
Test Bank for Structure and Function of the Body 16th Edition by Patton

CLICK HERE TO ACCESS COMPLETE Test Bank

Test Bank

Chapter 02: Chemistry of Life

Patton: Structure & Function of the Body, 16th Edition

MULTIPLE CHOICE

c. Proton

ANS: A

OBJ: 2

d. Neutrons and protons

1.	Which of the following a. Ion b. Proton c. Neutron d. Electron	ng is no	t a subatomic particle that makes up	the aton	n?
	ANS: A OBJ: 2		Remembering Atoms	REF:	p. 21
2.	The atomic number of a. electrons. b. neutrons. c. protons. d. neutrons and prot		om is equal to the number of:		
	ANS: C OBJ: 2		Remembering Atoms	REF:	p. 21
3.	The atomic mass of a a. electrons. b. neutrons. c. protons. d. neutrons and prot		is equal to the number of:		
	ANS: D OBJ: 2		Remembering Atoms	REF:	p. 21
4.	This subatomic particle. a. Electron b. Neutron c. Proton d. neutrons and prot		und in the nucleus of the atom.		
	ANS: D OBJ: 2		Remembering Atoms	REF:	p. 21
5.	This subatomic partica. Electron	cle is fo	und in orbitals around the nucleus of	the ator	n.

DIF: Remembering

TOP: Atoms

REF: p. 21

	CLICK HER	E TO	ACCESS	THE	COME	LETE	Test	Bank	
6.	This is not a characte a. contributes to the b. contributes to the c. is located in the n d. carries a negative	atom's atom's aucleus	atomic nu atomic ma of the atom	ass.					
	ANS: D OBJ: 2	DIF: TOP:	Remembe	ering				REF:	p. 21
7.	This is not a characte a. contributes to the b. contributes to the c. is located in the n d. has no electrical of	atom's atom's aucleus	atomic nu atomic ma	mber. ass.					
	ANS: A OBJ: 2	DIF: TOP:	Remember Atoms	ering				REF:	p. 21
8.	This is not a characte a. is in an orbital ard b. has a negative ele c. contributes to the d. move about in ch	ound the ectrical of atom's	e nucleus o charge. atomic nu	of the mber.					
	ANS: C OBJ: 2	DIF: TOP:	Remember Atoms	ering				REF:	p. 21
9.	A particular atom has atom is: a. 49. b. 32. c. 33. d. 16.	s 16 pro	tons, 17 ne	eutron	s, and	16 elec	etrons. T	The aton	nic number of this
	ANS: D TOP: Atoms	DIF:	Applying	,	REF:	p. 21		OBJ:	2
10.	A particular atom has atom is: a. 49.	s 16 pro	tons, 17 ne	eutron	s, and	16 elec	etrons. T	The aton	nic mass of this

- b. 32.
- c. 33.
- d. 16.

ANS: C DIF: Applying REF: p. 21 OBJ: 2

TOP: Atoms

- 11. The second energy level of an atom:
 - a. has four orbitals.
 - b. can hold eight electrons.
 - c. is a lower energy level then the first energy level.

d. can hold only two electrons.

ANS: B DIF: Applying REF: p. 21 | p. 22 OBJ: 2

TOP: Atoms

12. Compounds are:

- a. pure substances.
- b. made up of only one type of atom.
- c. made up of two or more different types of atoms.
- d. make up 96% of the human body.

ANS: C DIF: Remembering REF: p. 22

OBJ: 1 TOP: Elements, molecules, and compounds

- 13. The formula for oxygen gas is O₂; this means it is:
 - a. made up of two atoms of oxygen.
 - b. a molecule.
 - c. a compound.
 - d. made up of two atoms of oxygen and is a molecule.

ANS: D DIF: Applying REF: p. 22 OBJ: 1

TOP: Elements, molecules, and compounds

- 14. If an atom had 20 protons and 18 electrons, it would:
 - a. have a negative 2 charge.
 - b. have a plus 2 charge.
 - c. be attracted to a positively charged ion.
 - d. have a negative 2 charge and be attracted to a positively charged atom.

ANS: B DIF: Applying REF: p. 22 | p. 23 OBJ: 3

TOP: Ionic bonds

- 15. Ionic bonds:
 - a. usually dissolve easily in water.
 - b. produced ions when dissolved in water.
 - c. are formed by atoms of opposite charge.
 - d. usually dissolve easily in water.

ANS: D DIF: Remembering REF: p. 22 | p. 23

OBJ: 3 TOP: Ionic bonds

- 16. Covalent bonds:
 - a. dissociate in water.
 - b. are formed when electrons are shared between atoms.
 - c. are formed by atoms of opposite charge.
 - d. dissociate in water and are formed by atoms of opposite charge.

ANS: B DIF: Remembering REF: p. 24

OBJ: 3 TOP: Covalent bonds

- 17. Organic compounds must contain:
 - a. oxygen.

- b. carbon–oxygen bonds.
- c. hydrogen-oxygen bonds.
- d. electrical charges in regions when tiny hydrogen atoms are not able to equally share their electrons.

ANS: D DIF: Remembering REF: p. 24

OBJ: 4 TOP: Inorganic chemistry

- 18. Which of the following is not true of water?
 - a. Water is the most abundant organic compound in the body.
 - b. Water is found both in and around the cells of the body.
 - c. Water is the solvent in which most other compounds are dissolved.
 - d. Water is essential to life.

ANS: A DIF: Remembering REF: p. 25

OBJ: 5 TOP: Water

- 19. In a dehydration synthesis reaction:
 - a. water is a reactant.
 - b. water is a product.
 - c. a large molecule is broken down into a smaller one.
 - d. water is both a reactant and a large molecule broken down into a smaller one.

