
 

Solutions for Java Data Structures 1st Edition by Azevedo

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/
https://testbanks.ac/product/9780357114841-SOLUTIONS-5/
https://testbanks.ac/product/9780357114841-SOLUTIONS-5/
https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


 

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May not be 
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
 

Java Data Structures 
Module Quiz 
Module 1: Algorithms and Complexities 
 

 
 
 
1. Out of the following list, which runtime complexity scales the worst? 
a. O(1) 
b. O(n) 
c. O(n2) 
d. O(log n) 

 

Analysis: 

a. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.2: Measuring Algorithmic 

Complexity with Big O Notation. 

b. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.2: Measuring Algorithmic 

Complexity with Big O Notation. 

c. Correct. See Module 1: Algorithms and Complexities, Lesson 1.2: Measuring Algorithmic 

Complexity with Big O Notation. 

d. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.2: Measuring Algorithmic 

Complexity with Big O Notation. 

 

 

 

 

 
 

 

2. What is the runtime complexity of the following code? 

a. O(10ⁿ) 
b. O(n) 
c. O(n log n) 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


 

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May not be 
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
 

d. O(1) 
 

Analysis 

a. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.3: Identifying Algorithms with 

Different Complexities. 

b. Correct. See Module 1: Algorithms and Complexities, Lesson 1.3: Identifying Algorithms with 

Different Complexities. 

c. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.3: Identifying Algorithms with 

Different Complexities. 

d. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.3: Identifying Algorithms with 

Different Complexities. 

 

 

 

 
 

 

 

3. The binary search algorithm has a big O of which of the following? 
a. O(log n) 
b. O(2ⁿ) 
c. O(n log n) 
d. O(1) 
 

Analysis: 

a. Correct. See Module 1: Algorithms and Complexities, Lesson 1.3: Identifying Algorithms with 

Different Complexities. 

b. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.3: Identifying Algorithms with 

Different Complexities. 

c. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.3: Identifying Algorithms with 

Different Complexities. 

d. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.3: Identifying Algorithms with 

Different Complexities. 

 

 

 

 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


 

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May not be 
scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in part. 
 

 

 

 

4. If we developed an algorithm that performs 5 + 2 log n + n operations, we can say that the algorithm 
has a complexity of which of the following? 
a. O(n2) 
b. O(5) 
c. O(log n) 
d. O(n) 

 

Analysis 

a. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.2: Measuring Algorithmic 

Complexity with Big O Notation. 

b. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.2: Measuring Algorithmic 

Complexity with Big O Notation. 

c. Incorrect. See Module 1: Algorithms and Complexities, Lesson 1.2: Measuring Algorithmic 

Complexity with Big O Notation. 

d. Correct. See Module 1: Algorithms and Complexities, Lesson 1.2: Measuring Algorithmic 

Complexity with Big O Notation. 

 

 

 

 

 
 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

Java Data Structures and Algorithms 
ISBN MindTap: 9780357114841 

 

 

  
 
Welcome to Java Data Structures and Algorithms.  This Instructor’s Manual will help you 

navigate the unique activities that are included in the MindTap, which will better enable you to 

include the exercises in your curriculum.  While the content included in this MindTap is specific 

to the discipline and course, the functionality will act the same as you move from product to 

product.  

 

For additional resources on our MindTap platform, please click HERE.  At this site, you will find 

User Guides, Self-Training Videos, Training Webinars, and Podcasts.  We also include 

Resources that are specific to your campus’s LMS, should additional information be needed. 

Student versions of the same resources are located HERE.  This link can be shared with your 

students directly, should they have any questions about the product. 

