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Because 〈n|x|n〉 = 0

xn = C

~ω
1

n′ − n
(〈n|x|n′〉〈n′|x3|n〉+ 〈n|x3|n′〉〈n′|x|n〉) (188)

Using〈n|a|n′〉 =
√
n′δn,n′−1, 〈n|a†|n′〉 =

√
n′ + 1δn,n′+1

〈n|x|n′〉 = 1
2

( 2~
mω

)(1/2) (√
n′δn,n′−1 +

√
n′ + 1δn,n′+1

)
(189)

So only n′ = n+ 1 and n′ = n− 1 contribute. The only relevant terms in x3 are a†a†a, a†aa, a†, a

〈n|a†a†a|n′〉 = n′
√
n′ + 1δn,n′+1 (190)

〈n|a†aa|n′〉 = (n′ − 1)
√
n′δn,n′−1 (191)

This gives

〈n|x3|n′〉 = 3
8

( 2~
mω

)(3/2) [
n
√
nδn,n′+1 + (n+ 1)

√
n+ 1δn,n′−1

]
(192)

xn = 2C
~ω

1
2

( 2~
mω

)(1/2) 3
8

( 2~
mω

)(3/2) [
(n+ 1)2 − n2

]
(193)

= 3
2C

~
m2ω3 (2n+ 1) (194)

As a result, the mean position of the particle depends on the number of phonons excited. That is,
the mean position depends on the temperature. This is thermal expansion.

Sec. II
II.1. Wannier functions.

(a) Wannier function is defined as,

Wn(r −Rl) = 1√
N

∑
k

e−ik·Rlunk(r) (195)

Use planewaves as an approximation for the band states, and use a cubic cell with dimension
a,

ψnk(r) = 1√
V
eik·r (196)

and therefore,

Wn(r −Rl) = 1√
NV

∑
k∈BZ

e−ik·Rieik·r

=

√
V

N

∫
fracdk(2π)3eik·(r−Rl) =

√
V

N

1
π3

sin(πa (x−Rlx))
x−Rlx

sin(πa (y −Rly))
y −Rly

sin(πa (z −Rlz))
z −Rlz

(197)
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(b)
〈Wn(Ri)|Ĥ|Wm(Rj)〉 =

∫
dr

1√
N

∑
k1

eik1·Riψ∗nk1(r)Ĥ 1√
N

∑
k2

e−ik2·Rjψmk2(r)

= 1
N

∑
k1k2

eik1·Rie−ik2·Rj 〈ψnk1 |Ĥ|ψmk2〉 = 1
N

∑
k1k2

eik1·Rie−ik2·RjEnk1δmnδk1k2

= δmn
1
N

∑
k1

eik1·(Ri−Rj)Enk1

(198)

(c) If we allow mixing of different bands, the Wannier function with band index n at cell R is
defined by,

wnR(x) =
√

V

(2π)3

∫
BZ

dke−ik·R
[∑
m

U (k)
mnψmk(x)

]
(199)

Note that the unit of Bloch wavefunction is [ψ(x)] = L−3/2, U is dimensionless, and therefore
we also require that w(x) be of the same unit with ψ(x).
After we get the Wannier functions, we can calculate the hopping parameters between these
MLWFs, which are exactly the Hamiltonian matrix elements between these Wannier functions.

〈wmR1 |Ĥ|wnR2〉 = V

(2π)3

∫
dx

[∫
dk1e

−ik1·R1
∑
m′

U
(k1)
m′mψm′k1(x)

]
Ĥ(x)

[∫
dk2e

−ik2·R2
∑
n′

U
(k2)
n′n ψn′k2(x)

]

= V

(2π)3

∑
m′n′

∫
dk1dk2e

ik1·R1e−ik2·R2U
(k1)∗
m′m U

(k2)
n′n

∫
dxψ∗m′k1(x)Ĥ(x)ψn′k2(x)

