
Test Bank for Multivariable Calculus 9th Edition by Stewart

CLICK HERE TO ACCESS COMPLETE Test Bank

Test Bank

SteCh01

True / False

Indicate whether the statement is true or false.

___ 1. Determine whether the statement is true or false.

If $x_1 > x_2$ and f is a decreasing function, then $f(x_1) > f(x_2)$.

- a. True
- b. False

Multiple Choice

Indicate the answer choice that best completes the statement or answers the question.

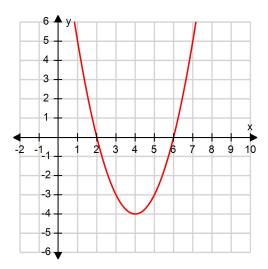
- ___ 2. Given that $\lim_{x \to 7} \left(1 + \frac{1}{7}x\right) = 2$, use the definition of the limit to find the largest value of δ that to $\varepsilon = 0.5$.
 - a. 3.5
 - b. 7
 - c. 0.07
 - d. 0.25
 - e. 1.0
- ___ 3. Identify the type of the following function.

$$s(p) = \log_8 p$$

- a. power function
- b. root function
- c. polynomial
- d. rational function
- e. algebraic function
- f. trigonometric function
- g. exponential function
- h. logarithmic function
- ___ 4. Identify the type of the following function.

$$h(r) = 3.6^r$$

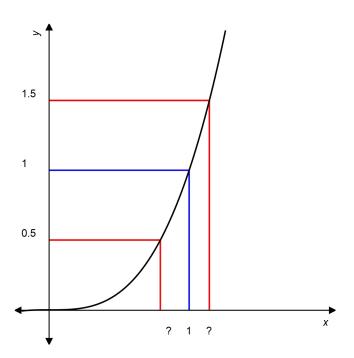
- a. power function
- b. root function
- c. polynomial
- d. rational function
- e. algebraic function
- f. trigonometric function
- g. exponential function
- h. logarithmic function


SteCh01

____ 5. Use the Intermediate Value Theorem to determine the interval where the equation has a solution.

$$\cos(x-5) = x-5$$

- a. (5, 6)
- b. (4, 5)
- c. (3, 4)
- d. (6, 7)


 $_$ 6. Let f be the function whose graph is given. Find the interval where the function is decreasing.

- a. $(-\infty, 4)$
- $b.(4,\infty)$
- c. [2, 6]
- $d.(-4,\infty)$

SteCh01

___ 7. Use the given graph of $f(x) = x^3$ to find a number δ such that if $|x - 1| < \delta$, then $|x^3 - 1| < 0.5$.

- a. 0.14
- b. 0.21
- c. 0.18
- d. 0.50
- e. 0.35

____ 8. Find an equation for the family of linear functions such that f(6) = 5.

a.
$$f(x) = 5 + m(x - 6)$$

b.
$$f(x) = m(x-6)-5$$

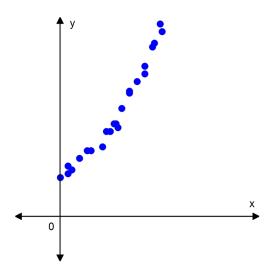
c.
$$f(x) = 6 + m(x - 5)$$

d.
$$f(x) = m(x+5) - 5$$

e.
$$f(x) = mx + 6m - 5$$

CLICK HERE TO ACCESS THE COMPLETE Test Bank

Name: _____ Class: _____ Date: _____


SteCh01

9. The data below shows Usain Bolt's position during his gold medal winning 100-meter sprint at the 2008 summer Olympics. Find his average velocity between the 60 m and 90 m marks.

t (seconds)	1.85	2.87	3.78	4.65	5.50	6.32	7.14	7.96	8.79	9.69
s (meters)	10	20	30	40	50	60	70	80	90	100

- a. 12.15 m/s
- b. 0.08 m/s
- c. 9.12 m/s
- d. 8.9 m/s
- e. 7.16 m/s

____ 10. Decide what type of function you might choose as a model for the data displayed on the scatter plot.

- a. exponential function
- b. logarithmic function
- c. polynomial
- d. rational function
- e. trigonometric function

SteCh01

___ 11. Find a number δ such that if $|x+4| < \delta$, then |6+3x| < 0.27.

- a. 0.09
- b. 0.27
- c. 0.54
- d. 0.90
- e. 0.54

____ 12. Find the function $f \circ g$ and its domain if $f(x) = \sqrt{x+6}$ and $g(x) = \sqrt{x-6}$.

a.
$$\sqrt{x^2 - 36}$$

$$D = [6, \infty)$$

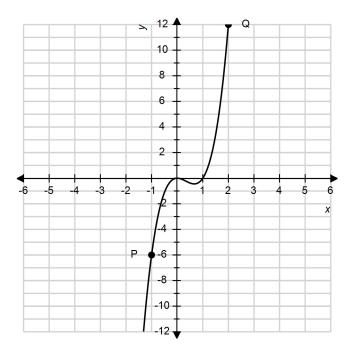
b.
$$\sqrt{x^2 - 36}$$

$$D = [-6, \infty)$$

c.
$$\sqrt{x^2 + 36}$$

$$D = [-6, \infty)$$

d.
$$\sqrt{x^2 + 36}$$


$$D = [6, \infty)$$

____ 13. The point P(1, 2) lies on the curve $y = \frac{2}{x^2}$. Estimate the value of the slope of the tangent line to the curve at P(1, 2).

- a. –4
- b. 4
- c. 2
- d. -6
- e. 8

SteCh01

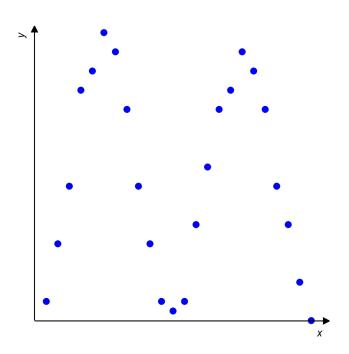
- 14. If a rock is thrown upward on the planet Pluto with a velocity of 20 m/s, its height in meters t seconds later is given by $y = 20t 0.32t^2$. Find the average velocity over the time interval [3, 3.5]. Round your answer to 1 decimal place if necessary.
 - a. 17.9
 - b. 9
 - c. 4.5
 - d. -9
 - e. 37.9
- ___ 15. Using the graph below, find the slope of the secant line *PQ*.

- a. 6
- b. 18
- c. 2
- d. −1
- e. 3

SteCh01

 $\underline{}$ 16. Choose an equation from the following that expresses the fact that a function f is continuous at the number 4.

a.
$$\lim_{x \to 4} f(x) = -\infty$$


b.
$$\lim_{x \to 4} f(x) = f(4)$$

$$c. \lim_{x \to 4} f(x) = \infty$$

d.
$$\lim_{x \to 0} f(x) = f(4)$$

e.
$$\lim_{x \to 0} f(x) = 4$$

___ 17. For the scatter plot below, what type of function might you see as a model for the data?

- a. Trigonometric function
- b. Rational Function
- c. Exponential Function
- d. Power Function
- e. Polynomial Function

SteCh01

____ 18. Find the function $f \circ g$ and its domain if $f(x) = \frac{x-1}{x}$ and $g(x) = \frac{x}{x+5}$.

a.
$$\frac{x-1}{x+5}$$
, $D = (-\infty, -5) \cup (-5, 0) \cup (0, \infty)$

b.
$$\frac{x-1}{x+5}$$
, $D = (-\infty, -5) \cup (-5, \infty)$

c.
$$-\frac{5}{x}$$
, $D = (-\infty, -5) \cup (-5, 0) \cup (0, \infty)$

d.
$$-\frac{5}{x}$$
, $D = (-\infty, 0) \cup (0, \infty)$

____ 19. Biologists have noticed that the chirping rate of crickets of a certain species is related to temperature, and the relationship appears to be very nearly linear. A cricket produces 108 chirps per minute at 70°F and 228 chirps per minute at 90°F. Find a linear equation that models the temperature *T* as a function of the number of chirps per minute *N*.

a.
$$T(N) = \frac{1}{6}N + \frac{312}{6}$$

b.
$$T(N) = \frac{1}{6}N - \frac{312}{6}$$

c.
$$T(N) = 6N - 648$$

d.
$$N(T) = 6T - 312$$

e.
$$N(T) = -6T + 312$$

- 20. At the surface of the ocean, the water pressure is the same as the air pressure above the water, 13 lb/in².

 Below the surface, the water pressure increases by 4.34 lb/in² for every 10 ft of descent. At approximately what depth is the pressure 120 lb/in²?
 - a. 247 ft
 - b. 276 ft
 - c. 30 ft
 - d. 56 ft
 - e. 359 ft

SteCh01

___ 21. Determine the domain and range of the function $f(x) = 3^x$.

- a. Domain: $(-\infty, \infty)$, range: $(0, \infty)$
- b. Domain: $(0, \infty)$, range: $(-\infty, \infty)$
- c. Domain: $(0, \infty)$, range: $(0, \infty)$
- d. Domain: $(-\infty, \infty)$, range: $(-\infty, \infty)$
- e. Domain: $(-\infty, \infty)$, range: $(3, \infty)$
- f. Domain: $(3, \infty)$, range: $(-\infty, \infty)$
- 22. The manager of a weekend flea market knows from past experience that if he charges x dollars for a rental space at the market, then the number y of spaces he can rent is given by the equation y = 560 8x. What does the x-intercept indicate?
 - a. There will be no spaces occupied when the rental cost is \$70.
 - b. There will be no spaces occupied when the rental cost is \$560.
 - c. There will be 560 spaces occupied when there is no rental cost.
 - d. There will be 8 spaces occupied when there is no rental cost.
 - e. The number of occupied spaces decreases by 5 for every \$1 increase in rent.
- 23. Find the domain of the function

$$f(x) = \frac{1}{\sqrt{3} - 2\cos x}$$

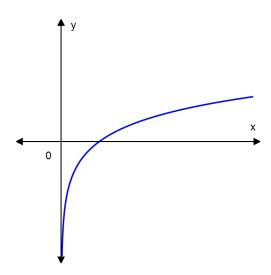
- a. $x \neq \frac{\pi}{6} + 2\pi n$ and $x \neq \frac{11\pi}{6} + 2\pi n$, where *n* is any integer
- b. $x \neq \frac{11\pi}{6}$ and $x \neq \frac{11\pi}{6}$
- c. $x \neq \frac{5\pi}{6} + 2\pi n$ and $x \neq \frac{7\pi}{6} + 2\pi n$, where *n* is any integer
- d. $x \neq \frac{5\pi}{6}$ and $x \neq \frac{7\pi}{6}$
- e. $x \neq \frac{\pi}{4} + 2\pi n$ and $x \neq \frac{7\pi}{4} + 2\pi n$, where *n* is any integer