 
 
 
 
 
 
 
 

 

 

 

 

 

 

 
 

 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://www.cengage.com/training/mindtap
https://www.cengage.com/training/mindtap?terms=&pageSize=300&pageNumber=1&sortBy=cengage:sequenceNumber&audience=Student&platform=MindTap
https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

At a Glance 

 

Instructor’s Manual Table of Contents 
 

 

• Course Learning Design 

• Lab Details 

• Module Objectives 

• Module Notes 

• Solutions to Reflection 

 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

Course Learning Design 

In creating the digital learning path, we aimed to provide your students with a coherently 

structured experience that: 

 

• supports and aligns the learning objectives with the course content, instructional 

strategies, and assessments; 

• addresses individual learner differences and preferences; 

• welcomes learners of all abilities and backgrounds; and 

• enhances learner motivation by providing them with relevant, applicable learning 

experiences consistent with their own learning and professional goals. 

 

We’re excited to present you with the digital course experience and want to draw your attention 

to some of the design decisions we made as part of ensuring your confidence in our ability to 

create an effective, quality learning experience.  

 
Course Learning Design  

Course 

Description 

Algorithms and data structures are crucial for application performance. MindTap for Java Data Structures and 

Algorithms teaches problem-solving skills for building efficient applications. It starts with an introduction to 

algorithms and explains bubble, merge, quicksort, and other popular programming patterns. Coverage also includes 

data structures, such as binary tree, hash table, and graphs. The course progresses to advanced concepts, such as 

algorithm design paradigms and graph theory.  

  

Course 

Approach  

(6 modules in 

course) 

This course teaches students how to write systematic code in Java and improve application efficiency with hands-on 

practice, step-by-step instruction, and provides immediate feedback and troubleshooting support on their code. 

Students will develop skills that are in-demand by employers by completing authentic, real-world coding projects that 

can be added to their GitHub portfolios. 

Module 

Approach  

 

Each module is broken into 2–6 lessons—within each lesson are activities that align to meet specific learning 

objectives that are concrete and actionable.  

 
Within each lesson, the student will read some narrative and follow up with hands-on learning. There are four types of 

online labs in this course: 

1. Practice Exercises (Ungraded) provide an opportunity to practice a new concept in a short coding 

activity. Students are provided with guided instructional materials alongside a live computing 

environment.  There will typically be 1–3 practice labs in each lesson and there are on average around 5 

lessons per module (5–15 practice/module). 

2. Lab Activities (Auto-Graded) are coding activities that are completed by a student and contain auto-

grading that feeds directly to the gradebook. Learners demonstrate an understanding of numerous 

concepts by completing tasks. Tasks are verified using unit tests, I/O tests, image and webpage 

comparison, debugging tests, and many other checks. There will be a lab assessment for every lesson 

and there are on average around 5 lessons per module (around 5 labs per module). 

3. Module Lab Assessments (Auto- and Manual-Graded) encompass all the learning objectives in the 

module. Students are asked to complete a larger, authentic assignment with many tasks. Some tasks will 

be verified using unit tests, I/O tests, image and webpage comparison, debugging tests but other tasks 

will be unique to each student’s project and will require manual grading. The goal of these assignments 

is to prove that students have mastered the learning objectives in the module and in doing so have also 

created a program for their GitHub portfolio (1 Module Lab Assessment per module). 

4. Capstone Lab Assessment (Auto- and Manual-Graded) is a final project that is the summative 

assessment. The goal of this assignment is to prove that students have mastered the course objectives 

and in doing so have also created a program for their GitHub portfolio (1 Capstone Lab Assessment per 

course). 

 

 

 

 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

Learning Path 

Activities 

How many 

in course 

What is it? Why it matters? Seat time 

Welcome to 

Your Course  

 

1 

 

This is a brief overview of 

the course objectives that 

will be covered in the 

modules of this MindTap. 

Students will gain a clear understanding of the course 

objectives and will explore how this course offers the 

opportunity to not only read but watch videos, engage 

in critical-thinking simulations and hands-on trainings, 

teach them how to use the technology, and take quizzes 

to practice and check their understanding.  

5 minutes 

 

 

Getting Started 

Resources  

1 This section includes videos 

that provide an overview of 

the MindTap platform and 

the Coding IDE. There are 

3 lab Pre-Requisites, 2 of 

which count toward the 

grade 

Students will learn how to use MindTap to its fullest 

potential, which will help them excel in the course.  