ANS: B DIF: Remembering REF: p. 25

OBJ: 5 TOP: Water chemistry

- 20. In a dehydration synthesis reaction:
 - a. hydrogen and oxygen are removed from the reactants.
 - b. water is added to the reactants.
 - c. water is broken down into hydrogen and oxygen.
 - d. water is broken down into other reactants.

ANS: A DIF: Remembering REF: p. 25

OBJ: 5 TOP: Water chemistry

- 21. In a hydrolysis reaction:
 - a. water is a product.
 - b. water is a reactant.
 - c. water is broken down into hydrogen and oxygen.
 - d. the product is larger than either reactant.

ANS: B DIF: Remembering REF: p. 25

OBJ: 5 TOP: Water chemistry

- 22. Which of the following statements is true?
 - a. The process of hydrolysis is used to build a larger molecule from smaller molecules.
 - b. Water is an end product of a hydrolysis reaction.
 - c. The process of dehydration synthesis is used to build a larger molecule from smaller molecules.
 - d. Water is a reactant in a dehydration synthesis reaction.

ANS: C DIF: Remembering REF: p. 25

OBJ: 5 TOP: Water chemistry

23. Which is not true of the following chemical equation? $K^+ + Cl^- = KCl$

- a. The equation indicates that there are two reactants.
- b. The equation indicates that there is one product.
- c. The equation indicates that the reaction occurs in both directions equally.
- d. The equation indicates that there are three products.

ANS: C DIF: Remembering REF: p. 25

OBJ: 4 TOP: Water chemistry

- 24. An acid:
 - a. has a pH greater than 7.
 - b. has a pH less than 7.
 - c. has more OH⁻ ions than H⁺ ions in solution.
 - d. has a pH that is neutral.

ANS: B DIF: Remembering REF: p. 26

OBJ: 6 TOP: Acids, bases, and salts

- 25. A base:
 - a. has a pH greater than 7.
 - b. has a pH less than 7.
 - c. has more OH⁻ ions than H⁺ ions in solution.
 - d. has a pH greater than 7 and has more OH⁻ ions than H⁺ ions in solution.

ANS: D DIF: Remembering REF: p. 26

OBJ: 6 TOP: Acids, bases, and salts

- 26. A solution with a pH of 6:
 - a. is an acid.
 - b. is a base.
 - c. has 10 times more H⁺ ions than a solution with a pH of 5.
 - d. is neutral.

ANS: A DIF: Remembering REF: p. 26

OBJ: 6 TOP: Acids, bases, and salts

- 27. A solution with a pH of 11:
 - a. is an acid.
 - b. is a base.
 - c. has 10 times more OH⁻ ions than a solution with a pH of 10.
 - d. is a base and has 10 times more OH⁻ ions than a solution with a pH of 10.

ANS: D DIF: Remembering REF: p. 26

OBJ: 6 TOP: Acids, bases, and salts

- 28. When the body removes CO_2 by way of the respiratory system:
 - a. it lowers the pH of the blood.
 - b. it raises the pH of the blood.

c. it has no effect on pH because CO₂ is neither an acid nor a base.

d. it is acting as a buffer.

ANS: B DIF: Remembering REF: p. 26 | p. 27

OBJ: 6 TOP: Homeostasis of pH

29. If a strong acid were added to one container of pure water and an equal amount of a weak acid were added to a second container of pure water:

- a. the pH of both containers would go up equally.
- b. the pH of both containers would go down equally.
- c. the pH of the container with the strong acid would go up more than the container with the weak acid.
- d. the ions of the container with the strong acid may neutralize each other.

ANS: D DIF: Applying REF: p. 26 | p. 27 OBJ: 6

TOP: Acids, bases, and salts

30. Which of the following is a monosaccharide?

- a. Glucose
- b. Sucrose
- c. Lactose
- d. Glucagon

ANS: A DIF: Remembering REF: p. 27

OBJ: 7 TOP: Carbohydrates

31. Which of the following is a disaccharide?

- a. Glucose
- b. Sucrose
- c. Starch
- d. Glycogen

ANS: B DIF: Remembering REF: p. 27

OBJ: 7 TOP: Carbohydrates

32. Which of the following is a polysaccharide?

- a. Glucose
- b. Lactose
- c. Sucrose
- d. Glycogen

ANS: D DIF: Remembering REF: p. 27

OBJ: 7 TOP: Carbohydrates

33. Liver cells and muscle cells are able to store chains of glucose in a molecule called:

- a. glycogen.
- b. polyglucose.
- c. sucrose.
- d. lactose.

ANS: A DIF: Remembering REF: p. 27

OBJ: 7 TOP: Carbohydrates

- 34. Which of the following is not true of triglycerides? a. A part of the molecule attracts water. b. The molecule contains three fatty acids. c. The molecule contains glycerol. d. Triglycerides are used by the body to store energy. ANS: A DIF: Remembering REF: p. 28 OBJ: 7 TOP: Lipids 35. Which of the following is not true of phospholipids? a. The molecule contains three fatty acids. b. The molecule has a water-attracting part. c. The molecule has a water-repelling part. d. It is important in the structure of the cell membrane. ANS: A DIF: Remembering REF: p. 28 TOP: Phospholipids OBJ: 7 36. Which of the following is not true of cholesterol? a. It is a steroid lipid. b. It helps stabilize the cell membrane. c. It contains only two fatty acids. d. It is the starting point for making the hormone estrogen. ANS: C DIF: Remembering REF: p. 29 OBJ: 7 TOP: Steroids 37. This lipid can be found in the cell membrane: a. triglycerides. b. phospholipids. c. cholesterol. d. phospholipids and cholesterol. ANS: D DIF: Remembering REF: p. 29 OBJ: 7 TOP: Lipids 38. Which of the following is a structural protein? a. Hormones
 - b. Collagen
 - c. Growth factor
 - d. Enzymes

ANS: B DIF: Remembering REF: p. 30

OBJ: 7 TOP: Proteins

- 39. The "lock and key" model is use to describe the functioning of:
 - a. enzymes.
 - b. collagen molecules.
 - c. keratin molecules.
 - d. enzymes and keratin molecules.

