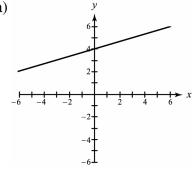
15. _____

x	-4	-2	-1	0	1
у	-6	0	3	6	9

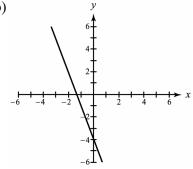
(a) x-int: (0,6) (b) x-int: (0,-2) (c) x-int: (6,0) (d) x-int: (-2,0)

y-int: (-2,0) y-int: (6,0) y-int: (0,-2) y-int: (0,6)

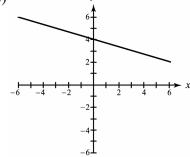
16. Give the slope-intercept form of a line perpendicular to $y = \frac{2}{3}x + 7$, passing through (4,-3).

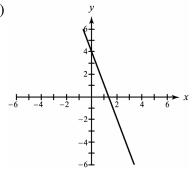

16. _____

(a) $y = -\frac{3}{2}x + 3$ (b) $y = \frac{2}{3}x - \frac{17}{3}$ (c) $y = \frac{2}{3}x - 7$ (d) $y = -\frac{3}{2}x - 3$


17. Find the graph of the linear equation y = -3x + 4.

17. _____


(a)


(b)

(c)

(d)

18. Find the equation of a line that passes through the origin and is perpendicular to the line given in #17.

18.

(a) y = -3x (b) $y = \frac{1}{3}x$ (c) x = -3y + 4 (d) $y = \frac{1}{3}x + 4$

- 19. Find an equation of the vertical line passing through the point $(\frac{3}{2}, -\frac{1}{2})$.
- 19. _____
- (a) $\frac{3}{2}x \frac{1}{2}y = 0$ (b) $x = \frac{3}{2}$ (c) $y = -\frac{1}{2}$ (d) $y = \frac{3}{2}x \frac{1}{2}$

- 20. Find an equation of the horizontal line passing through the point $\left(\frac{1}{2}, -\frac{3}{4}\right)$.

- (a) $y = -\frac{3}{4}$ (b) $y = \frac{1}{2}x \frac{3}{4}$ (c) $x = \frac{1}{2}$ (d) $\frac{1}{2}x \frac{3}{4}y = 0$