Name: Class: Date:	
--------------------	--

SteCh01

- 24. It makes sense that the larger the area of a region, the larger the number of species that inhabit the region. Many ecologists have modeled the species-area relation with a power function. In particular, the number of species S of bats living in caves in central Mexico has been related to the surface area A of the caves by the equation $S = 0.7A^{0.3}$. If you discover that nine species of bats live in a cave, estimate the area of the cave.
 - a. $4979 \,\mathrm{m}^2$
 - b. $1.35 \,\mathrm{m}^2$
 - c. $2125 \,\mathrm{m}^2$
 - d. $2.15 \,\mathrm{m}^2$
- ___ 25. Given that $\lim_{x \to \frac{\pi}{2}} \tan^2 x = \infty$, find a number δ such that if $0 < \left| x \frac{\pi}{2} \right| < \delta$, then $\tan^2 x > 600$.
 - a. 0.041
 - b. 1.612
 - c. 0.002
 - d. 1.489
 - e. 0.029
- ___ 26. Classify the following function:

$$f(x) = x^6 (9x^4 - 4)$$


- a. Polynomial function
- b. Power function
- c. Trigonometric function
- d. Rational Function
- e. Exponential function
- 27. The point P(0.5, 1) lies on the curve $y = \sin(\pi x)$. If Q is the point $(x, \sin(\pi x))$ use your calculator to find the slope of the secant line PQ (correct to six decimal places) for the value x = 0.1.
 - a. 1.727458
 - b. 0.309017
 - c. 0.276393
 - d. 0.578885
 - e. 34.54915

SteCh01

28. The flash unit on a camera operates by storing charge on a capacitor and releasing it suddenly when the flash is set off. The data in the table describe the charge Q remaining on the capacitor at time t (measured in seconds after the flash goes off). Use the data to estimate the electric current flowing from the capacitor to the flash bulb when t = 0.06. Note: The slope of the tangent line represents the electric current flowing from the capacitor to the flash bulb (measured in microamperes).

t (seconds)	0.00	0.02	0.04	0.06	0.08	0.10
Q (microcoulombs)	80.00	68.00	52.29	42.70	37	27.9

- a. $-382.25 \,\mu A$
- b. 764.5 *μA*
- c. $-370 \, \mu A$
- d. $-632.5 \,\mu A$
- e. $-0.002 \,\mu A$
- 29. Determine the type of function whose graph is shown.

- a. logarithmic function
- b. root function
- c. power function
- d. exponential function
- e. trigonometric function

CLICK HERE TO ACCESS THE COMPLETE Test Bank

Name:	Class:	Date:
rumo.	0.455.	Date.

SteCh01

- ____ 30. If the recommended adult dosage for a drug is D (in mg), then to determine the appropriate dosage c for a child of age a, pharmacists use the equation c = 0.04D(a + 1). Suppose the dosage for an adult is 900 mg. What is the slope of the graph of c and what does it represent?
 - a. 36 mg/yr; the rate of change of dosage with respect to age
 - b. 36 yr/mg; the rate of change of age with respect to dosage
 - c. 0.04 mg/yr; the rate of change of dosage with respect to age
 - d. 0.04 mg/yr; the rate of change of age with respect to dosage
 - e. 36 mg; the dosage for a newborn
- ___ 31. If a rock is thrown upward on the planet Mars with a velocity of 10 m/s, its height in meters *t* seconds later is given by

$$y = 10t - 1.9t^2$$
.

Find the average velocity over the time interval [2, 3].

- a. -2.5 m/s
- b. 2.5 m/s
- c. 0.5 m/s
- d. 1.5 m/s
- e. -0.5 m/s
- ___ 32. Find the vertical asymptotes of the function.

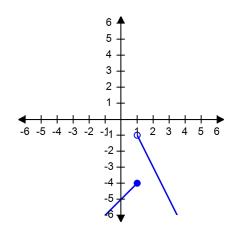
$$y = \frac{4x^2 + 1}{9x - 4x^2}$$

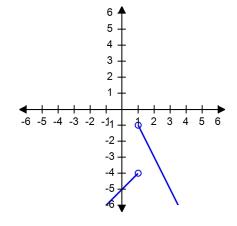
- a. $x = \frac{1}{9}$
- b. x = 4
- c. $x = -\frac{2}{9}$
- d. $x = 0, x = \frac{1}{4}$
- e. none of these

CLICK HERE TO ACCESS THE COMPLETE Test Bank

Name:_______Class:_________Date:______

SteCh01

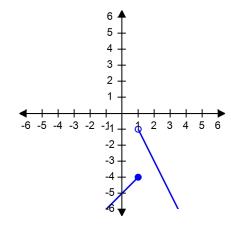

___ 33. Evaluate
$$\lim_{h \to 0} \frac{\cot\left(\frac{\pi}{4} + h\right) - 1}{h}$$
.

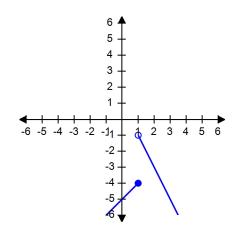

- a. 0
- b. 2
- c. -2
- d. Undefined

SteCh01

___ 34. Sketch the graph of the function f and evaluate $\lim_{x \to 1^-} f(x)$.

$$f(x) = \begin{cases} x-5, & \text{if } x \le 1\\ -2x+1, & \text{if } x > 1 \end{cases}$$




a.

-4

Does not exist

b.

c.

Does not exist

-1

d.

SteCh01

___ 35. Find the domain of the function $f(x) = \frac{x}{7 \sin x - 8}$

- a. $(-\infty, \infty)$
- b. $\left[\frac{8}{7},\infty\right)$
- c. [-8, 7]
- d. [-7, 8]

___ 36. Use the graph of the function to state the value of $\lim_{x\to 0} f(x)$, if it exists.

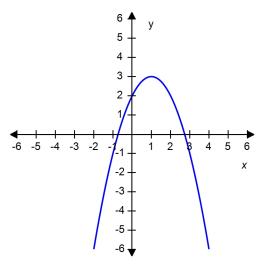
$$f(x) = \frac{x^2 + x}{3\sqrt{x^3 + x^2}}$$

- a. $\frac{1}{3}$
- b. does not exist
- c. -∞
- $d. \infty$
- e. $-\frac{1}{3}$

___ 37. If $f(x) = x^2 - x + 8$, evaluate the difference quotient $\frac{f(a+h) - f(a)}{h}$.

- a. 2a + h 8
- b. 2a 8
- c. 2a h 8
- d. *h*
- e. none of these

 Name:
 Class:
 Date:


SteCh01

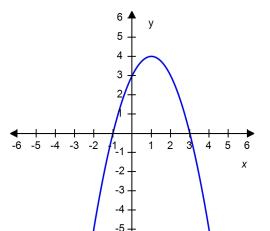
____ 38. Graph the function by hand, not by plotting points, but by starting with the graph of one of the standard functions and then applying the appropriate transformations.

b.

d.

$$y = 3 + 2x - x^2$$

5 - y


4 - 3 - 2 - 1 - 1 2 3 4 5 6

-6 -5 -4 -3 -2 -1 - 1 2 3 4 5 6

x

-4 - -5 - -6

a.

c.

CLICK HERE TO ACCESS THE COMPLETE Test Bank

Name: Class: Date:	
--------------------	--

SteCh01

___ 39. A rectangle has perimeter 14 m. Express the area of the rectangle as a function A(l) of the length l of one of its sides.

a.
$$A(l) = 7l - l^2$$

b.
$$A(l) = l - 7l^2$$

c.
$$A(l) = 14l - l^2$$

d.
$$A(l) = 14l + l^2$$

e.
$$A(l) = 7l + l^2$$

____ 40. The point P(16, 4) lies on the curve $y = \sqrt{x}$. If Q is the point $Q(x, \sqrt{x})$, use your calculator to find the slope of the secant line PQ (correct to six decimal places) for the value x = 3.59.

a.
$$m_{PO} = -0.046643$$

b.
$$m_{PO} = -0.169643$$

c.
$$m_{PO} = -0.309643$$

d.
$$m_{PO} = 0.379643$$

e.
$$m_{PQ} = 0.169643$$

41. A machinist is required to manufacture a circular metal disk with area 1000 cm^2 . If the machinist is allowed an error tolerance of $\pm 25 \text{ cm}^2$ in the area of the disk, how close to the ideal radius must the machinist control the radius?

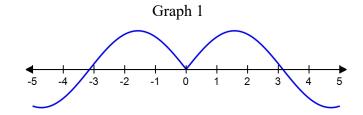
Round your answer to the nearest hundred thousandth.