REF: p. 30 ANS: A DIF: Remembering OBJ: 7 TOP: Proteins 40. Which of the following is not true of enzymes? a. They function on the lock and key model. b. They are functional proteins. c. They are catalysts. d. They are not essential for chemical reactions. ANS: D DIF: Remembering REF: p. 30 OBJ: 7 TOP: Proteins 41. This molecule is found in DNA but not RNA: a. guanine. b. thymine. c. uracil. d. adenine. ANS: B Remembering DIF: REF: p. 30 OBJ: 7 TOP: Nucleic acids 42. This molecule is found in DNA but not RNA: a. adenine. b. ribose sugar. c. deoxyribose sugar. d. phosphate. ANS: C DIF: Remembering REF: p. 30 TOP: Nucleic acids OBJ: 7 43. This molecule is found in RNA but not DNA: a. guanine. b. thymine. c. uracil. d. adenine. ANS: C DIF: Remembering REF: p. 30 OBJ: 7 TOP: Nucleic acids 44. This molecule is found in RNA but not DNA: a. ribose sugar. b. deoxyribose sugar. c. adenine. d. cytosine. ANS: A Remembering DIF: REF: p. 30 OBJ: 7 TOP: Nucleic acids 45. This subatomic particle does not contribute to the mass of an atom:

a. proton.b. neutron.

	c. elect	ron. ons and electr	ons.					
	ANS: COBJ: 2			Remembering Atoms			REF:	p. 21
46.	both of t	them. The sod tron. The che e: Na. Na ₂ . S.	lium ato		ectrons	s in its outer en	ergy lev	lling to donate rel and will accept ium and sodium
	ANS: E	onic bonds	DIF:	Creating	REF:	p. 21 p. 22	OBJ:	3
47.	a. Kidnb. Lungc. Splee	neys by formings by exhaling en by filtering	ng urine g carbor g the blo	n dioxide	-	-	dy fluid	s?
	ANS: I			Remembering Homeostasis o	f pH		REF:	p. 26
48.	a. Phosb. Cholc. Trigl	of the following pholipids lesterol lycerides and pholipids and		s do not contain	fatty a	acids?		
	ANS: E		DIF: TOP:	Remembering Lipids			REF:	p. 29
49.	a. Phosb. Cholc. Trigl	spholipids lesterol		s are used as sta	rting p	oints in the ma	ıking of	hormones?
	ANS: E		DIF: TOP:	Remembering Lipids			REF:	p. 29
50.	a. one ofb. two ofc. eight	om, each orbit electron. electrons. t electrons. ogen can hold		nold: nd the rest of the	e atom	s can hold eigh	ıt.	
	ANS: E	_	DIF:	Remembering			REF:	p. 21

	OBJ:	2	TOP:	Atoms		
51.	a. mo b. mo c. the		n electro an proto of proto			
	ANS: OBJ:			Remembering Clinical Application: Radioactive Is	REF: otopes	p. 23
52.	a. Prob. Ne c. Ele	oton utron		es a positive electrical charge?		
	ANS: OBJ:			Remembering Atoms	REF:	p. 21
53.	a. Prob. Ne c. Ele	oton utron		und in the nucleus of the atom?		
	ANS: OBJ:			Remembering Atoms	REF:	p. 21
54.	a. Prob. Ne c. Ele	oton utron		und in orbitals surrounding the nucle	as of the	e atom?
	ANS: OBJ:			Remembering Atoms	REF:	p. 21
55.	a. Prob. Nec. Ele	oton utron		es no electrical charge?		
	ANS: OBJ:		DIF: TOP:	Remembering Atoms	REF:	p. 21
56.	Which a. Pro b. Ne c. Ele	oton utron	ng conti	ributes to the atom's atomic mass?		

REF: p. 21

Remembering

d. Both proton and neutron

DIF:

TOP: Atoms

ANS: D

OBJ: 2

57. Which of the following contributes to the atom's atomic number? a. Proton b. Neutron c. Electron d. Both proton and neutron ANS: A DIF: Remembering REF: p. 21 OBJ: 2 TOP: Atoms 58. Which of the following carries a negative electrical charge? a. Proton b. Neutron c. Electron d. Both proton and neutron ANS: C DIF: Remembering REF: p. 21 OBJ: 2 TOP: Atoms 59. Which of the following contain three fatty acids and a molecule of glycerol? a. Enzymes b. Triglycerides c. Phospholipids d. Disaccharides ANS: B DIF: Remembering REF: p. 28 OBJ: 7 TOP: Lipids 60. Which of the following is an example of a monosaccharide? a. Glucose b. Lactose c. Glycogen d. Starch DIF: Remembering ANS: A REF: p. 27 OBJ: 7 TOP: Carbohydrates 61. Which of the following has thymine as one of its nucleotides? a. DNA b. RNA c. mRNA d. ATP ANS: A Remembering DIF: REF: p. 30 OBJ: 7 TOP: Nucleic acids 62. Which of the following is a lipid with a water-attracting and water-repelling part of its molecule?