= V

(2π)3

∑
m′n′

∫
dk1dk2e

ik1·R1e−ik2·R2U
(k1)∗
m′m U

(k2)
n′n δk1k2δm′n′Em′k1

= V

(2π)3

∫
dk1e

ik1·(R1−R2)∑
m′

U
(k1)∗
m′m U

(k1)
m′nEm′k1

= V

(2π)3

∫
dk1e

ik1·(R1−R2)∑
m′

Em′k1U
(k1)†
mm′ U

(k1)
m′n

= 〈wm(R1−R2)|Ĥ|wn0〉
(200)

which depends only upon (R1 −R2).

II.2. Band structure and dynamics of electrons.

(a) (i) The group velocity v = dω
dk = 1

~
dε
dk = a(E2−E1)

2~ sin(ka).
(ii) The effective mass 1

m∗ = 1
~2

d2ε
dk2 .

m∗ = 2~2

a(E2 − E1)
1

cos(ka) (201)
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(iii) Bloch oscillation,

k(t) = k(0) + eE

~
t (202)

v(k) = a(E2 − E1)
2~ sin(ka) (203)

x(t) =
∫
v(k(t))dt (204)

= (E2 − E1)
2eE

(
cos(aeE

~
t)− 1

)
+ x(0) (205)

So the period is T = 2π~
aeE , range of distance is (E2−E1)

eE .
(b) In Wannier representation,[

En(−i ∂

∂Rx
,−i ∂

∂Ry
) + V (Rx, Ry)

]
ψ(Rx, Ry, t) = i~

∂

∂t
ψ(Rx, Ry, t) (206)

In Bloch representation,[
En(kx, ky) + V (i ∂

∂kx
, i

∂

∂ky
)
]
ψ(kx, ky, t) = i~

∂

∂t
ψ(kx, ky, t) (207)

II.3. Electrons in an electric field.

(a) The group velocity is

v = 1
~
dε

dk
= −aE0

~
sin(ka) (208)

(b)

~
dk

dt
= −eE (209)

k(t) = k(0)− eE

~
t (210)

(c)

x(t) =
∫
v(k(t))dt (211)

= −E0
eE

(
cos(aeE

~
t)− 1

)
+ x(0) (212)

Because x(0) = 0,

x(t) = −E0
eE

(
cos(aeE

~
t)− 1

)
(213)

II.4. Velocity and effective mass of crystal electrons.
The group velocity v = 1

~
dε
dk = −aE0

~ sin(ka). The effective mass m∗ = − ~2

E0a2 cos(ka) .

(a) v = −E0a2

~ δk,m∗ = − ~2

E0a2 .
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(b) v = −E0a2

~ δk,m∗ = − ~2

E0a2 .

(c) v = −E0a
~ ,m∗ = − ~2

E0δka3 .

(d) v = −E0a
~ ,m∗ = ~2

E0δka3 .

II.5. Electron Dynamics.

(a)

ε(k) = −2τ
[
cos a2(kx + ky) + cos a2(kx − ky) + cos a2(kx + kz) (214)

+ cos a2(kx − kz) + cos a2(ky + kz) + cos a2(ky − kz)
]

(215)

(b) (i)

vx = 1
~
∂ε

∂kx
(216)

= aτ

~

[
sin aet2~ (εx + εy) + sin aet2~ (εx − εy) (217)

+ sin aet2~ (εx + εz) + sin aet2~ (εx − εz)
]

(218)

so

x(t) =
∫
v(t)dt = 2τ

e(εx + εy)

[
cos ae(εx + εy)t

2~ − 1
]

+ other similar terms (219)

= 2τ
e

[
1

εx + εy
(cosA(εx + εy)t− 1) + 1

εx − εy
(cosA(εx − εy)t− 1) (220)

+ 1
εx + εz

(cosA(εx + εz)t− 1) + 1
εx − εz

(cosA(εx − εz)t− 1)
]

(221)

(ii)

x(t) = y(t) = z(t) = 2τ
eε

(cos aeε
~
− 1) (222)

1 2 3 4 5 6

-2.0

-1.5

-1.0

-0.5

Figure 18: Sketch
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(iii) For the estimation, let’s take τ ∼= 5 eV, and not worry about counting nearest neighbours.
The amplitude,

4τ
eε

= 4
√

3× 5eV
1eV/mm (223)

for ε ≈ 1 V/mm. This is roughly 5 mm.