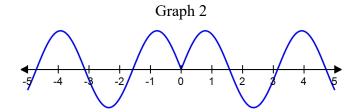
a.
$$\delta \le 0.21964 \text{ cm}$$

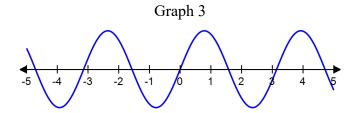
b.
$$\delta \le 0.22114 \text{ cm}$$

c.
$$\delta \le 0.22064 \text{ cm}$$

d.
$$\delta \le 0.22164 \text{ cm}$$

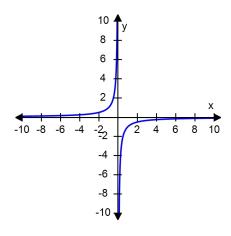

e.
$$\delta \le 0.22264 \text{ cm}$$


 Name:
 Class:
 Date:


SteCh01

___ 42. Which of the following graphs is the graph of the function?

$$f(x) = \sin|2x|$$



- a. Graph 2
- b. Graph 1
- c. Graph 3

SteCh01

43. Determine whether the function whose graph is given is even, odd, or neither.

- a. Even
- b. Neither
- c. Odd

____ 44. Find the limit.

$$\lim_{x \to 4^{-}} \frac{x^2 - 4x}{x^2 - 8x + 16}$$

- a. ∞
- b. 0
- c. –∞
- d. -2
- e. 2

___ 45. If f and g are continuous functions with f(13) = 6 and $\lim_{x \to 13} [2f(x) - g(x)] = 13$, find g(13).

a.
$$g(13) = 25$$

b.
$$g(13) = 19$$

c.
$$g(13) = 12$$

d.
$$g(13) = 24$$

e.
$$g(13) = -1$$

SteCh01

___ 46. If $1 \le f(x) \le x^2 + 7x + 7$, for all x, find $\lim_{x \to -1} f(x)$.

- a. $-\frac{1}{8}$
- b. 1
- c. $-\frac{1}{16}$
- d. 8
- e. does not exist

47. The monthly cost of driving a car depends on the number of miles driven. Julia found that in October it cost her \$300 to drive 400 mi and in July it cost her \$450 to drive 700 mi. Express the monthly cost *C* as a function of the distance driven *d* assuming that a linear relationship gives a suitable model.

a.
$$C = -100d + 0.5$$

b.
$$C = 100d - 0.5$$

c.
$$C = 0.5d + 100$$

d.
$$C = 2d + 100$$

e.
$$C = 0.5d - 100$$

48. Is there a number a such that $\lim_{x \to -3} \frac{3x^2 + ax + a + 3}{x^2 + x - 6}$ exists? If so, find the value of a and the value of the

limit.

a.
$$a = 15$$
, limit equals -0.6

b.
$$a = 15$$
, limit equals 0.6

c.
$$a = -15$$
, limit equals 0.6

d.
$$a = -15$$
, limit equals -0.6

e.
$$a = 15$$
, limit equals 19

49. Suppose the distance s (in feet) covered by a car moving along a straight road after t sec is given by the function $s = f(t) = 2t^2 + 20t$. Calculate the (instantaneous) velocity of the car when t = 34.

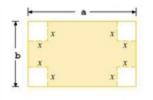
- a. 156 ft/sec
- b. 22 ft/sec
- c. 748 ft/sec
- d. 2992 ft/sec

SteCh01

____ 50. Find an expression for the function y = f(x) whose graph is the bottom half of the parabola $x + (10 - y)^2 = 0$.

a.
$$y = 10 - \sqrt{-x}$$

b.
$$y = 100 - \sqrt{-x}$$


c.
$$y = 10 + \sqrt{x}$$

d.
$$y = 100 - x^2$$

e.
$$v = 10 - x^2$$

51. A box with an open top is to be constructed from a rectangular piece of card board with dimensions b = 6 in. by a = 25 in. by cutting out equal squares of side x at each corner and then folding up the sides as in the figure.

Express the volume V of the box as a function of x.

a.
$$V(x) = x^3 - 62x^2 + 150x$$

b.
$$V(x) = 4x^3 + 31x^2 + 196x$$

$$V(x) = 4x^3 + 62x^2 + 150x$$

d.
$$V(x) = x^3 - 31x^2 + 196x$$

e.
$$V(x) = 4x^3 - 62x^2 + 150x$$

- ____ 52. Suppose that the graph of f is given. Describe how the graph of the function y = f(x 3) 3 can be obtained from the graph of f.
 - a. Shift the graph 3 units to the left and 3 units down.
 - b. Shift the graph 3 units to the left and 3 units up.
 - c. Shift the graph 3 units to the right and 3 units up.
 - d. Shift the graph 3 units to the right and 3 units down.
 - e. None of these

CLICK HERE TO ACCESS THE COMPLETE Test Bank

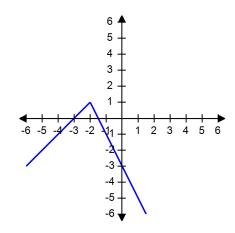
Name:	Class:	Date:
-------	--------	-------

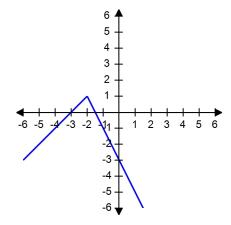
SteCh01

___ 53. If $\lim_{x \to 2^+} f(x) = 5.6$, then if $\lim_{x \to 2} f(x)$ exists, to what value does it converge?

- a. 4.6
- b. 6.6
- c. 7.6
- d. 5.6
- e. 3.6

____ Class:____ Date:____ Name:

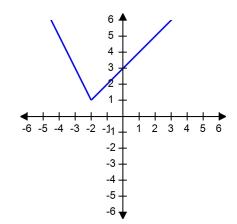

b.

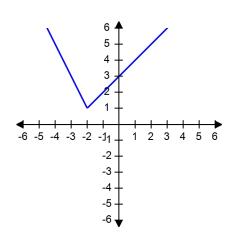

d.

SteCh01

___ 54. Sketch the graph of the function f and evaluate $\lim_{x \to -2} f(x)$.

$$f(x) = \begin{cases} x+3, & \text{if } x \le -2 \\ -2x-3, & \text{if } x > -2 \end{cases}$$





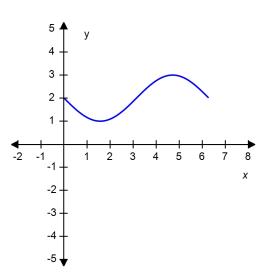
a.

-2

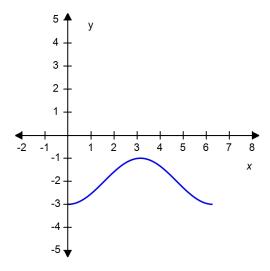
1

c.

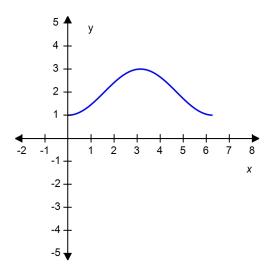
1

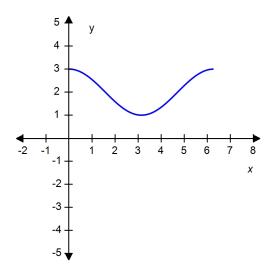

Page 23

 Name:
 Class:
 Date:


SteCh01

___ 55. Sketch the graph of $y = 2 - \cos x$ over one period.


a.


b.

c.

d.

SteCh01

___ 56. Which of the given functions is discontinuous?

a.
$$f(x) = \begin{cases} \frac{1}{x - 11}, & x \neq 11 \\ 9, & x = 11 \end{cases}$$

b.
$$f(x) = \begin{cases} \frac{1}{x-2}, & x \ge 11 \\ \frac{1}{9}, & x < 11 \end{cases}$$

 $\lim_{x \to a} f(x) = L$ and a tolerance ε . Find a number δ such that $|f(x) - L| < \varepsilon$ whenever $0 < |x - a| < \delta$

$$\lim_{x \to 3} 5x = 15; \ \varepsilon = 0.01$$

- a. 0.05
- b. 0.002
- c. 0.03
- d. 0.01

___ 58. Estimate the value of the following limit by graphing the function $f(x) = \frac{(3\sin x)}{(\sin \pi x)}$.

$$\lim_{x \to 0} \frac{3\sin x}{\sin \pi x}$$

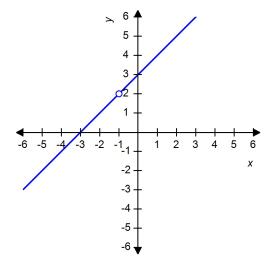
Round your answer correct to two decimal places.

- a. 1.15
- b. 0.85
- c. 1.05
- d. 1.91
- e. 0.95

SteCh01

___ 59. An open rectangular box with volume 4 m^3 has a square base. Express the surface area of the box as a function S(x) of the length x of a side of the base.

a.
$$S(x) = x^2 + \frac{16}{x^2}$$


b.
$$S(x) = x^2 + \frac{16}{x}$$

c.
$$S(x) = 2x^2 + \frac{6}{x^2}$$

d.
$$S(x) = x^2 + \frac{6}{x^2}$$

e.
$$S(x) = 2x + \frac{6}{x}$$

___ 60. Use the graph of $f(x) = \frac{x^2 + 4x + 3}{x + 1}$ to guess the limit $\lim_{x \to -1} \frac{x^2 + 4x + 3}{x + 1}$, if it exists.

- a. 2
- b. -1
- c. 3
- d. Does not exist

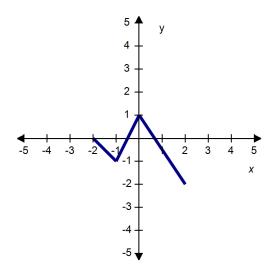
 Name:
 Class:
 Date:

SteCh01

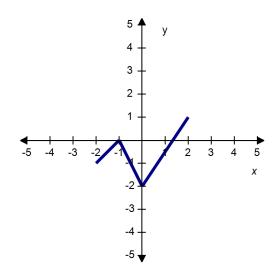
___ 61. If $f(x) = 5x^2 + 2$, find and simplify $\frac{f(1+h) - f(1)}{h}$, where $h \neq 0$.

a.
$$2+5h^2$$

b.
$$5 + 10h$$


d.
$$10+5h$$

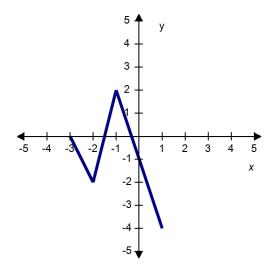
 $\underline{}$ 62. Determine where f is discontinuous.