	CHICK HER	10	ACCEDS THE CONFIDENCE TOSC	Dank	
	a. Triglyceridesb. Cholesterolc. Phospholipidsd. ATP				
	ANS: C OBJ: 7	DIF: TOP:	Remembering Lipids	REF:	p. 28
63.	Which of the following a. Enzymes b. Collagen c. Glycogen d. Starch	ng is an	example of a structural protein?		
	ANS: B OBJ: 7	DIF: TOP:	Remembering Proteins	REF:	p. 30
64.	Which of the following a. Collagen b. Glycogen c. Enzymes d. Starch	ng is an	example of a functional protein?		
	ANS: C OBJ: 7	DIF: TOP:	Remembering Proteins	REF:	p. 30
65.	Which of the following membrane? a. Triglycerides b. Phospholipids c. Both triglycerides d. Neither triglyceri	s and ph		lesterol	in the cell
	ANS: B OBJ: 7	DIF: TOP:	Remembering Phospholipids	REF:	p. 29
66.	Which of the following a. DNA b. RNA c. Both DNA and R d. Neither DNA or I	NA	nucleic acid with a double helix struc	ture?	
	ANS: A OBJ: 7	DIF: TOP:	Remembering Nucleic acids	REF:	p. 30
67.	Which of the following a. Collagen b. Glycogen c. Enzymes d. Starch	ng is a p	protein whose function is explained b	y the lo	ck and key model?

ANS: C DIF: Remembering REF: p. 30

	OBJ: 7	TOP:	Proteins		
68.	Which of the follo a. DNA b. RNA c. Both DNA and d. Neither DNA of	l RNA	uracil as one of its nucleotides?		
	ANS: B OBJ: 7		Remembering Nucleic acids	REF:	p. 30
69.	Which of the follo a. Glucose b. Dextrose c. Glycogen d. Lactose	wing is an	example of a disaccharide?		
	ANS: D OBJ: 7		Remembering Carbohydrates	REF:	p. 27
70.	Which of the followers testosterone? a. Lactose b. Collagen c. DNA d. Cholesterol	wing is a s	starting substance for making the ho	ormones e	estrogen and
	ANS: D OBJ: 7		Remembering Steroids	REF:	p. 29
71.	Which of the follo a. DNA b. RNA c. Enzymes d. Phospholipids	wing acts	as a chemical catalyst?		
	ANS: C OBJ: 7	DIF: TOP:	Ç	REF:	p. 30
72.	Which of the follo a. Glucose b. Glycogen c. Dextrose d. Lactose	wing is an	example of a polysaccharide?		
	ANS: B OBJ: 7	DIF: TOP:	Remembering Carbohydrates	REF:	p. 27
73.	Which of the follo a. Cholesterol b. Triglycerides	wing is the	e steroid lipid?		

- c. Enzymes
- d. Phospholipids

ANS: A DIF: Remembering REF: p. 29

OBJ: 7 TOP: Lipids

- 74. This element is not one of the elements that make up 96% of the body.
 - a. Nitrogen
 - b. Hydrogen
 - c. Oxygen
 - d. Sodium

ANS: D DIF: Remembering REF: p. 22

OBJ: 1 TOP: Elements, molecules, and compounds

- 75. This is a way the body can remove excess H⁺ ions from the body:
 - a. excreting them in the urine.
 - b. exhaling CO₂ from the lungs.
 - c. using a buffer.
 - d. urine excretion, exhalation of CO₂, and buffers.

ANS: D DIF: Remembering REF: p. 26

OBJ: 6 TOP: Homeostasis of pH

- 76. This modified nucleotide plays an important role in energy-transfer in the body:
 - a. adenosine triphosphate.
 - b. enzymes.
 - c. mRNA.
 - d. glycoproteins.

ANS: A DIF: Remembering REF: p. 30

OBJ: 7 TOP: Nucleic acids

- 77. Low blood pH results in a condition called:
 - a. alkalosis.
 - b. acidosis.
 - c. atherosclerosis.
 - d. hydrolysis.

ANS: B DIF: Remembering REF: p. 26

OBJ: 6 TOP: Homeostasis of pH

MATCHING

Match the name of the element with the correct symbol.

- a. Potassium
- b. Phosphorus
- c. Sodium
- d. Calcium
- e. Carbon
- f. Hydrogen

- g. Chlorine
- h. Nitrogen
- 1. C
- 2. Ca
- 3. Cl
- 4. H
- 5. Na
- 6. P
- 7. K
- 8. N
- 1. ANS: E DIF: Remembering REF: p. 22 TOP: Elements, molecules, and compounds OBJ: 1 2. ANS: D DIF: Remembering REF: p. 22 TOP: Elements, molecules, and compounds OBJ: 1 3. ANS: G DIF: Remembering REF: p. 22 TOP: Elements, molecules, and compounds OBJ: 1 4. ANS: F DIF: Remembering REF: p. 22 OBJ: 1 TOP: Elements, molecules, and compounds REF: p. 22 5. ANS: C DIF: Remembering TOP: Elements, molecules, and compounds OBJ: 1 6. ANS: B DIF: Remembering REF: p. 22 TOP: Elements, molecules, and compounds OBJ: 1 7. ANS: A DIF: Remembering REF: p. 22 OBJ: 1 TOP: Elements, molecules, and compounds 8. ANS: H DIF: Remembering REF: p. 22 OBJ: 1 TOP: Elements, molecules, and compounds

Match the term with its definition or explanation.