II.6. Berry phase in the spin dynamics of an electron in a magnetic field.

(a)

H = e~
2mcσ ·B(t) (224)

= e~|B(t)|
2mc

(
cos(θ) e−iφ sin(θ)
eiφ sin(θ) − cos(θ)

)
(225)

We use a trial eigenfunction ( in unit of e~|B(t)|
2mc )

H

(
cos(θ/2)
eiφ sin(θ/2)

)
=
(

cos(θ) cos(θ/2) + sin(θ) sin(θ/2)
eiφ(sin(θ) cos(θ/2)− cos(θ) sin(θ/2))

)
(226)

=
(

cos(θ/2)
eiφ sin(θ/2)

)
(227)

(b)

A(θ, φ) = iχ†↑(θ, φ)∇χ↑(θ, φ) (228)

∇χ↑(θ, φ) = 1
|B|

(
−1

2 sin(θ/2)
1
2e
iφ cos(θ/2)

)
θ̂ + 1
|B| sin(θ)

(
0

ieiφ sin(θ/2)

)
φ̂ (229)

which leads to,

A(θ, φ) = − sin2(θ/2)
|B| sin(θ) φ̂ (230)

and therefore,

Ω(θ, φ) = ∇×A(θ, φ) = 1
2|B|2 B̂ (231)

(c)

γ↑ =
∫
dS ·Ω = −1

2

∫ |B|2
|B|2

dω (232)

= −1
2∆ (233)

II.7. Hartree-Fock approximation for ferromagnetic electron gas.

40

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780521513319-SOLUTIONS-5/


(a) When we go from a paramagnetic to a ferromagnetic ground state, the rs parameter doesn’t
change, but the spin degeneracy factor gs changes from 2 to 1. Alternatively, we can write the
ground-state energy E solely in terms of the Fermi wavevector without any reference to gs,
i.e., E = E(rs, gs) = Ek(kF ). Now, all we have to do is to relate the Fermi wave vector from
paramagnetic case to the ferromagnetic case. We know that,

rs =
( 3

4π

)1/3 ( 1
n

)1/3
, n = N/Ωxtal (234)

Also,

N = gs

kF∑
k

(1) = gsΩxtal
6π2 k3

F

kF =
( 1
gs

)1/3 1
rs

(235)

The relationship between the paramagnetic and ferromagnetic Fermi wavevector is kFF =
21/3 kPF . So, the total energy is given by

EP = Ek(kPF ) = EP (rs)
EF = Ek(kFF ) = Ek(21/3 kPF ) = EF (rs)

(236)

We can rewrite the the ferromagnetic ground-state energy in terms of the paramagnetic one,

EF (rs) = Ek(21/3 kFF ) = EP (2−1/3 rs) (237)

Within the Hartree-Fock approximation,

EP (rs) = 2.21
r2
s

− 0.916
rs

EF (rs) = 3.51
r2
s

− 1.15
rs

(238)

(b) The ground-state energy for the two cases is compared in Fig. 19:

5 10 15 20
rs

-0.10

-0.08

-0.06

-0.04

-0.02

0.02

Energy (Ry)

Paramag.

Ferromag.