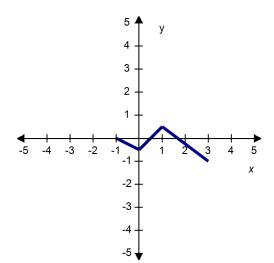

$$f(x) = \begin{cases} \sqrt{-x} & \text{if } x < 0 \\ 3 - x & \text{if } 0 \le x < 3 \\ (3 - x)^2 & \text{if } x > 3 \end{cases}$$

- a. 0 and 3
- b. 0 and -3
- c. 0 only
- d. -3 only
- e. 3 only

___ 63. The graph of the function f follows. Choose the graph of y = -f(x) - 1.

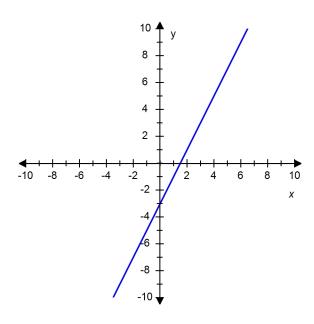
SteCh01

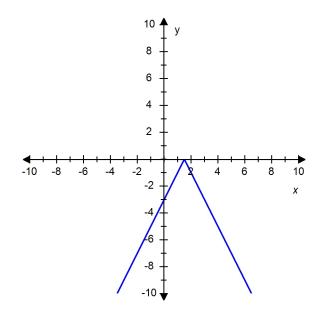

5 y
4 - 3
2 - 1
1 - 1
2 3 4 5
x

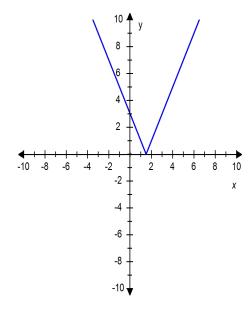

a.

b.

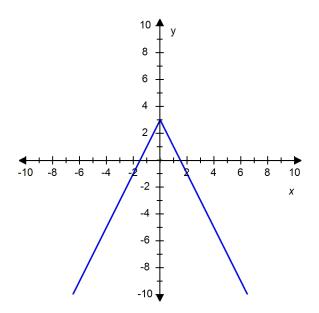
c.

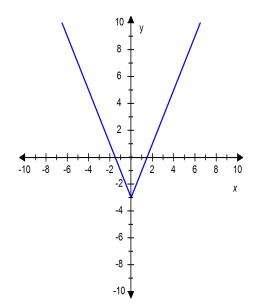

d.




___ 64. The graph of the function f follows. Choose the graph of y = f(|x|).

SteCh01


a. b.



c. d.

SteCh01

___ 65. Classify the function as a Polynomial function, a Rational function, an algebraic function, or other.

$$f(x) = x^9 + 4x^6 - 6$$

- a. Other
- b. Algebraic
- c. Polynomial
- d. Rational

___ 66. Find the limit.

$$\lim_{x \to \infty} \frac{\sqrt{x^2 - 9}}{5x - 15}$$

- a. -3
- b. 3
- c. 15
- d. $\frac{1}{5}$
- e. does not exist

SteCh01

___ 67. Find the limit.

$$\lim_{x \to 2} \sqrt{\frac{4x^2 + 1}{3x - 2}}$$

- a. 0
- b. $-\frac{4}{3}$
- c. $\frac{\sqrt{17}}{2}$
- d. $\frac{4}{3}$
- e. does not exist

___ 68. Evaluate the limit.

$$\lim_{x \to 1} (x+5)^3 (x^2 - 7)$$

- a. -448
- b. -1286
- c. -1306
- d. -1296
- e. 320

___ 69. Let $F(x) = \frac{x-2}{|x-2|}$. Find the following limits.

$$\lim_{x \to 2^+} F(x), \lim_{x \to 2^-} F(x)$$

- a. both 1
- b. 2 and 1
- c. 2 and -1
- d. 1 and -1
- e. both -1

SteCh01

____ 70. Find the domain of the function.

$$f(x) = \frac{7x + 5}{x^2}$$

a.
$$(-\infty, 0)$$

b.
$$\left(-\infty, -\frac{5}{7}\right) \cup \left(-\frac{5}{7}, \infty\right)$$

c.
$$\left(-\infty, \frac{5}{7}\right) \cup \left(\frac{5}{7}, \infty\right)$$

$$d.(-\infty,0)U(0,\infty)$$

____ 71. You are given that $\lim_{x \to a} f(x) = -5$, $\lim_{x \to a} g(x) = 5$, and $\lim_{x \to a} h(x) = 4$. Find the limit $\lim_{x \to a} \{ [h(x)]^2 - f(x)g(x) \}$.

- a. 5
- b. 41
- c. 0
- d. 45

___ 72. If
$$4x - 1 \le f(x) \le x^2 - 1$$
, find $\lim_{x \to 4} f(x)$.

- a. 1
- b. 15
- c. 0
- d. 4
- e. 15

___ 73. What is $\frac{10}{\sqrt{x}}$, given that $H = h \circ f \circ g$ and $H(x) = \frac{10}{\sqrt{x} - 3}$?

- a. g(x)
- b. f(x)
- c. h(x)

SteCh01

___ 74. Find the interval(s) where $f(x) = \sqrt{x^2 - 4x + 7}$ is continuous.

- a. $[0, \infty)$
- b. [-7, 7]
- c. $(-\infty, \infty)$
- d. [-4, 7]

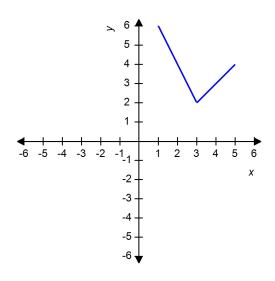
___ 75. In the function f(x) = 8x + d, what must be the value d, if f(3) = 1?

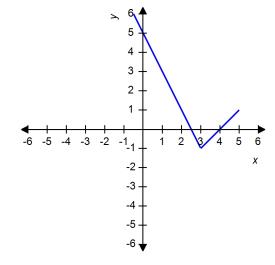
- a. d = 25
- b. d = 23
- c. d = -23
- d. d = -1
- e. d = -25

____ 76. Estimate the value of the limit by graphing the function $f(x) = \frac{2\sin x}{\sin \pi x}$. State your answer correct to two decimal places.

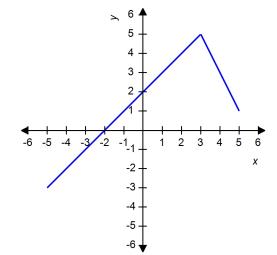
$$\lim_{x \to 0} \frac{2\sin x}{\sin \pi x}$$

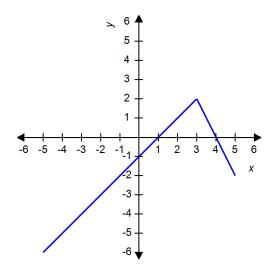
- a. 3.14
- b. 1.27
- c. 3.82
- d. 1.57
- e. 0.64


___ 77. Find the limit $\lim_{x\to 0} \frac{\sqrt{x+13}-\sqrt{13}}{x}$, if it exists.

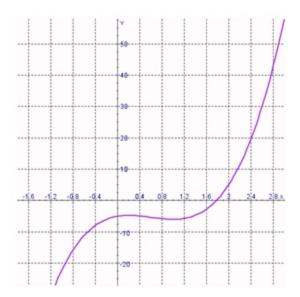

- a. Does not exist
- b. $\frac{\sqrt{13}}{26}$
- c. $\frac{\sqrt{13}}{2}$
- d. $\frac{\sqrt{13}}{13}$

SteCh01


___ 78. Sketch the graph of the function f and evaluate $\lim_{x \to 3} f(x)$.


$$f(x) = \begin{cases} x - 1, & \text{if } x \le 3, \\ -2x + 8, & \text{if } x > 3 \end{cases}$$

a. 2 b. 3



c.

d. 2
 Name:
 Class:
 Date:

SteCh01

___ 79. The graph of the function f is given. State the value of f(2.7).

a.
$$f(2.7) = -40$$

b.
$$f(2.7) = -10$$

c.
$$f(2.7) = 40$$

$$d. f(2.7) = 0$$

e.
$$f(2.7) = 10$$

____ 80. Find the domain.

$$g(u) = \sqrt{u} - \sqrt{3 - u}$$

a.
$$(0, 3)$$

b.
$$(-\infty, 0]$$

c.
$$(-3, \infty]$$

e.
$$[0, \infty)$$

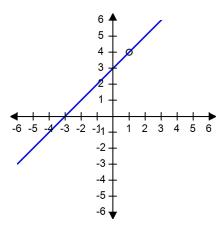
SteCh01

 $_$ 81. Determine whether f is even, odd, or neither.

$$f(x) = \frac{8x^2}{x^4 + 5}$$

- a. neither
- b. odd
- c. even

___ 82. Find the numbers, if any, where the function $f(x) = \begin{cases} 3x - 5 & \text{if } x \le 1 \\ -3 & \text{if } x > 1 \end{cases}$ is discontinuous.


- a. -5
- b. 5
- c. 1
- d. -3
- ____ 83. A cardiac monitor is used to measure the heart rate of a patient after surgery. It compiles the number of heartbeats after t minutes. When the data in the table are graphed, the slope of the tangent line represents the heart rate in beats per minute. The monitor estimates this value by calculating the slope of a secant line. Use the data to estimate the patient's heart rate after 42 minutes using the secant line between the points with t = 38 and t = 42.

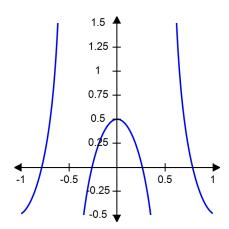
t (mins)	36	38	40	42	44
Heartbeats	2570	2720	2840	3020	3070

- a. 74
- b. 80
- c. 85
- d. 70
- e. 76
- f. 75

SteCh01

____ 84. Use the graph of $f(x) = \frac{x^2 + 2x - 3}{x - 1}$ to guess the limit $\lim_{x \to 1} \frac{x^2 + 2x - 3}{x - 1}$, if it exists.

- a. 1
- b. 3
- c. Does not exist
- d. 4


___ 85. The symbol $\lfloor \ \rfloor$ can be used to denote the greatest integer function, which is defined by $\lfloor x \rfloor$ the greatest integer n such that $n \leq x$. Use the graph of the function to find the indicated limit, if it exists.

$$\lim_{x \to -1.5} \lfloor x \rfloor$$

- a. –2
- b. -1
- c. 1.5
- d. -1.5

SteCh01

____ 86. Use the graph of $f(x) = \frac{\sin 3x}{\tan 6x}$ to guess the limit $\lim_{x \to 0} \frac{\sin 3x}{\tan 6x}$, if it exists.