- a. Proton
- b. Electron
- c. Neutron
- d. Atomic mass
- e. Atomic number
- f. Element
- g. Compound
- h. Hydrolysis
- i. Acid
- j. Base
- k. Covalent bond
- 1. Ionic bond
- m. Water
- n. Buffer
- o. Electrolytes
- p. Dehydration synthesis
- 9. A process where a molecule of water is used to make large compounds smaller
- 10. A substance composed of more than one type of element

- 11. When an ionic compound dissociates in water, it forms these
- 12. Bond formed by the attraction of opposite charges
- 13. A subatomic particle with a positive charge
- 14. The most important inorganic compound in the body
- 15. A substance that resists a change in pH
- 16. A subatomic particle with a negative charge
- 17. The sum of the protons and neutrons in an atom
- 18. The number of protons in an atom
- 19. A pure substance made up of only one kind of atom
- 20. A subatomic particle with no charge
- 21. A substance that increases the concentration of H⁺ ions in a solution
- 22. A bond formed when electrons are shared
- 23. A substance that increases the concentration of OH⁻ ions in a solution
- 24. A process where a molecule of water is removed to make two small molecules into one larger molecule

9.	ANS:	Н	DIF:	Remembering	REF:	p. 25
	OBJ:	5	TOP:	Water chemistry		
10.	ANS:	G	DIF:	Remembering	REF:	p. 22
	OBJ:	1	TOP:	Elements, molecules, and compound	ls	
11.	ANS:	O	DIF:	Remembering	REF:	p. 23
	OBJ:	3	TOP:	Ionic bonds		
12.		L	DIF:	Remembering	REF:	p. 23
	OBJ:	3	TOP:	Ionic bonds		
13.	ANS:	A	DIF:	Remembering	REF:	p. 21
	OBJ:	2	TOP:	Atoms		
14.	ANS:	M	DIF:	Remembering	REF:	p. 25
	OBJ:	5	TOP:	Water		
15.	ANS:	N	DIF:	Remembering	REF:	p. 27
	OBJ:	6	TOP:	Acids, bases, and salts		
16.	ANS:	В	DIF:	Remembering	REF:	p. 21
	OBJ:	2	TOP:	Atoms		
17.	ANS:	D	DIF:	Remembering	REF:	p. 21
	OBJ:	2	TOP:	Atoms		
18.	ANS:	E	DIF:	Remembering	REF:	p. 21
	OBJ:	2	TOP:	Atoms		
19.	ANS:	F	DIF:	Remembering	REF:	p. 22
	OBJ:	1	TOP:	Elements, molecules, and compound	ls	
20.	ANS:	C	DIF:	Remembering	REF:	p. 21
	OBJ:	2	TOP:	Atoms		
21.	ANS:	I	DIF:	Remembering	REF:	p. 26
	OBJ:	6	TOP:	Acids, bases, and salts		
22.	ANS:	K	DIF:	Remembering	REF:	p. 24
	OBJ:	3	TOP:	Covalent bonds		
23.	ANS:	J	DIF:	Remembering	REF:	p. 26
	OBJ:	6	TOP:	Acids, bases, and salts		
24.	ANS:	P	DIF:	Remembering	REF:	p. 25

OBJ: 5 TOP: Water chemistry

Match the term with the definition or explanation.

- a. Glucose
- b. Enzyme
- c. Triglyceride
- d. Glycogen
- e. Cholesterol
- f. Adenosine triphosphate
- g. RNA
- h. Phospholipids
- i. Collagen
- j. DNA
- 25. This is an example of a functional protein.
- 26. This nucleic acid has thymine as one of its nitrogen bases.
- 27. This lipid has a side that attracts water and another side that repels water and is important in formation of cell membranes.
- 28. This is the monosaccharide that the body prefers for its source of energy.
- 29. This is an example of a structural protein.
- 30. This nucleic acid has uracil as one of its nitrogen bases.
- 31. This lipid is made up of a molecule of glycerol and three fatty acids.
- 32. This is a special type of nucleotide that is used to transfer energy in the body.
- 33. This is a lipid that is used in the making of a number of hormones in the body.
- 34. This is the polysaccharide that the human body stores for energy.

25.	ANS:	В	DIF:	Remembering	REF:	p. 30
	OBJ:	7	TOP:	Proteins		
26.	ANS:	J	DIF:	Remembering	REF:	p. 30
	OBJ:	7	TOP:	Nucleic acids		
27.	ANS:	Н	DIF:	Remembering	REF:	p. 28
	OBJ:	7	TOP:	Lipids		
28.	ANS:	A	DIF:	Remembering	REF:	p. 27
	OBJ:	7	TOP:	Carbohydrates		
29.	ANS:	I	DIF:	Remembering	REF:	p. 30
	OBJ:	7	TOP:	Protein		
30.	ANS:	G	DIF:	Remembering	REF:	p. 30
	OBJ:	7	TOP:	Nucleic acids		
31.	ANS:	C	DIF:	Remembering	REF:	p. 28
	OBJ:	7	TOP:	Lipids		
32.	ANS:	F	DIF:	Remembering	REF:	p. 30
	OBJ:	7	TOP:	Nucleic acids		
33.	ANS:	E	DIF:	Remembering	REF:	p. 29
	OBJ:	7	TOP:	Lipids		
34.	ANS:	D	DIF:	Remembering	REF:	p. 27
	OBJ:	7	TOP:	Carbohydrates		