Figure 19: Ground-state energy in FM and AFM cases

Note that the ferromagnetic state is lower in energy than the paramagnetic case for rs > 5.56.
This makes sense, as ferromagnetism can be though as a strongly-corollated phenomenum, so
it should take place as larger values of rs.
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II.8. Exchange-correlation hole

(a) (i) There are 2 atoms per cell, so n = 2
a3 . In Rydberg units, a = 7.94 a0, so n = 2

7.943 , and

rs =
(

3
4π

)1/3 7.94
21/3 = 3.91.

(ii) We can estimate the exchange-correlation hole from the correlation function g↑↑(r, 0) =
1
2

[
1− (f(r))2

]
, where f(r) = 3

rkF
j1(rkF ). The first zero of the spherical Bessel function

j1 is at rkF = 4.5 = r 1.92
rs

. So, the size of the xc hole is r ∼ 1.97 a0.
(b) (i) The energy is roughly the Coulomb potential between the xc hole and the electron, so

it’s
εxc = −e

2

z2 = − 2
z2 , in Ry (239)

(ii) If we use the correct exchange-correlation hole, the charge density associated to the hole
would be farther away, so εxc would be larger (i.e., less negative).

II.9. Wigner electron crystal.

(a) In a Wigner sphere (radius R = a0rs), ion charge is evenly distributed, and we can get the
electric field by using Gauss’s law,

ϕ(r) =
∫ ∞
r
E · dl =


1

4πε0

(
3Q
2R −

Qr2

2R3

)
, r < R

Q
4πε0r , r > R

(240)

In the sphere, electrons feel the electric potential,

(−e)V (r) = 1
4πε0

(
−3e2

2R + e2r2

2R3

)
(241)

with R = a0rs and a0 = 4πε0~2

me2 . In atomic units, we get,

V (r) = − 3
rs

+ r2

r3
s

(242)

(b) In a harmonic model Hamiltonian of electron in a Wigner sphere,

H = − ~2

2m∇
2 − 1

4πε0

(
3e2

2R −
e2r2

2R3

)

= E0 +
(
− ~2

2m∇
2 + e2

8πε0R3 r
2
)

= E0 +
(
p2

2m + 1
2mω

2r2
) (243)

where ω =
√

e2

4πε0mR3 . Using Virial theorem, we know that Ek = Ep = 1
2E. And the kinetic

energy Ek from the zero-point motion is given by,

Ek = 1
2E = 1

2
3
2~ω = 3

4

√
e2~2

4πε0mR3

= 3
2r
−3/2
s (Ry)

(244)
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(c) Total energy: E = −1.8
rs

+ 3
2r3/2
s

. At equilibrium,

∂E

∂rs
= 0⇒ rs = 25

16 (245)

Then the volume per electron is Ve = 4π
3 r

3
s = 15.98 in units of a3

0.
The bulk modulus is then given by,

B = −V ∂2E

∂V 2

∣∣∣∣∣
rs= 25

16

= 4.005× 10−3 (246)

II.10. Kramers-Kronig relations.
Assume E(t) = E0δ(t) is a pulse of electric field at t = 0. Then the dielectric function is defined
as,

D(t) =
∫
dt′ε(t′)E(t− t′) (247)

= ε(t)E0 (248)

Because D(t) must vanish for t < 0,

ε(t) = 0 for t < 0 (249)

so

ε(t) =
∫ ∞

0
dteiωtε(t) (250)

eiωt decays exponentially as a function of t when the imaginary part of ω is greater than zero. By
Cauchy’s theorem:

ε(ω) =
∮
dω′

2πi
ε(ω′)

ω′ − ω − iη
(251)

assuming η is very small. In order for the Cauchy’s theorem to be valid, the function ε(ω) must
drop off faster than ω′ for large ω′. Therefore,

ε(ω)− ε∞ =
∮
dω′

2πi
ε(ω′)− ε∞

ω′ − ω − iη
(252)

−ε∞ is the value of ε as ω goes to infinity. Now we can separate the equation into real and imagi-
nary parts.