- a. 2.0
- b. 0.50
- c. 0.17
- d. Does not exist

___ 87. Find the range of the function.

$$y = 4 + \cos x$$

- a. $(-\infty, \infty)$
- b. $(2, \infty)$
- c. [-1, 1]
- d.(-1,3)
- e. [3, 5]

Name:______ Class:_____ Date:_____

SteCh01

____ 88. Evaluate the limit, if it exists.

$$\lim_{h \to 0} \frac{(x-h)^6 - x^6}{h}$$

- a. $6x^{5}$
- b. 6
- c. 1
- $d. 6x^5$
- e. does not exist

____ 89. Find the limit.

$$\lim_{x \to -3} \frac{x^2 + 2x - 15}{x + 5}$$

- a. 0
- **b**. ∞
- c. –∞
- d. 4
- e. -6

___ 90. If a ball is thrown into the air with a velocity of 60 ft/s, its height (in feet) after t seconds is given by

$$H = 60t - 9t^2$$
.

Find the velocity when t = 9.

- a. -99 ft/s
- b.-102 ft/s
- c. -104 ft/s
- d. -101 ft/s
- e. -97 ft/s

Name:______ Class:_____ Date:_____

SteCh01

___ 91. If the point (9, 7) is on the graph of an even function, what other point must also be on the graph?

- a. (-9, -7)
- b. (9, -7)
- c.(0,0)
- d.(-9,7)
- e. None of these

___ 92. Find the limit.

$$\lim_{x \to (\pi/2)^{-}} \frac{-3}{7\cos(x)}$$

- a. −∞
- $b. \ \infty$
- c. $-\frac{3}{7}$
- d. $\frac{3}{7}$

 $\underline{}$ 93. How would you define f(6) in order to make f continuous at 6?

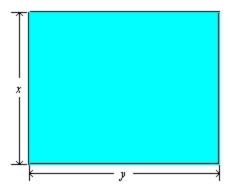
$$f(x) = \frac{x^2 - 3x - 18}{x - 6}$$

- a. f(6) = -5
- b. f(6) = 9
- c. f(6) = 0
- d. f(6) = -9
- e. None of these

SteCh01

___ 94. Use continuity to evaluate the limit.

$$\lim_{x \to 3\pi} \sin(x + 6\sin x)$$


- a. 3π
- b. 1
- c. -1
- d. 0
- e. ∞

___ 95. Find the value of the limit.

$$\lim_{x \to 0} 3 \frac{\tan 6x - 6x}{x^3}$$

- a. 36
- b. 6
- c. 1296
- d. 7776
- e. 216

____ 96. Sandy wishes to have a rectangular garden in her backyard. She has 50 ft of fencing with which to enclose her garden. Letting *x* denote the width of the garden, find a function *f* in the variable *x* that gives the area of the garden.

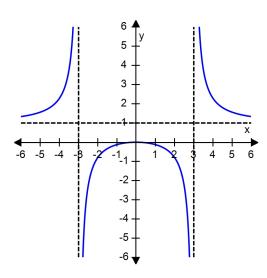
a.
$$f(x) = 50x - x^2$$
, $0 < x < 25$

b.
$$f(x) = 25x - x^2$$
, $0 < x < 25$

c.
$$f(x) = 50x - x^2$$
, $0 < x < 50$

d.
$$f(x) = 25x - x^2$$
, $0 < x < 50$

SteCh01


___ 97. Which of the following functions is neither even nor odd?

a.
$$f(x) = \frac{2x^2}{x^4 + 1}$$

b.
$$f(x) = 8x^3 + 10x^2 + 7$$

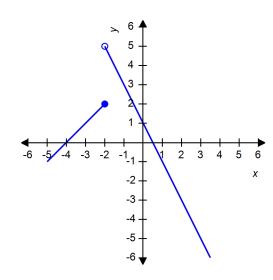
c.
$$f(x) = x^3 - 3x$$

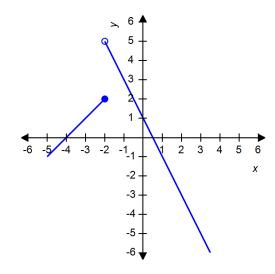
___ 98. Use the graph to determine where the function is discontinuous.

- a. At 0
- b. On the interval (0, 1)
- c. At ± 3
- d. At 1

___ 99. Use the table to evaluate the expression $(f \circ g)(4)$.

х	1	2	3	4	5	6
f(x)	3	2	1	0	1	2
g(x)	6	5	2	3	4	6

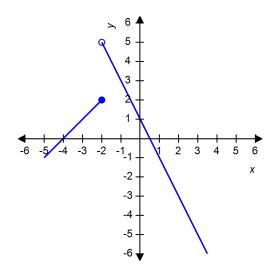

- a. 4
- b. 1
- c. 2
- d. 3
- e. 5


SteCh01

___ 100. Sketch the graph of the function f and evaluate $\lim_{x \to a} f(x)$

$$f(x) = \begin{cases} x+4, & \text{if } x \le -2 \\ -2x+1, & \text{if } x > -2 \end{cases}$$

a. b.



Does not exist

6 1 0 5 4 1 3 -6 -5 -4 -3 -2 -1 1 2 3 4 5 6 x

-2 --3 --4 --5 --6 -5 -4 -3 -2 -1 1 2 3 4 5 6

c.
Does not exist

d. 2

5

Name: Class: Date:	
--------------------	--

SteCh01

____ 101. Many physical quantities are connected by *inverse square laws*, that is, by power functions of the form: $f(x) = kx^{-2}$

In particular, the illumination of an object by a light source is inversely proportional to the square of the distance from the source. Suppose that after dark you are in a room with just one lamp and you are trying to read a book. The light is too dim and so you move $\frac{2}{3}$ ds the distance to the lamp. How much brighter is the

light?

- a. $\frac{3}{2}$ times
- b. $\frac{9}{4}$ times
- c. $\frac{9}{2}$ times
- d. $\frac{4}{9}$ times
- e. 3 times
- 102. Scientists have discovered that a linear relationship exists between the amount of flobberworm mucus secretions and the air temperature. When the temperature is 45° F, the flobberworms each secrete 8.5 grams of mucus a day; when the temperature is 75° F, they each secrete 11.5 grams of mucus a day. Find a function M(t) that gives the amount of mucus secreted on a given day, where t is the temperature of that day in degrees Fahrenheit.

a.
$$M(t) = 0.1t + 8.5$$

b.
$$M(t) = 10t + 8.5$$

c.
$$M(t) = 10t + 4$$

d.
$$M(t) = 0.1t + 4$$

Name:______ Class:_____ Date:_____

SteCh01

____ 103. Find the limit.

$$\lim_{u \to 9^+} \frac{-8u^2}{u - 9}$$

- a. ∞
- **b**. -∞
- c. $-\frac{8}{9}$
- d. $\frac{8}{9}$

___ 104. Let

$$f(x) = \begin{cases} x+1 & \text{if } x \le 6\\ kx^2 - 30x + 79 & \text{if } x > 6 \end{cases}$$

Find the value of k that will make f continuous on $(-\infty, \infty)$.

- a. 6
- b. 79
- c. 1
- d. 3

___ 105. Define the function $f(x) = \frac{3x^3 + x}{8x}$ at 0 so as to make it continuous at 0.

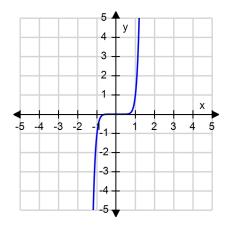
a.
$$f(0) = \frac{3}{8}$$

b.
$$f(0) = \frac{1}{2}$$

$$c. f(0) = 0$$

d.
$$f(0) = \frac{1}{8}$$

SteCh01


___ 106. The position of a car is given by the values in the following table.

t (seconds)	0	1	2	3	4
s (meters)	0	20.6	25.5	64.1	94.3

Find the average velocity for the time period beginning when t = 2 and lasting 2 seconds.

- a. 47.15 ft/s
- b. 30.6 ft/s
- c. 33.5 ft/s
- d. 33.5 ft/s
- e. 34.4 ft/s

___ 107. What is the equation of this graph?

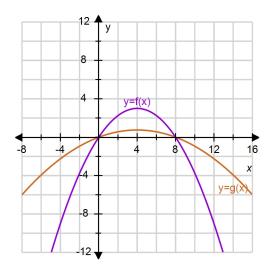
- a. $y = x^4$
- b. $y = x^8$
- c. $y = x^{10}$
- d. $y = \sqrt[3]{x}$
- e. $y = x^9$

SteCh01

___ 108. Find the limit $\lim_{h \to 1} (h^4 + 4h^3 + 5h + 4)$.

___ 109. If f(x) = x + 15 and h(x) = 4x + 85, find a function g such that $g \circ f = h$.

a.
$$g(x) = 4x + 25$$


b.
$$g(x) = 4x$$

c.
$$g(x) = x - 25$$

d.
$$g(x) = 4x - 25$$

e.
$$g(x) = x + 25$$

 $\underline{}$ 110. Which of the following is the equation for the function g(x)?

a.
$$g(x) = 4f(x)$$

b.
$$g(x) = f(x) - 4$$

$$c. g(x) = -f(x+4)$$

$$d. g(x) = \frac{f(x)}{4}$$

e.
$$g(x) = -f(x) + 4$$

Name:______ Class:_____ Date:_____

SteCh01

___ 111. Find the limit.

$$\lim_{x \to 5} \frac{x^2 + 5x - 50}{x - 5}$$

- a. 15
- b. 3
- c. 13
- d. 50
- e. –2

___ 112. If $\lim_{x \to 3^{-}} f(x) = 3.7$, then if $\lim_{x \to 3} f(x)$ exists, find the value where it exists.

- a. 1
- b. 5
- c. 3.7
- d. 2
- e. 4

____ 113. The relationship between the Fahrenheit and Celsius temperature scales is given by the linear function.

$$F = \frac{9}{5}C + 32$$

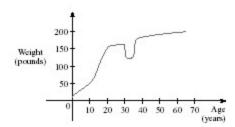
What is the *F*-intercept and what does it represent?