 

They’ll also be introduced to the IDE’s functionality in 

6 brief videos. They’ll then complete 3 Lab Pre-

Requisites, 1 is practice and 2 count toward their grade. 

30 minutes 

Pre- and Post-

Course 

Assessments 

25 

questions 

each 

assessment 

Brief survey to-assess 

students’ knowledge of the 

subject matter before and 

after completing the course. 

For students: It creates awareness around what they 

will learn (pre) and how much they have learned (post).  

For instructors:  It establishes a baseline of what 

students already know (pre) and demonstrates how 

much they learned (post). 

For administrators: Coupling the pre- and post-

course assessment provides data on how much the 

students learned and the overall impact of the course. 

40 minutes 

Module Content (6 modules total) 

Readings for 

each module 

lesson; 2–6 

lessons per 

module 

~11 Short 

readings 

per module 

(66 total in 

course) 

Readings reinforce learning 

objectives.   

Students will read succinct, focused excerpts vs long 

chapters (then move into an interactive activity). 

55 minutes 

Practice 

Exercises 

~4 per 

module (21 

total in 

course) 

Short coding exercises in an 

IDE (non-graded) 

Students complete step-by-step coding exercises that 

offer a practical, hands-on approach to acquiring and 

retaining new concepts and skills.  

2-5 minutes 

Lab Activity 

(Graded) 

~4 per 

module (20 

total in 

course) 

Scenario-based coding labs 

in an IDE (auto-graded) 

These scenario-based activities bring together skills 

learned throughout the topics and lessons to solve real-

world problems.  

30 minutes 

Reflection ~3 per 

module (17 

total in 

course) 

Essay question The reflection prompt challenges students to develop 

higher-level thinking and promotes problem-solving. 

This is also an opportunity for you to confirm that 

tricky topics are understood 

15 minutes 

Module Quizzes ~1 per 

module (6 

total in 

course) 

Includes 6–9 multiple-

choice questions at the end 

of each module.  

The student can integrate material across the entire 

lesson and check their understanding before moving on 

to the next lesson.  

10 minutes 

Module Lab 

Assessment 

(Auto & Manual 

Grading) 

1 per 

module 

(6total in 

course) 

A larger coding project in 

our IDE that assesses 

whether students have 

mastered the Learning 

Objectives in the module. 

A larger lab with an authentic development project 

with many tasks. Upon completion, students will have 

6 large coding projects for their GitHub portfolios. 

1–2 hours 

Capstone Lab 

Assessment 

1 per 

course 

Final coding project in our 

IDE that assesses whether 

students have mastered the 

Course Objectives. 

A larger lab with an authentic development project 

with many tasks. Upon completion, students will have 

1 additional coding project to add to their GitHub 

portfolio.  

2–5 hours 

Instructor Test 

Bank 

1 per 

module (6 

total in 

course) 

An exam of @400 

objective-based questions 

based on each module 

available in the CNOW 

app.  

The Test Bank evaluates the student on their mastery of 

that module.  

30 minutes 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

 
Topic/Chapter Assignments 

Module 1 

Algorithms and 

Complexities 

Lessons 1.1–1.3 Reading  

Practice Labs  

Lab Activities  

Reflection 

Practice Quiz  

Module Lab Assessment  

Module Quiz   
Module 2 

Sorting Algorithms 

and Fundamental 

Data Structures  

Lessons 2.1–2.4 Reading  

Practice Labs  

Lab Activities  

Reflection 

Practice Quiz  

Module Lab Assessment  

Module Quiz   
Module 3 

Hash Tables and 

Binary Search Trees 

  

 

Lessons 3.1–3.2 Reading  

Practice Labs  

Lab Activities  

Reflection 

Practice Quiz  

Module Lab Assessment  

Module Quiz  

Module 4 

Algorithm Design 

Paradigms 

 

 

Lessons 4.1–4.3 Reading  

Practice Labs  

Lab Activities  

Reflection 

Practice Quiz  

Module Lab Assessment  

Module Quiz  

Module 5 

String Matching 

Algorithms 

 