We notice that when η goes to zero, the pole will move to the real axis, so we need to change
our contour to include a half-circuit around the pole at ω = ω′ which passes below the pole. The
half-circuit part in the contour contributes half to the contour integral as there is only one pole
inside. If we want to discard the contribution from the half-circuit to make it a Cauchy principle
value, we must include a factor of 2 in the RHS to keep the equity .

ε(ω)− ε∞ = P
∮
dω′

πi

ε(ω′)− ε∞

ω′ − ω
(253)
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Therefore, using ε1 and ε2 for the real and imaginary part of ε we have

ε1(ω)− ε∞ = P
∮ 2ω′dω′

π

ε2(ω′)
ω′2 − ω2 (254)

ε2(ω) = −P
∮ 2ω′dω′

π

ε1(ω′)− ε∞

ω′2 − ω2 (255)

II.11. Sum rules of dielectric function.

(a) In Drude model,

ε1(ω) = 1−
ω2
pτ

2

1 + ω2τ2

ε2(ω) =
ω2
pτ

ω(1 + ω2τ2)

(256)

For τ →∞, ε1(ω)→ 1− ω2
p

ω2 and ε2(ω) = ω2
p

ω
τ−1

τ−2+ω2 .
Use the identity,

lim
ε→0

ε

x2 + ε2 = πδ(x) (257)

and we will have,

ε2(ω) = π
ω2
p

ω
δ(ω), as τ−1 →∞ (258)

and ∫ ∞
0

ωε2(ω)dω = πω2
p

∫ ∞
0

dωδ(ω) =
πω2

p

2 (259)

(b) Take inverse of dielectric function,

ε−1(ω) = 1
ε1 + iε2

= ε1 − iε2
ε21 + ε22

⇒ Im[1
ε

] = − ε2
ε21 + ε22

(260)

Use the Kramers-Krönig relation for ε−1,

Re[ 1
ε(ω) ]− 1 = 2

π
P

∫ ∞
0

dω′
ω′Im[1/ε(ω′)]
ω′2 − ω2 (261)

Consider the limit ω →∞,

Re[1/ε]− 1 = − 2
πω2P

∫ ∞
0

dω′ ω′Im[1/ε(ω′)] (262)

With τ →∞ and ω 6= 0, we have ε2(ω)→ 0, which means,

1
ε(ω) = 1

ε1 + iω2
≈ 1
ε1

= 1
1− ω2

p

ω2

(263)

Here we take ω →∞,

Re[1/ε(ω)]− 1 ≈
ω2
p

ω2 (264)

which leads to,
ω2
p

ω2 = − 2
πω2P

∫ ∞
0

dω′ ω′Im[1/ε(ω)]

⇒
∫ ∞

0
dω ωIm[1/ε(ω)] = −

πω2
p

2

(265)
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II.12. Induced charge in a metal.
Consider an impurity in a metal. Since there is no oscillation, we take ω = 0. We have Lindhard
dielectric function as,

ε(q, ω = 0) = 1 + k2
sF (q/2kF )

q2 , F (q/2kF ) = 1
2

1− (q/2kF )2

4(q/2kF ) ln
∣∣∣∣1 + q/2kF
1− q/2kF

∣∣∣∣ (266)

And ε2(q, ω = 0) = 0. In this way, ε(q) = ε1(q) ∈ R.
From Maxwell’s equations,

∇ ·D(r) = 4πρi(r)
∇ ·E(r) = 4π(ρi(r) + ρs(r))

(267)

where ρi is impurity charge density and ρs is induced charge density.
With Fourier transform, we have,

iq ·D(q) = 4πρi(q)
iq ·E(q) = 4π(ρi(q) + ρs(q))

(268)

Impurity charge can be treated as a point charge in large r limit,

ρi(r) = Qδ(r)

ρi(q) =
∫
ρi(r)e−iq·rdq = Q

(269)