- a. $\frac{9}{5}$, Fahrenheit temperature corresponding to 0° C
- b. $\frac{9}{5}$, Celsius temperature corresponding to 32°C
- c. 32, Celsius temperature corresponding to 0°F
- d. 0, Fahrenheit temperature corresponding to 32°C
 - 0°C
- e. 32, Fahrenheit temperature corresponding to

SteCh01

___ 114. Find a, such that the function $f(x) = 4x + \sqrt{a - x^2}$ has the domain [-3, 3].

a.
$$a = -9$$


b.
$$a = \sqrt{3}$$

c.
$$a = -\sqrt{3}$$

d.
$$a = 9$$

e.
$$a = 3$$

____ 115. The graph shown gives the weight of a certain person as a function of age. Find the age at which the person stopped an exercise program.

- a. 20
- b. 54
- c. 38
- d. 35
- e. 70

___ 116. For what value of the constant c is the function f continuous on $(-\infty, \infty)$?

$$f(x) = \begin{cases} cx + 9 & \text{for } x \le 2\\ cx^2 - 7 & \text{for } x > 2 \end{cases}$$

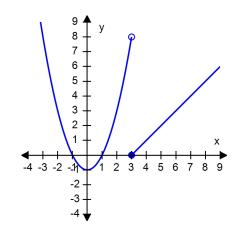
a.
$$c = 1$$

b.
$$c = 8$$

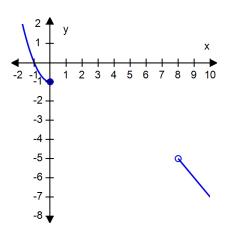
c.
$$c = -2$$

d.
$$c = -8$$

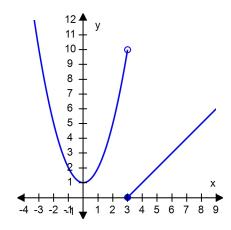
e.
$$c = 2$$

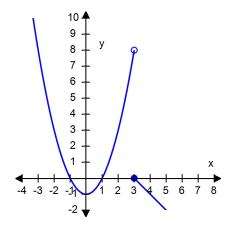

Name:______ Class:_____ Date:_____

SteCh01

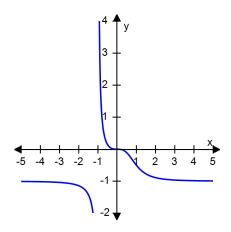

___ 117. Find the domain and sketch the graph of the function. What is its range?

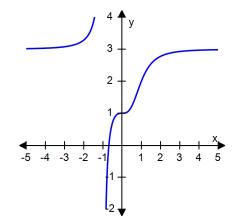
$$f(x) = \begin{cases} -x+3 & \text{if } x \ge 3\\ x^2 - 1 & \text{if } x < 3 \end{cases}$$


a.
$$\boldsymbol{D}$$
: $(-\infty, \infty)$; \boldsymbol{R} : $[-1, \infty)$

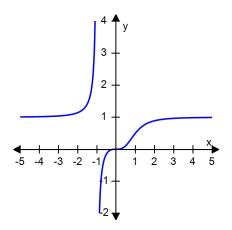

b.
$$\mathbf{D}$$
: $(-\infty, \infty)$; \mathbf{R} : $(-\infty, 0]$

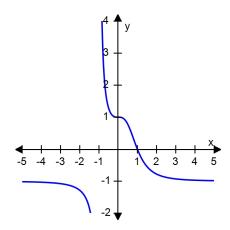
c.
$$\boldsymbol{D}$$
: $(-\infty, \infty)$; \boldsymbol{R} : $[0, \infty)$


d.
$$\mathbf{D}$$
: $(-\infty, \infty)$; \mathbf{R} : $(-\infty, \infty)$



SteCh01


 $\underline{}$ 118. Plot the graph of the function f in an appropriate viewing window.


$$f(x) = \frac{x^3}{x^3 + 1}$$

a.

c.

b.

Name:______ Class:_____ Date:_____

SteCh01

- ____ 119. Find the limit $\lim_{x \to 5} \frac{x+3}{x^2-3x+5}$.
 - a. 8
 - b. 8
 - c. $\frac{3}{5}$
 - d. $\frac{8}{15}$
- ____ 120. The displacement (in feet) of a certain particle moving in a straight line is given by $s = \frac{t^3}{8}$

where t is measured in seconds. Find the average velocity over the interval [1, 1.15].

Round your answer to three decimal places.

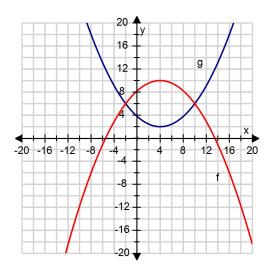
- a. 0.234
- b. 0.350
- c. 0.334
- d. 0.224
- e. 0.534
- f. 0.434
- ___ 121. The graph of the function $f(x) = x^2 8x + 4$ has been shifted horizontally to the left by 9 units. Find the function for the transformed graph.

a.
$$g(x) = x^2 - 8x - 5$$

b.
$$g(x) = x^2 - 8x + 13$$

c.
$$g(x) = x^2 + 10x + 13$$

d.
$$g(x) = x^{\bar{2}} - 26x + 157$$


 Name:
 Class:
 Date:

SteCh01

___ 122. Find the limit $\lim_{x \to 2} \frac{x^2 - x - 2}{x - 2}$, if it exists.

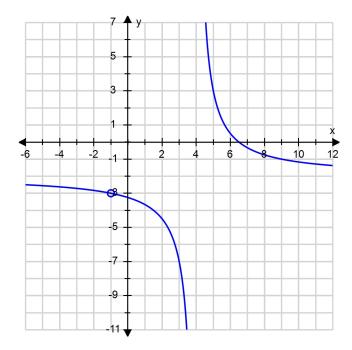
- a. 2
- b. 3
- c. 1
- d. Does not exist

___ 123. The graphs of f(x) and g(x) are given. For what values of x is f(x) = g(x)?

- a. 2, 3
- b. 0
- c. -1
- d. -2, 5
- e. -2, 10

Name: _____ Class: _____ Date: _____

SteCh01


Multiple Response

Indicate one or more answer choices that best complete the statement or answer the question.

___ 124. What are the domain and range of the function $f(x) = \log_3 x$?

- a. Domain: $(0, \infty)$
- b. Domain: $(-\infty, \infty)$
- c. Domain: $(3, \infty)$
- d. Range: $(-\infty, \infty)$
- e. Range: $(0, \infty)$
- f. Range: $(3, \infty)$

___ 125. The graph of a function g is given. On which interval(s) is the Intermediate Value Theorem applicable?

- a. [-2,0]
- b. [0,1]
- c. [3,5]
- d. [5,7]

	CLICK HERE TO ACCE	SS THE COMPLET	TE Test Bank	
Name:		Class:	Date:	
SteCh01				
Enter the	Response appropriate value to answer the question of	or solve the problem.		
	By graphing the function $f(x) = \frac{(\cos x - \cos 5x)}{x^2}$			
	and zooming in toward the point where the g	graph crosses the y-axis	is, estimate the value of $\lim_{x \to 0} f(x)$	
127.	A stone is dropped into a lake, creating a circle radius r of this circle as a function of the a function of the radius.		-	-

128. Consider the following function.

$$f(x) = \begin{cases} 2 - x & x < -1 \\ x & -1 \le x < 2 \\ (x - 2)^2 & x \ge 2 \end{cases}$$

 $\lim_{x \to a} f(x)$ Determine the values of a for which $x \to a$ exists.

me:	Class:	Date:
eCh01		
129.	. Use the definition of the limit to find values of δ that corresponds to $\varepsilon = 0$).75.
	$\lim_{x \to 1} (4 + x - 3x^3) = 2$	
	Round your answer to the nearest thousandth.	
	Find the domain of the function.	
	$f(x) = \frac{7}{3x - 1}$	
131.	A spherical balloon with radius r inches has volume $\frac{4}{3}\pi r^3$.	
	Find a function that represents the amount of air required to inflate the radius of $r + 7$ inches.	balloon from a radius of r inches to a
132.	Use a graph to find a number δ such that $\left \sqrt{4x+1} - 3 \right < 0.4$ whenever	$ x-2 < \delta$.

Name:	Class:	Date:
SteCh01		
133. Find the domain of the function.		
$f(x) = \sqrt{25 - x^2}$		
134. The position of a car is given by	the values in the following table.	
	5 179	
Estimate the instantaneous veloc	ity when $t = 2$ by averaging the veloc	eities for the periods [1, 2] and [2, 3].
135. Evaluate the limit.		
$\lim_{x \to 0} \frac{(3+x)^{-1} - 3^{-1}}{x}$		

Name:	Class:	Dat	e:
-------	--------	-----	----

SteCh01

136. Find a function g that agrees with f for $x \neq 49$ and is continuous on \Re .

$$f(x) = \frac{7 - \sqrt{x}}{49 - x}$$

137. Find the range of the function.

$$h(x) = \sqrt{36 - x^2}$$

138. A tank holds 1000 gallons of water, which drains from the bottom of the tank in half an hour. The values in the table show the volume V of water remaining in the tank (in gallons) after t minutes. If P is the point (15, 290) on the graph of V, fill the table with the slopes of the secant lines PQ where Q is the point on the graph with the corresponding t.

t (min)			-	20	_	
V(gal)	686	481	263	171	22	0

Enter your answer to two decimal places.

t	Slope
5	
10	
20	
25	
30	

Name:	Class:	Date:
-------	--------	-------

SteCh01

139. Evaluate the function

$$f(x) = 7\left(\frac{\sqrt{x} - \sqrt{2}}{x - 2}\right)$$

at the given numbers (correct to six decimal places). Use the results to guess the value of the limit $\lim_{x \to 2} f(x)$.