TRUE/FALSE

1.	Matter can be defined as anything that occupies space and has mass.										
	ANS: OBJ:	T 1		Remembering Levels of che	-	rganization	REF:	p. 21			
2.		have never be theory.	en seen	by scientists, b	out their	presence is str	ongly s	upported by the			
	ANS: OBJ:		DIF: TOP:	Remembering Atoms	5		REF:	p. 21			
3.	The pr	oton of the ato	m carrie	es a positive ele	ectrical	charge.					
	ANS: OBJ:	T 2		Remembering Atoms	5		REF:	p. 21			
4.	The proton of the atom is found in orbitals around the nucleus.										
		F 2		Remembering Atoms	2		REF:	p. 21			
5.	The proton of an atom is found in the nucleus.										
	ANS: OBJ:	T 2		Remembering Atoms	7		REF:	p. 21			
6.	An ato	om with 15 pro	tons wo	uld have an ato	omic ma	ass of 15.					
		F Atoms	DIF:	Applying	REF:	p. 21	OBJ:	2			
7.	An ato	om with 15 pro	tons wo	uld have an ato	omic nu	mber of 15.					
	ANS: TOP:	T Atoms	DIF:	Applying	REF:	p. 21	OBJ:	2			
8.	An ato	om with 15 pro	tons and	l 15 electrons v	would h	ave an atomic 1	mass of	30.			
	ANS: TOP:	F Atoms	DIF:	Applying	REF:	p. 21	OBJ:	2			
9.	An ato	om with 15 pro	tons and	l 15 neutrons w	vould ha	ave an atomic r	nass of	30.			
	ANS: TOP:	T Atoms	DIF:	Applying	REF:	p. 21	OBJ:	2			
10.	Neutro	ons have no ele	ctrical c	charge.							

	ANS: OBJ:	T 2	DIF: TOP:	Remembering Atoms	REF:	p. 21		
11.	Neutro	ons and electron	ns are fo	ound in the nucleus of the atom.				
		F 2		Remembering Atoms	REF:	p. 21		
12.	Neutro	ons contribute t	o the at	omic number of an atom.				
	ANS: OBJ:			Remembering Atoms	REF:	p. 21		
13.	Neutro	ons contribute t	o the at	omic mass of the atom.				
	ANS: OBJ:	T 2		Remembering Atoms	REF:	p. 21		
14.	Electro	ons carry a neg	ative ele	ectrical charge.				
		T 2		Remembering Atoms	REF:	p. 21		
15.	The number of electrons plus the number of protons is equal to the atomic number of an atom.							
	ANS: OBJ:	F 2		Remembering Atoms	REF:	p. 21		
16.	All orb	oitals of an ator	n can h	old two electrons.				
	ANS: OBJ:	T 2	DIF: TOP:	Remembering Atoms	REF:	p. 21		
17.	All end	ergy levels of a	n atom	can hold four orbitals.				
	ANS: OBJ:		DIF: TOP:	C	REF:	p. 21		
18.	All end	ergy levels can	hold ei	ght electrons.				
	ANS: OBJ:		DIF: TOP:	Remembering Atoms	REF:	p. 21		
19.	The fin	rst energy level	of an a	tom can hold only two orbitals.				
	ANS: OBJ:		DIF: TOP:	<u>e</u>	REF:	p. 22		

20.	The fir	rst energy level	of an a	tom is closest t	to the nu	ucleus and is th	ne lowes	t energy level.
	ANS: OBJ:	T 2	DIF: TOP:	Remembering Atoms	7		REF:	p. 22
21.	The te	rms <i>energy lev</i>	el and e	lectron orbital	are inte	erchangeable.		
	ANS: OBJ:	F 2		Remembering Atoms	,		REF:	p. 21
22.	Eleme	nts are pure su	ostances	S.				
	ANS: OBJ:	T 1	DIF: TOP:	Remembering Elements, mo	-	and compound	REF: ds	p. 22
23.	The te	rms <i>molecule</i> a	nd com	pound are inter	change	able.		
		F 1		Remembering Elements, mo		and compound	REF:	p. 22
24.	A form	-	ound tel	lls you the num	iber and	types of eleme	ents tha	t make up that
		T 1		Remembering Elements, mo	-	and compound	REF: ds	p. 22
25.	The ele	ements sodium	, oxyge	n, hydrogen, ai	nd nitro	gen make up 9	6% of tl	ne human body
		F 1	DIF: TOP:	Remembering Elements, mo	_	and compound	REF: ds	p. 22
26.	An ato	m is said to be	chemic	ally stable whe	en its ou	iter energy leve	el is full	
		T 3		Remembering Chemical bon	-		REF:	p. 22
27.	An ato	om with one mo	ore elect	tron than proto	n would	l have a plus or	ne charg	ge.
	ANS: TOP:	F Ionic bonds	DIF:	Applying	REF:	p. 23	OBJ:	3
28.	In orde		o be an	ion, the number	er of ele	ectrons cannot (equal th	e number of
	ANS: TOP:	T Ionic bonds	DIF:	Applying	REF:	p. 23	OBJ:	3
29.	When	ionic compoun	ds disso	olve in water, th	hey tend	d to dissociate	into ion	s.