Lessons 5.1–5.3 Reading  

Practice Labs  

Lab Activities  

Reflection 

Practice Quiz  

Module Lab Assessment  

Module Quiz 

Module 6 

Graphs, Prime 

Numbers, and 

Complexity 

 

Lessons 6.1–6.6 Reading  

Practice Labs  

Lab Activities  

Reflection 

Practice Quiz  

Module Lab Assessment  

Module Quiz 

Capstone Lab 

Assessment: 

Creating a Naval 

Navigation 

 

 

 
 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

Lab Details 
There are 21 Practice Exercises, 19 Lab Activities, 6 Module Lab Assessments, and 1 Capstone 

Lab Assessment across 6 modules.  

 

Lab Types 
Practice Exercises: 

• Practice Exercises are coding lab assignments within the IDE that allow you to practice 

writing and running code.  

• Practice Exercises are not graded and are not captured in the Progress App. These are 

designated in the learning path: 

 
 

Lab Activities: 
• Lab Activities are coding lab assignments within the IDE that run tests against your code 

to ensure that the objectives in the activity have been satisfied.  

• Lab Activities are automatically graded unless otherwise noted in the learning path: 

 
 

 
 

 

• You will work through the Lab Activities and “Run Checks” as you work through the 

problems. Once you have completed the assignment, you can “Submit,” which will send 

your lab to your instructor.  

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

 

 
 

• Note that instructors have the capability to review code submissions and alter grades as 

they see fit. Grade submissions are not final.  

 

Module Lab Assessments and Capstone Lab Assessment: 
• The Lab Assessments are coding lab assignments within the IDE that provide you with an 

authentic scenario to test your coding skills.  

• There is one Module Lab Assessment per module, and one Capstone Lab Assessment for 

the entire course. 

• Lab Assessments are partially automatically graded and partially manually graded by 

your instructor. These are designated in the learning path:  

 

 
 

 
• Note that instructors have the capability to review code submissions and alter grades as 

they see fit. Grade submissions are not final.  

 

List of Coding Labs  

 
Coding IDE Lab Prerequisite for Practice Exercises Practice 

Coding IDE Lab Prerequisite for Lab Activities Auto-Grade 

Coding IDE Lab Prerequisite for Module and Capstone Lab Assessments Auto/Manual Grade 

Module 1   

Lab Activity 1.1: Writing an Algorithm to Convert Numbers from Octal to 
Decimal  

Auto-Grade 

Lab Activity 1.2.A: Developing a Timing Table Using the Exponential 
Algorithm 

Practice 

Practice Exercise 1.2: Identify the Best and Worst Performance of an 
Algorithm  

Practice 

Lab Activity 1.2.B: Converting Expressions to Big O Notations Practice 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

Lab Activity 1.3: Developing a Faster Intersection Algorithm Auto-Grade 

Module Lab Assessment 1: Algorithms and Complexities Auto/Manual Grade 
Module 2  

Practice Exercise 2.1.A: Implementing Bubble Sort  Practice 

Practice Exercise 2.1.B: Improving Bubble Sorting Practice 

Lab Activity 2.1: Implementing Selection Sort in Java Auto-Grade 

Practice Exercise 2.2.A: Implementing Binary Search Recursively Practice 

Lab Activity 2.2: Understanding the Partitioning Method Manual-Grade 

Practice Exercise 2.2.B: Implementing QuickSort Practice 

Practice Exercise 2.3: Implementing Merge Sort Practice 

Lab Activity 2.3: Implementing Merge Sort in Java Auto-Grade 

Practice Exercise 2.4.A: Converting the Linked List to a Doubly Linked List 
Structure 

Practice 

Lab Activity 2.4.A: Traversing the Linked List Auto-Grade 

Practice Exercise 2.4.B: Adding and Deleting the Elements from the Queue Practice 