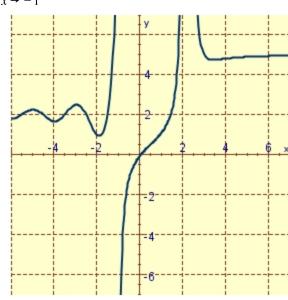
x	f(x)
1.6	
1.8	
1.9	
1.99	
1.999	
2.4	
2.2	
2.1	
2.01	
2.001	
Limit	
Lillit	

140. Evaluate the limit.

$$\lim_{x \to 0} \frac{4 - \sqrt{4 - x^2}}{x}$$

Name:	Class:	Date:
SteCh01		
141. Find the limit.		
(3)		
$\lim_{x \to \frac{3}{\pi}} \tan\left(\frac{3}{x}\right)$		
π		
142. How close to 2 do we have to take	x so that $5x + 3$ is within a dista	ance of 0.01 from 13?
143. Write an equation that expresses the	fact that a function f is continu	yous at the number 0
145. Write an equation that expresses the	fact that a function j is continu	ious at the number 9.
144. Evaluate the limit.		
$\lim_{x \to \infty} \frac{8x^2 - 9x + 1}{9x^2 + 9x - 3}$		
35 31, 31, 5		

Name:	Class:	Date:


SteCh01

145. Express the function in the form of $f \circ g$.

$$v(t) = \tan(t^2)\sin(t^2)$$

146. For the function f whose graph is given, find the limit.

$$\lim_{x \to -1^{-}} f(x)$$

Name:	Class:	Date:

SteCh01

147. The relationship between the Fahrenheit and Celsius temperature scales is given by the linear function.

$$F = \frac{9}{5}C + 32$$

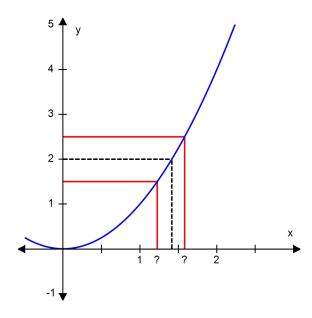
Complete the table and find the slope. Round your answers to the nearest whole number.

°C	°F
15	
-15	
slope	

148. Find the point at which the given function is discontinuous.

$$f(x) = \begin{cases} \frac{1}{x - 5}, & x \neq 5 \\ 5, & x = 5 \end{cases}$$

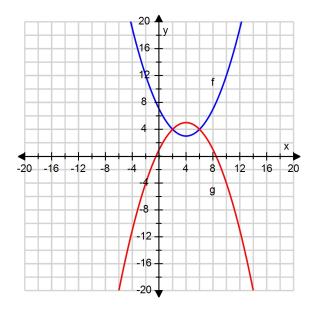
CLICK HERE TO ACCESS THE COMPLETE Test Bank			
Name:		Class:	Date:
SteCh01			
149. Consider the following	function.		
$f(x) = \begin{cases} 3 - x & x \\ x & -1 \\ (x - 3)^2 & x \end{cases}$	< -1 $\le x < 3$ $x \ge 3$		
Determine the values o	of a for which $\lim_{x \to 3} f(x)$ ex	ists.	
150. Find the limit.			
$\lim_{t \to 4} \frac{t^2 - 16}{t^3 - 64}$			


151. How would you define f(9) in order to make f continuous at 9?

$$f(x) = \frac{x^3 - 729}{x^2 - 81}$$

SteCh01

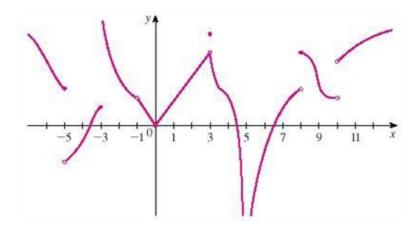
152. Use the given graph of $f(x) = x^2$ to find a number δ such that $|x^2 - 2| < \frac{1}{2}$ whenever $|x - \sqrt{2}| < \delta$.


Round your answer to two decimal places.

 Name:
 Class:
 Date:

SteCh01

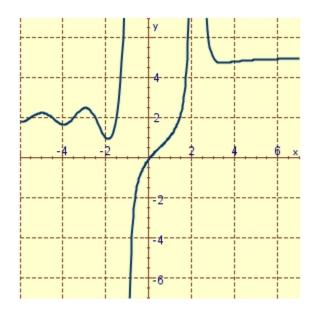
- 153. The graphs of f(x) and g(x) are given.
 - a) For what values of x is f(x) = g(x)?
 - b) Find the values of f(-1) and g(12).



154. If f and g are continuous functions with f(5) = 2 and $\lim_{x \to 5} [2f(x) - g(x)] = 5$, find g(5).

ea of a region, the larger the numbe	er of species that inhabit the region.
species-area relation with a power i	function and, in particular, the number to the surface area A measured in m^2 or
ible near puebla, mexico, has sufac ld expect to find in that cave?	the area of $A = 70m^2$.
f bats live in cave estimate the area	of the cave.
-	of the cave.
	in central Mexico has been related sible near puebla, mexico, has sufactld expect to find in that cave?

SteCh01


158. For x = 5 determine whether f is continuous from the right, from the left, or neither.

SteCh01

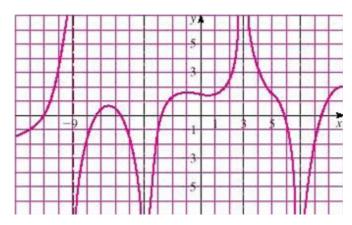
159. For the function f whose graph is given, find the limit.

$$\lim_{x \to -1^{-}} f(x)$$

160. Given that $\lim_{x \to 8} f(x) = -10$, and $\lim_{x \to 8} g(x) = 6$, evaluate the limit.

$$\lim_{x \to 8} (f(x) + g(x))$$

Name:	Class:	Date:


SteCh01

161. Evaluate the limit.

$$\lim_{x \to 16} \frac{4 - \sqrt{x}}{x - 16}$$

162. For the function f whose graph is shown, state the following.

$$\lim_{x \to -4} f(x)$$

163. How close to 2 do we have to take x so that 5x+3 is within a distance of 0.01 from 13?

me:	Class:	Date:
<u>•Ch01</u>		
164. A spherical balloon with ra	adius r inches has volume $4\frac{\pi r^3}{3}$.	
	sents the amount of air required to inflate the ba	alloon from a radius of r inches to a
165. Find the limit if $g(x) = x^{-8}$.		
$\lim_{x \to 5} \frac{g(x) - g(5)}{x - 5}$		
166. How close to −6 do we ha	ve to take <i>x</i> so that $\frac{1}{(x+6)^5} > 100,000$	
167. Find a number δ such that	if $ x-2 < \delta$, then $ 4x-8 < \varepsilon$, where $\varepsilon = 0.7$.	

Name:	Class:	Date:

SteCh01

168. Evaluate the limit.

$$\lim_{x \to 3} \left(\frac{x^3 - 3}{x^2 - 4} \right)$$

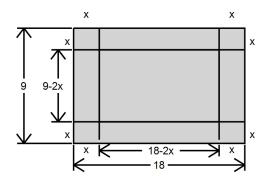
169. Use a graph to find a number δ such that $\left|\sin x - \frac{1}{2}\right| < 0.4$ whenever $\left|x - \frac{\pi}{6}\right| < \delta$.

Round your answer to the nearest thousandth.

170. Determine whether f is even, odd, or neither.

$$f(x) = \frac{2x^2}{x^4 + 1}$$

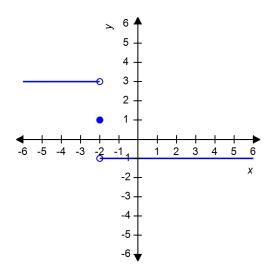
171. Use continuity to evaluate the limit.


$$\lim_{x \to 9} \frac{17 + \sqrt{x}}{\sqrt{16 + x}}$$

	CLICK HERE TO	ACCESS THE COMPLETE	Test Bank
ame:		Class:	Date:
<u>eCh01</u>			
bjective Short Ans	swer		
172. Find the fund	ction g such that $h(x) =$	$f(g \circ f)(x)$.	
$h(x) = \sin^5$	x and $f(x) = \sin x$		
173. Use the Squ	neeze Theorem to evalua	ate the limit $\lim_{x \to 0} \sqrt{6x^5 - 7x} \cos \frac{2\pi}{x^2}$	$\frac{\tau}{2}$.
174. Find the lim	it $\lim_{x \to \pi} \sqrt{17 + \cos 5x}$.		
		(x) at the given values of x , accurates, to three decimal places.	te to five decimal places. Use the result
$\lim_{x \to 0} \frac{x}{\sin 3x}$			

Name:	Class:	Date:

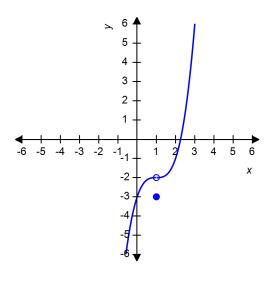
SteCh01


176. By cutting away identical squares from each corner of a rectangular piece of cardboard and folding up the resulting flaps, an open box can be made. If the cardboard is 18 in. long and 9 in. wide and the square cutaways have dimensions of x in. by x in., find a function that gives the volume of the resulting box.

Name:______ Class:_____ Date:_____

SteCh01

177. Use the graph of the function to find each limit.



$$\lim_{x \to -2^{-}} f(x), \lim_{x \to -2^{+}} f(x), \lim_{x \to -2} f(x)$$

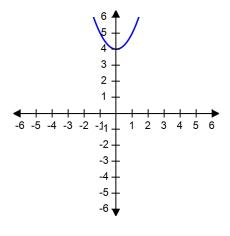
Name: Class: Date:

SteCh01

178. Use the graph of the function to find each limit.

$$\lim_{x \to 1^{-}} f(x), \lim_{x \to 1^{+}} f(x), \lim_{x \to 1} f(x)$$

179. Sketch the graph of the function.

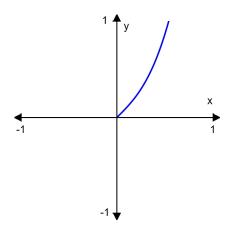

$$f(x) = |1 - 7x|$$

180. Use the Intermediate Value Theorem to show that there is a solution of the equation $2x^3 - 4x + 1 = 0$ between 1 and 2. Then estimate this solution to one decimal place.

Name:	Class:	Date:

SteCh01

181. Use the vertical line test to determine whether the curve is the graph of a function of x.


182. Find the numbers, if any, where the function $f(x) = 3x^3 - 9x^2 - 4$ is discontinuous.

183. Find the numbers, if any, where the function $f(x) = \frac{x-5}{x^2-25}$ is discontinuous.

Name:	Class:	Date:
Name.	Class.	Date.