	ANS: OBJ:			Remembering Ionic bonds	5		REF:	p. 23		
30.	The io	ns that are diss	olved ir	water are call	ed elec	trolytes.				
	ANS: OBJ:			Remembering Ionic bonds	5		REF:	p. 23		
31.	The sy	mbol for a sod	ium ato	m that has lost	one ele	ectron would be	Na.			
	ANS: TOP:	F Ionic bonds	DIF:	Applying	REF:	p. 23	OBJ:	3		
32.	The sy	mbol for a sod	ium ato	m that has lost	one ele	ectron would be	Na ⁺ .			
	ANS: TOP:	T Ionic bonds	DIF:	Applying	REF:	p. 23	OBJ:	3		
33.	Atom X has eight electrons, two in its first energy level and six in its second energy level. It would most likely form an ion with a plus two charge.									
	ANS: TOP:	F Ionic bonds	DIF:	Creating	REF:	p. 23	OBJ:	3		
34.	Covale	ent bonds do no	ot usual	ly dissociate in	water.					
	ANS: OBJ:			Remembering Covalent bond	•		REF:	p. 24		
35.	Covale	ent bonds disso	ciate in	to ions when di	issolve	d in water.				
	ANS: OBJ:			Remembering Covalent bond	•		REF:	p. 24		
36.	All co	mpounds in the	human	body are, by d	lefinitio	on, organic com	pounds			
	ANS: OBJ:		DIF: TOP:	Remembering Inorganic che	•		REF:	p. 24		
37.	Organ	ic compounds i	must ha	ve either a C–C	C or C-	H bond.				
	ANS: OBJ:		DIF: TOP:	Remembering Inorganic che	•		REF:	p. 24		
38.	Water	is an inorganic	compo	und.						
	ANS: OBJ:		DIF: TOP:	Remembering Water	5		REF:	p. 25		

39. Aqueous solutions have water as the solvent.

		T 5		Remembering Solutions	REF:	p. 25			
10.	In a dehydration synthesis reaction, water is always a reactant.								
	ANS: OBJ:			Remembering Water chemistry	REF:	p. 25			
11.	In a dehydration synthesis reaction, water is always a product.								
	ANS: OBJ:			Remembering Water chemistry	REF:	p. 25			
12.	In deh	ydration synthe	sis reac	etion, smaller reactants are joined to f	orm a la	arger product.			
	ANS: OBJ:			Remembering Water chemistry	REF:	p. 25			
13.	In the	process of hydi	olysis,	a molecule of water is broken down t	o hydro	ogen and oxygen.			
	ANS: OBJ:			Remembering Water chemistry	REF:	p. 25			
14.	In hyd moleci		s used t	o break the bonds of a larger molecul	e and c	onvert it to smaller			
	ANS: OBJ:			Remembering Water chemistry	REF:	p. 25			
15.	In a hy	drolysis reaction	on, wate	er is always an end product.					
	ANS: OBJ:	F 5		Remembering Water chemistry	REF:	p. 25			
1 6.	Hydro	lysis is virtually	y the re	verse of a dehydration synthesis react	ion.				
	ANS: OBJ:			Remembering Water chemistry	REF:	p. 25			
ŀ7.	Acids	produce an exc	ess of H	H ⁺ ions.					
		T 6		Remembering Acids, bases, and salts	REF:	p. 26			
18.	Bases	produce an exc	ess of C	OH⁻ ions.					

	ANS: OBJ:			Remembering lacids, bases, and salts				p. 26		
49.	An inc	An increase in H ⁺ ions will cause an increase in the pH value.								
	ANS: OBJ:			Remembering Acids, bases,	•	ts	REF:	p. 26		
50.	An inc	an increase in pH value would mean more H ⁺ ions are in solution.								
	ANS: TOP:	F Acids, bases,	DIF: and salt	Applying	REF:	p. 26	OBJ:	6		
51.	A solu	tion with a pH	of 4 has	s 100 times mo	re H ⁺ io	ons than a solut	ion wit	h a pH of 2.		
	ANS: TOP:	F Acids, bases,	DIF: and salt	Applying	REF:	p. 26	OBJ:	6		
52.	A solu	tion with a pH	of 3 has	s 10 times more	e H ⁺ io	ns than a solution	on with	a pH of 4.		
	ANS: TOP:	T Acids, bases,		Applying	REF:	p. 26	OBJ:	6		
53.	A solu	tion that has a	greater	concentration of	of OH ⁻	ions than H ⁺ io	ns woul	ld be called a base.		
	ANS: OBJ:		DIF: TOP:		•	ts	REF:	p. 26		
54.		ng acid added t lded to the solu		ition would rais	se the p	H more than th	e same	amount of a weak		
	ANS: TOP:	F Acids, bases,		Applying	REF:	p. 26	OBJ:	6		
55.	. When a neutralization reaction occurs between a strong acid and base, one of the end products is water.									
	ANS: OBJ:		DIF: TOP:	Remembering Acids, bases,	•	ts	REF:	p. 26		
56.	A buff	er is a chemica	ıl that h	elps prevent a s	sudden	change in pH.				
	ANS: OBJ:		DIF: TOP:	Memorization Homeostasis			REF:	p. 27		
57.	The w	ord <i>carbohydra</i>	ate litera	ally means "su	gar."					
	ANS: OBJ:		DIF: TOP:	Remembering Carbohydrate	•		REF:	p. 27		

58.	Both sucrose and lactose are monosaccharides.							
	ANS: OBJ:			Remembering Carbohydrates			REF:	p. 27
59.	O. Glucose is used by the body as a source of energy.							
	ANS: OBJ:	T 7		Remembering Carbohydrates			REF:	p. 27
60.	60. Both sucrose and lactose are disaccharides.							
	ANS: OBJ:	T 7		Remembering Carbohydrates			REF:	p. 27
61.	A mol	ecule of glycog	gen cont	ains more sacch	naride ı	units than a mo	lecule o	of sucrose.
	ANS: TOP:	T Carbohydrate		Applying	REF:	p. 27	OBJ:	7
62.	A mol	ecule of glucos	se has m	ore saccharide	units th	nan a molecule	of lacto	ese.
		F Carbohydrate		Applying	REF:	p. 27	OBJ:	7
63.	Muscl	es store chains	of gluce	ose in a molecul	le calle	ed dextrose.		
	ANS: OBJ:	F 7		Remembering Carbohydrates			REF:	p. 27
64.	Glycog	gen and starch	are both	n polysaccharide	es.			
	ANS: OBJ:			Remembering Carbohydrates			REF:	p. 27
65.	Choles	sterol is an imp	ortant s	ource of energy	for the	e body.		
	ANS: OBJ:			Remembering Steroids			REF:	p. 27
66.	Phosp	holipids and tri	glycerio	les both contain	fatty a	acids.		
	ANS: OBJ:			Remembering Lipids			REF:	p. 28
67.	Phospl	holipids and tri	glyceric	les both have pa	arts of	their molecules	that att	ract water.
	ANS:	F	DIF:	Remembering			REF:	p. 28