Practice Exercise 2.4.C: Reversing a String Practice 

Practice Exercise 2.4.D: Safe Enqueing in an Array Practice 

Lab Activity 2.4.B: Evaluating the Postfix Expression Auto-Grade 

Module Lab Assessment 2: Sorting Algorithms and Fundamental Data 
Structures 

Auto/Manual Grade 

Module 3  

Practice Exercise 3.1.A: Carrying out the Linear Probing Search Operation Practice 

Practice Exercise 3.1.B: Implementing the Multiplication Method for a Hash 
Table  

Practice 

Lab Activity 3.1: Implementing Open Addressing  Auto-Grade 

Practice Exercise 3.2.A: Searching for a Minimum Key in a Binary Tree  Practice 

Lab Activity 3.2.A: Implementing BFS in Java  Auto-Grade 

Practice Exercise 3.2.B: Applying Right Tree Rotation  Practice 

Lab Activity 3.2.B: Retrieving the Successor of an Element When the Tree Is 
Traversed in Inorder  

Auto-Grade 

Module Lab Assessment 3: Hash Tables and Binary Search Trees Auto/Manual Grade 

Module 4  

Practice Exercise 4.1.A: Solving the Activity Selection Problem  Practice 

Practice Exercise 4.1.B: Developing an Algorithm to Generate Code Words 
Using Huffman Coding  

Practice 

Lab Activity 4.1: Implementing a Greedy Algorithm to Compute Egyptian 
Fractions  

Auto-Grade 

Lab Activity 4.2: Solving the Maximum Subarray Problem  Auto-Grade 

Practice Exercise 4.3: Solving the 0-1 Knapsack Problem Using Recursion  Practice 

Lab Activity 4.3: The Coin Change Problem  Auto-Grade 

Module Lab Assessment 4: Algorithm Design Paradigms Auto/Manual Grade 
Module 5  

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

Practice Exercise 5.1: Developing the String Matching Algorithm in Java Practice 

Lab Activity 5.2: Implementing the Bad Character Rule  Auto-Grade 

Practice Exercise 5.2: Implementing the Boyer-Moore Algorithm Practice 

Practice Exercise 5.3: Applying the Rabin-Karp Algorithm  Practice 

Module Lab Assessment 5: String Matching Algorithms Auto/Manual Grade 

Module 6  

Practice Exercise 6.1: Writing a Java Code to Add Weights to the Directed 
Graph  

Practice 

Lab Activity 6.1: Building the Adjacency Matrix Representation of a 
Weighted Undirected Graph  

Auto-Grade 

Lab Activity 6.2: Using BFS to Find the Shortest Path Out of a Maze  Auto-Grade 

Lab Activity 6.3: Improving Floyd-Warshall's Algorithm to Reconstruct the 
Shortest Path  

Auto-Grade 

Lab Activity 6.4: Implementing the Sieve of Eratosthenes  Auto-Grade 

Module Lab Assessment 6: Graphs, Prime Numbers, and Complexity Classes Auto/Manual Grade 

  

Capstone Lab Assessment Auto/Manual Grade 

 

 

A Note to Instructors: 
 

COUNTS TOWARD GRADE/PRACTICE: Whether a lab COUNTS TOWARD GRADE or 

is PRACTICE, as indicated in the Learning Path, is preset and cannot be changed. Changing the 

Gradeable field within MindTap will not change the gradeability of the actual labs. We 

recommend not changing these default settings to avoid discrepancies between the MindTap 

plank description and the actual lab. 

• COUNTS TOWARD GRADE = lab is automatically or manually graded and the score is 

captured in the Progress App 

• PRACTICE = lab is not graded and the score is not captured in the Progress App 

 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

 

 

 

 

 

 

 

 

  

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures, First Edition  

Azevedo/Cutajar, Java Data Structures, 1st Edition. © 2020 Cengage. All Rights Reserved. May 

not be scanned, copied or duplicated, or posted to a publicly accessible website, in whole or in 

part. 