SteCh01

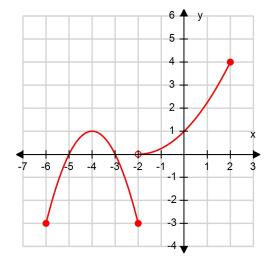
184. The following figure shows a portion of the graph of a function f defined on the interval [-1, 1]. Sketch the complete graph of f if it is known f is odd.

185. Plot the graph of the function f in an appropriate viewing window.

$$f(x) = 3x^4 - 3x^3 + 5x^2 - x + 39$$

186. Use the precise definition of a limit to prove that $\lim_{x \to 8} 2 = 2$

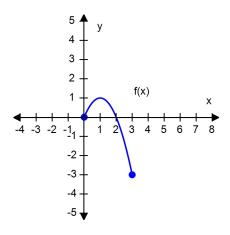
ne:	Class:	Date:
<u>Ch01</u>		
187. Find $f \circ g \circ h$ if		
$f(x) = \sqrt{x}, \ g(x) = 3x + $	1, and $h(x) = x^2 - 1$	
188. Find the limit $\lim_{x \to 2} \frac{x^2 + x}{x^2 - x^2}$	$\frac{c-6}{-4}$, if it exists.	
189. Determine whether the fu	unction is even, odd, or neither.	
$f(x) = 4x^2 + 8x + 1$		
190. Use the precise definition	n of a limit to prove that $\lim_{x \to 8} 5x = 40$	


SteCh01

191. Find the interval(s) where
$$f(x) = \frac{1}{x} + \frac{3\sqrt{x}}{(x-9)^2}$$
 is continuous.

192. If
$$f(x) = \begin{cases} x^2 + 7 & \text{if } x \le 0\\ \sqrt{x} & \text{if } x > 0 \end{cases}$$

find
$$f(-3)$$
, $f(0)$, and $f(4)$.


193. The graph of a function g is given. On what interval(s) is g increasing?

Name:______ Class:_____ Date:_____

SteCh01

194. Refer to the graph of the function f in the following figure.

- **a.** Find f(0).
- **b.** Find the value of x for which (i) f(x) = 1 and (ii) f(x) = 0.
- **c.** Find the domain and range of f.

195. Complete the table by computing f(x) at the given values of x, accurate to five decimal places. Use the results to guess the indicated limit, if it exists, to three decimal places.

$$\lim_{x \to -1} \frac{x+1}{x^2 + 5x + 4}$$

x	-0.9	-0.99	-0.999	-1.001	-1.01	-1.1	
f(x)							

Name:	Class:	Date:
Name.	Class.	Date.

SteCh01

196. Complete the table by computing f(x) at the given values of x, accurate to five decimal places. Use the results to guess the indicated limit, if it exists, to three decimal places.

$$\lim_{x \to -3} \frac{\sqrt{x+12} - 3}{x+3}$$

x	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9
f(x)						

197. Find the limit $\lim_{x \to 0^+} \frac{3 + \sqrt{x}}{\sqrt{x + 49}}$.

198. Find the interval(s) where $f(x) = \frac{-3}{x\sqrt{64-x^2}}$ is continuous.

Name:	Class:	Date:
SteCh01		
199. Let $f(x) = x^2 - 18x + 81$ and	$d g(x) = \sqrt{x+1}. \text{ Find } (f \circ f)(12).$	

Name:	Class:	Date:
SteCh01		
Answer Key		
1. False		
2. a		
3. h		
4. g		
5. a		
6. a		
7. a		
8. a		
9. a		
10. a		
11. a		
12. a		
13. a		
14. a		
15. a		
16. b		
17. a		
18. c		
19. a		
20. a		
21. a		
22. a		
23. a		
24. a		
25. a		
26. a		

Name:	Class:	Date:
SteCh01		
27. a		
28. a		
29. a		
30. a		
31. c		
32. e		
33. с		
34. a		
35. a		
36. b		
37. e		
38. c		
39. a		
40. e		
41. d		
42. a		
43. c		
44. c		
45. e		
46. b		
47. c		
48. b		
49. a		
50. a		
51. e		
52. d		
53. d		
54. b		

Name:	Class:	Date:
SteCh01		
55. c		
56. a		
57. b		
58. e		
59. b		
60. a		
61. d		
62. a		
63. a		
64. d		
65. c		
66. d		
67. c		
68. d		
69. d		
70. d		
71. b		
72. b		
73. c		
74. c		
75. c		
76. e		
77. b		
78. d		
79. с		
80. d		
81. c		
82. c		

Name:	Class:	Date:	
SteCh01			
83. f			
84. d			
85. a			
86. b			
87. e			
88. d			
89. e			
90. b			
91. d			
92. a			
93. b			
94. d			
95. e			
96. b			
97. b			
98. c			
99. b			
100. d			
101. b			
102. d			
103. b			
104. d			
105. d			
106. e			
107. e			
108. d			
109. a			
110. d			

Name:	Class:	Date:	
SteCh01			
111 0			
111. a			
112. c			
113. e			
114. d			
115. d			
116. b			
117. d			
118. c			
119. d			
120. f			
121. c			
122. b			
123. e			
124. a, d			
125. b, d			
126. 12			
127. $r(t) = 49t$, 2401 πt^2			
128. $(-\infty, -1)$ U $(-1, 2)$ U $(2, \infty)$			

129. $\delta \le 0.085$

 Name:
 Class:
 Date:

SteCh01

$$130. \left\{ x \middle| x \neq \frac{1}{3} \right\}$$

131.
$$\frac{28}{3}\pi(3r^2+21r+49)$$

132.
$$\delta \le 0.56$$

$$135. -\frac{1}{9}$$

136.
$$g(x) = \frac{1}{7 + \sqrt{x}}$$

137.
$$0 \le h(x) \le 6$$

$$138.\ (5, -39.60); (10, -38.20); (20, -23.80); (25, -26.80); (30, -19.33)$$

139. 2.612794, 2.540047, 2.506608, 2.477975, 2.475183, 2.362146, 2.415915, 2.444688, 2.471788, 2.474564, *Limit*: 2.474874

140. ∞

141.0

SteCh01

$$|x-2| < 0.002$$

143.
$$\lim_{x \to 9} f(x) = f(9)$$

144.
$$\frac{8}{9}$$

145.
$$f(t) = \tan(t)\sin(t)$$
$$g(t) = t^2$$

147.
$$(15, 59), (-15, 5);$$
 slope = 2

$$149.(-\infty,-1)U(-1,3)U(3,\infty)$$

150.
$$\frac{1}{6}$$

151.
$$f(9) = \frac{27}{2}$$

152.
$$\delta \le 0.17$$

153. a) 2, 6 b)
$$f(-1) = 12$$
, $g(12) = -10$

SteCh01

- 154. -1
- 155. 12
- 156.0
- 157. a) 3 species b) 334 m²
- 158. neither
- 159. ∞
- 160. -4
- 161. -1/8
- $162.-\infty$
- 163. |x-2| < 0.002

164.
$$\frac{8}{3}\pi(6r^2+12r+8)$$

- 165. 625,000
- 166. |x+6| < 0.1

167.
$$\delta$$
 = 0.175

SteCh01

168.
$$\frac{24}{5}$$

169. $\delta \le 0.424$

170. even

$$\frac{20}{5}$$

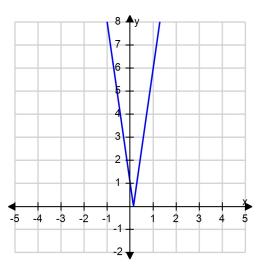
172.
$$g(x) = x^5$$

173.0

174. 4

175.

x	-0.1	-0.01	-0.001	0.001	0.01	0.1
f(x)	0.33839	0.33338	0.33333	0.33333	0.33338	0.33839
0.222						

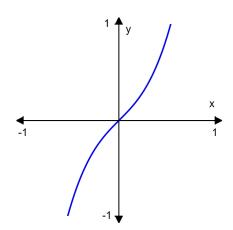

0.333

176.
$$V = 4x^3 - 54x^2 + 162x$$

177.
$$\lim_{x \to -2^{-}} f(x) = 3$$
, $\lim_{x \to -2^{+}} f(x) = -1$, $\lim_{x \to -2} f(x)$ Does not exist

178.
$$\lim_{x \to 1^{-}} f(x) = -2$$
, $\lim_{x \to 1^{+}} f(x) = -2$, $\lim_{x \to 1} f(x) = -2$

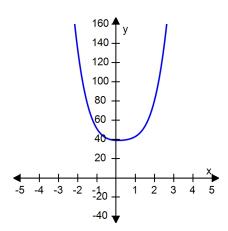
SteCh01


179.

180. x = 1.3

181. Yes

182. None


 $183. \pm 5$

184.

Name: Class: Date:

SteCh01

185.

186. The function is f(x) = 2 and L = 2

Let $\varepsilon > 0$ be given. Choose δ to be any real number greater than 0.

We see that for any x such that $|x-8| < \delta$ (actually for any x whatsoever), we have $|f(x)-2|=|2-2|=0<\varepsilon$

This proves the assertion.

187.
$$\sqrt{3x^2-2}$$

188.
$$\frac{5}{4}$$

189. Neither

 Name:
 Class:
 Date:

SteCh01

190. The function is f(x) = 5x and L = 40

Let $\varepsilon > 0$ be given. Choose $\delta = \frac{\varepsilon}{5}$.

We see that for any x such that $|x - 8| < \delta$, we have

$$|f(x) - 40| = |5x - 40|$$

$$= 5|x - 8|$$

 $< 5\delta$

$$=5\frac{\varepsilon}{5}$$

 $=\varepsilon$

This proves the assertion.

191. (0, 9) and $(9, \infty)$

$$192. f(-3) = 16, f(0) = 7, f(4) = 2.$$

194. **a.** 0

b. (i) 1 (ii) 0, 2

c.
$$D: [0, 3], R: [-3, 1]$$

195.

x	-0.9	-0.99	-0.999	-1.001	-1.01	-1.1
f(x)	0.32258	0.33223	0.33322	0.33344	0.33445	0.34483
0.333						•

196.

x	-3.1	-3.01	-3.001	-2.999	-2.99	-2.9
f(x)	0.16713	0.16671	0.16667	0.16666	0.16662	0.16621
0.167						

197.
$$\frac{3}{7}$$

198. (-8, 0) and (0, 8)

199.0