TOP: Lipids

OBJ: 7

68.	Phospholipids are the starting substance for several steroid hormones in the body.							
	ANS: OBJ:		DIF: TOP:	Remembering Phospholipids	REF:	p. 28		
69.	Both phospholipids and cholesterol are structural components of the cell membrane.							
	ANS: OBJ:	T 7		Remembering Lipids	REF:	p. 28 p. 29		
70.	Both phospholipids and cholesterol are steroid lipids.							
	ANS: OBJ:	F 7		Remembering Lipids	REF:	p. 29		
71.	The bo	onds that join a	mino ac	eids together to form a protein are cal	led pept	ide bonds.		
		T 7	DIF: TOP:	Remembering Proteins	REF:	p. 29		
72.	The functional proteins in the body include hormones, collagen, and cell membrane receptors.							
		F 7	DIF: TOP:	Remembering Proteins	REF:	p. 30		
73.	The sh	ape of proteins	determ	nines their role in body chemistry.				
	ANS: OBJ:		DIF: TOP:	Remembering Proteins	REF:	p. 29 p. 30		
74.	The ba	sic building bl	ocks of	nucleic acids are nucleotides.				
	ANS: OBJ:		DIF: TOP:	Remembering Nucleic acids	REF:	p. 30		
75.	Both D	NA and RNA	contain	uracil.				
	ANS: OBJ:		DIF: TOP:	Remembering Nucleic acids	REF:	p. 30		
76.	Both D	ONA and RNA	contain	a sugar molecule as part of their stru	icture.			
	ANS: TOP:	T Nucleic acids	DIF:	Applying REF: p. 30	OBJ:	7		
77.	Both D	ONA and RNA	have a	double helix structure.				

REF: p. 30

DIF: Remembering TOP: Nucleic acids

ANS: F

OBJ: 7

78.	DNA is the "master code" for making proteins.										
	ANS: OBJ:		DIF: TOP:	Remembering Nucleic acids			REF:	p. 30			
79.	LDLs	have a high co	ncentrat	ion of protein	on of protein and low concentration of lipid.						
	ANS: OBJ:	F 7	DIF: TOP:	Remembering Clinical Appl	-	Blood Lipopro	REF:	p. 29			
80.	. HDL is sometimes called the "bad" cholesterol.										
	ANS: OBJ:		DIF: TOP:	Remembering Clinical Appl	•	Blood Lipopro	REF:	p. 29			
81.	. LDL is sometimes called the "bad" cholesterol.										
		T 7		Remembering Clinical Appl		Blood Lipopro		p. 29			
82.	High l	evels of LDL a	re assoc	ciated with the	develop	ment of athero	scleros	is.			
	ANS: OBJ:		DIF: TOP:	Remembering Clinical Appl	•	Blood Lipopro	REF: oteins	p. 29			
83.	An ato	m's mass num	ber is u	sually greater t	han its a	atomic number					
	ANS: TOP:	T Atoms	DIF:	Applying	REF:	p. 21	OBJ:	2			
84.	An ato	m's atomic nu	mber is	usually greater	than it	s mass number					
	ANS: TOP:	F Atoms	DIF:	Applying	REF:	p. 21	OBJ:	2			
85.	Electro	ons move in an	elliptic	al orbit rather t	han a ci	rcular orbit arc	ound the	e nucleus.			
	ANS: OBJ:		DIF: TOP:	Remembering Atoms			REF:	p. 21			
86.	An ele		rd energ	gy level is close	er to the	nucleus than a	n elect	ron in the second			
	ANS: OBJ:		DIF: TOP:	Remembering Atoms	5		REF:	p. 21			

87. All compounds are molecules, but not all molecules are compounds.

		T Elements, mo		Applying and compound		p. 22	OBJ:	1	
88.	The bond between carbon and hydrogen in an organic compound is an example of a covalent bond.								
		T 4		Remembering Inorganic che			REF:	p. 24	
89.	Water is the most abundant solute in the body.								
		F 5		Remembering Water	5		REF:	p. 25	
90.	Chemi	cal bonds can s	store po	tential chemica	ıl energ	y.			
		T 3		Remembering Water chemis			REF:	p. 25	
91.	The pr	imary source o	f energy	y used by the b	ody is a	carbohydrate.			
	ANS: OBJ:			Remembering Carbohydrate	•		REF:	p. 27	
92.	The or	nly group of org	ganic co	ompounds that	contain	s sugar is the ca	arbohyd	rates.	
		F Carbohydrate	DIF: s Nucl	11 0	REF:	p. 27 p. 30	OBJ:	7	
93.	Adeno body.	sine triphospha	ate is a 1	modified nucle	otide th	at is important	in energ	gy transfer in the	
	ANS: OBJ:			Remembering Nucleic acids	5		REF:	p. 30	
94.	If bloo	d pH tests indi	cate tha	t your blood pl	H is hig	h, you are suffe	ering fro	om alkalosis.	
	ANS: TOP:	T Homeostasis	DIF: of pH	Applying	REF:	p. 26	OBJ:	6	