 

 

 

Module 1 

 

Algorithms and Complexities 
 

 

Module Objectives 

 

• Define an algorithm with an example 

• Measure algorithmic complexity 

• Identify algorithms with different complexities 

• Assess various examples with different runtime complexities 

 

Module Notes 

 

 

1. It's important for the students to understand that an algorithm is just a small 

part of an application used to solve a well-defined problem. Examples such as sorting a 

list of numbers, finding the shortest route, or word prediction are all correct. Big software 

applications, such as email clients or an operating system are improper. 

 

 

Lesson 1.1 Developing Our First Algorithm 

Lesson 1.1.1 Algorithm for Converting Binary Numbers to Decimal 

 

Note 

Walk through the code in Snippet 1.1 line by line, ideally starting from the 

two initial variables, and then give details about the loop. Describe how we're 

processing the binary string in reverse inside the loop.  

 

 

 

Lesson 1.2 Measuring Algorithmic Complexity with Big O Notation 

Lesson 1.2.1 Complexity Example 

 

Note 

Explain Snippet 1.2 by describing how the algorithm is going through every single pair 

combination.  

 

Lesson 1.2.2 Understanding Complexity 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures  
Pre-Course Assessment  
 

1. Order the following algorithms in the ascending order of their best-case complexity: 
 
Bubble sort 
Selection sort 
Quick sort 
Merge sort 
 
a. Bubble sort < Quick sort == Merge sort < Selection sort 

b. Quick sort < Bubble sort == Merge sort < Selection sort 

c. Selection sort < Quick sort < Merge sort < Bubble sort 

d. Selection sort < Bubble sort < Merge sort < Quick sort 

 

Analysis: 

a. Correct. Bubble sort has a complexity of O(n) in the best-case scenario. Quick sort and merge 

sort have O(n log(n)), and selection sort has O(n^2). See Module 2: Sorting Algorithms and 

Fundamental Data Structures, Lesson 2.3: Using Merge Sort. 

b. Incorrect. Bubble sort has a complexity of O(n) in the best-case scenario. Quick sort and merge 

sort have O(n log(n)), and selection sort has O(n^2). See Module 2: Sorting Algorithms and 

Fundamental Data Structures, Lesson 2.3: Using Merge Sort. 

c. Incorrect. Bubble sort has a complexity of O(n) in the best-case scenario. Quick sort and merge 

sort have O(n log(n)), and selection sort has O(n^2). See Module 2: Sorting Algorithms and 

Fundamental Data Structures, Lesson 2.3: Using Merge Sort. 

d. Incorrect. Bubble sort has a complexity of O(n) in the best-case scenario. Quick sort and merge 

sort have O(n log(n)), and selection sort has O(n^2). See Module 2: Sorting Algorithms and 

Fundamental Data Structures, Lesson 2.3: Using Merge Sort. 

 

 

 
 

 
 
2. Which of the following statements is true for a bubble sort structure? 
a. There are two for loops, one nested in the other. 

b. There is a while loop. 

c. There are three for loops, all of them separate. 

d. There is a single for loop. 

 

Analysis: 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


a. Correct. Bubble sort is based on two nested for loops. See Module 2: Sorting Algorithms and 

Fundamental Data Structures, Lesson 2.1: Introducing Bubble Sorting. 

b. Incorrect. Bubble sort is based on two nested for loops. See Module 2: Sorting Algorithms and 

Fundamental Data Structures, Lesson 2.1: Introducing Bubble Sorting. 

c. Incorrect. Bubble sort is based on two nested for loops. See Module 2: Sorting Algorithms and 

Fundamental Data Structures, Lesson 2.1: Introducing Bubble Sorting. 

d. Incorrect. Bubble sort is based on two nested for loops. See Module 2: Sorting Algorithms and 

Fundamental Data Structures, Lesson 2.1: Introducing Bubble Sorting. 

 

 
 

 

3. What is the result of the following expression in postfix notation? 
40 10 / 4 * 20 + 
 
a. 36 

b. 6 

c. 90 

d. 10 

 

Analysis: 

a. Correct. It can be written in infix notation as: 40 / 10 *4 + 20. See Module 2: Sorting Algorithms 

and Fundamental Data Structures, Lesson 2.4: Getting Started with Fundamental Data 

Structures. 

b. Incorrect. It can be written in infix notation as: 40 / 10 *4 + 20. See Module 2: Sorting Algorithms 

and Fundamental Data Structures, Lesson 2.4: Getting Started with Fundamental Data 

Structures. 

c. Incorrect. It can be written in infix notation as: 40 / 10 *4 + 20. See Module 2: Sorting Algorithms 

and Fundamental Data Structures, Lesson 2.4: Getting Started with Fundamental Data 

Structures. 

d. Incorrect. It can be written in infix notation as: 40 / 10 *4 + 20. See Module 2: Sorting Algorithms 

and Fundamental Data Structures, Lesson 2.4: Getting Started with Fundamental Data 

Structures. 

 

 
 

4. What will be the output of the following program? 
 
import java.util.HashMap; 
import java.util.Map; 
 
public class Program { 
    public static void main(String... args) { 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


        Key k1 = new Key(); 
        Key k2 = new Key(); 
 
        Map<Key, String> map = new HashMap<>(); 
 
        map.put(k1, "value1"); 
        map.put(k2, "value2"); 
 
        System.out.println(map.get(k1)); 
        System.out.println(map.get(k2)); 
    } 
} 
 
class Key { 
    public int hashCode() { 
        return 1; 
    } 
} 
a. value1 

    value2 

b. null 

    null 

c. value2 

    value2 

d. A Runtime Exception will be thrown. 

 

Analysis: 

a. Correct. It doesn't matter that hashCode returns a constant value. HashMap still uses the equals 

method to compare the keys. The only problem here is that this code is inefficient. See Module 3: 

Hash Tables and Binary Search Trees, Lesson 3.1: Introducing Hash Tables. 

b. Incorrect. It doesn't matter that hashCode returns a constant value. HashMap still uses the equals 

method to compare the keys. The only problem here is that this code is inefficient. See Module 3: 

Hash Tables and Binary Search Trees, Lesson 3.1: Introducing Hash Tables. 

c. Incorrect. It doesn't matter that hashCode returns a constant value. HashMap still uses the equals 

method to compare the keys. The only problem here is that this code is inefficient. See Module 3: 

Hash Tables and Binary Search Trees, Lesson 3.1: Introducing Hash Tables. 

d. Incorrect. There is no reason for which a Runtime Exception could be thrown from this program. 

See Module 3: Hash Tables and Binary Search Trees, Lesson 3.1: Introducing Hash Tables. 

 

 
 

5. What will be the output of the following program? 
 
import java.util.HashMap; 
import java.util.Hashtable; 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


Java Data Structures 
Post-Course Assessment  
 
 

 

1. Which of the following statements is true? 
 
1. Removing an element from a linked list is faster than adding an element to a linked list. 
2. Traversing a linked list has the same complexity as removing an element from a list. 
3. Traversing a linked list has the same complexity as adding an element to a list. 
4. Removing and adding an element to a linked list has the same complexity as a traversing operation. 
 
a. 1 and 3 
b. 1 
c. 2 and 4 
d. 4 
 

Analysis: 

a. Correct. Removing an element has a complexity of O(1), while traversing and adding an element 
to a list has a complexity of O(n). See Module 2: Sorting Algorithms and Fundamental Data 
Structures, Lesson 2.4: Getting Started with Fundamental Data Structures. 

b. Incorrect. Removing an element has a complexity of O(1), while traversing and adding an 
element to a list has a complexity of O(n). See Module 2: Sorting Algorithms and Fundamental 
Data Structures, Lesson 2.4: Getting Started with Fundamental Data Structures. 

c. Incorrect. Removing an element has a complexity of O(1), while traversing and adding an 
element to a list has a complexity of O(n). See Module 2: Sorting Algorithms and Fundamental 
Data Structures, Lesson 2.4: Getting Started with Fundamental Data Structures. 

d. Incorrect. Removing an element has a complexity of O(1), while traversing and adding an 
element to a list has a complexity of O(n). See Module 2: Sorting Algorithms and Fundamental 
Data Structures, Lesson 2.4: Getting Started with Fundamental Data Structures. 

 

 
 

 

2. What is the maximum number of comparisons that can take place in bubble sort? Assume that there 
are n elements in the array. 
 
a. (1/2)n(n-1) 
b. (1/2)(n-1) 
c. (1/4)n(n-1) 
d. (1/4)(n-1) 
 
Analysis: 
 
1. Correct. This is because after each pass, the total number of comparisons is reduced by 1. See 
Module 2: Sorting Algorithms and Fundamental Data Structures, Lesson 2.1: Introducing Bubble Sorting. 
2. Incorrect. The maximum number of comparisons is (1/2)n(n-1). This is because after each pass, the 
total number of comparisons is reduced by 1. See Module 2: Sorting Algorithms and Fundamental Data 
Structures, Lesson 2.1: Introducing Bubble Sorting. 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


3. Incorrect. The maximum number of comparisons is (1/2)n(n-1). This is because after each pass, the 
total number of comparisons is reduced by 1. See Module 2: Sorting Algorithms and Fundamental Data 
Structures, Lesson 2.1: Introducing Bubble Sorting. 
4. Incorrect. The maximum number of comparisons is (1/2)n(n-1). This is because after each pass, the 
total number of comparisons is reduced by 1. See Module 2: Sorting Algorithms and Fundamental Data 
Structures, Lesson 2.1: Introducing Bubble Sorting. 
 

 
 

 

3. What will be the output of the following program? 
 
import java.util.HashMap; 
import java.util.Map; 
 
public class Program { 
    public static void main(String... args) { 
        Key k1 = new Key(); 
        Key k2 = new Key(); 
 
        Map<Key, String> map = new HashMap<>(); 
 
        map.put(k1, "value1"); 
        map.put(k2, "value2"); 
 
        System.out.println(map.get(k1)); 
        System.out.println(map.get(k2)); 
    } 
} 
 
class Key { 
    public int hashCode() { 
        return (int)(Math.random() * 100); 
    } 
} 
 
a. null 
    null 
b. value1 
    value2 
c. value2 
    value2 
d. A Runtime Exception will be thrown. 
 

Analysis: 

a. Correct. As hashCode returns a different value, we won't be able to find the given keys in the 
HashMap. See Module 3: Hash Tables and Binary Search Trees, Lesson 3.1: Introducing Hash 
Tables. 

b. Incorrect. As hashCode returns a different value, we won't be able to find the given keys in the 
HashMap. See Module 3: Hash Tables and Binary Search Trees, Lesson 3.1: Introducing Hash 
Tables. 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/


c. Incorrect. As hashCode returns a different value, we won't be able to find the given keys in the 
HashMap. See Module 3: Hash Tables and Binary Search Trees, Lesson 3.1: Introducing Hash 
Tables. 

d. Incorrect. There is no reason for which a Runtime Exception could be thrown from this program. 
See Module 3: Hash Tables and Binary Search Trees, Lesson 3.1: Introducing Hash Tables. 

 

 
 

 

4. What will be the output of the following program? 
 
import java.util.HashMap; 
import java.util.Map; 
 
public class Program { 
    public static void main(String... args) { 
        Key k1 = new Key(); 
        Key k2 = new Key(); 
 
        Map<Key, String> map = new HashMap<>(); 
 
        map.put(k1, "value1"); 
        map.put(k2, "value2"); 
 
        System.out.println(map.get(k1)); 
        System.out.println(map.get(k2)); 
    } 
} 
 
class Key { 
    public boolean equals(Object o) { 
        return true; 
    } 
    public int hashCode() { 
        return 1; 
    } 
} 
 
a. value2 

    value2 

b. null 

    null 

c. value1 

    value2 

d. A Runtime Exception will be thrown. 

 

Analysis: 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780357114841-SOLUTIONS-5/