The dielectric function is defined as,

ε(q) = lim
ρi→0

P (q)
E(q) = lim

ρi→0

ρi(q)
ρi(q) + ρs(q) = Q

Q+ ρs(q) ⇒ ρs(q) = 1− ε(q)
ε(q) Q (270)

That is,

ρs(r) =
∫

dq

(2π)3 ρs(q)eiq·r = Q

(2π)2

∫ ∞
0

q2dq(−1)1− ε(q)
ε(q)

eiqr − e−iqr

iqr

= Q

(2π)2
1
ir

∫ ∞
−∞

qdq
1− ε(q)
ε(q) eiqr

(271)

Define f(q) = Q
(2π)2 q

1−ε(q)
ε(q) , and we will have,

ρs(r) = 1
ir

∫ ∞
−∞

f(q)eiqrdq = Q

4π2r

∫ ∞
−∞

dq q sin(qr)
(

q2

q2 + k2
sF (q/2kF ) − 1

)
(272)

The residue at the singular point z = iks is proportional to e−ksr/r. But we only consider r →∞,
so it decays to zero.
With two branch cuts, x1 = ±1 ⇔ q = ±2kF , define two contours: C1 = {(x, y)|x = −2kF , y ∈
(+∞, η) ∪ (−η,−∞)} and C2 = {(x, y)|x = 2kF , y ∈ (+∞,+η) ∪ (−η,−∞)}.

ρs(r) = Q

4π2r
lim
η→0

(∫
C1

+
∫
C2

)
qdq sin(qr)

[
q2

q2 + k2
sF (q/2kF ) − 1

]

= Q

4π2r2
πk2

s

4kF
8k3

F

(4k2
F + 1

2k
2
s)2 lim

η→0

[
e−2ikF i

∫ ∞
η

du e−ur + e2ikF i

∫ ∞
η

vdv e−vr
]

= Q

π

k2
s/k

2
F

(4 + k2
s/(2k2

F ))2
cos(2kF r)

r3 ∝ r−3 cos(2kF r)

(273)
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II.13. Zeros and poles of dielectric function.
The interaction of light with a medium can be described by the dielectric function ε(k, ω), and the
Maxwell equations (in a non-magnetic medium):

∇ · (εE) = 4πρext (274)

∇×E = −1
c

∂B

∂t
(275)

∇ ·B = 0 (276)

∇×B = 4π
c
Jext + 1

c

∂

∂t
(εE) (277)

Inside the medium there are no external sources, so ρext = Jext = 0. If we Fourier analyze the
fields we get,

k · (εE) = 0 (278)
k ·B = 0 (279)
k ×E = ω

c
B (280)

k ×B = −ω
c

(εE) (281)

In general there are no longitudinal modes because,

k · (εE) = 0 =⇒ E = 0 (282)

except when ε = 0. Therefore, longitudinal modes are only allowed for (ω,k) ∈ ε(ω,k) = 0.
Combine Eqn. (279) and (281), one gets the dispersion relationship for the transverse mode:

ω2

k2 = c2

ε(k, ω) (283)

At high frequencies ε ≈ 1 then ω2/k2 = c2 is just the free space dispersion, i.e. at high frequencies
the light does not interact strongly with the medium. There are also low frequency solutions to
Eqn. (283), which are the transverse normal modes of the medium. Since ω2 is small and c2 is
large, Eqn. (283) is satisfied only if ε(k, ω) is very large, which occurs near the poles of ε. For
practical purposes, we can say that the transverse normal modes occur at the poles of ε.

II.14. Polar insulators.

(a) See Ashcraft&Mermin Chap. 27 for detailed derivation.
(b) If ε(ω) < 0, then n = i

√
−ε, and R = 1. Also note that,

R(0) =
∣∣∣∣∣
√
ε0 − 1
√
ε0 + 1

∣∣∣∣∣
2

, R(∞) =
∣∣∣∣∣
√
ε∞ − 1
√
ε∞ + 1

∣∣∣∣∣
2

(284)

And we can plot the frequency-dependent reflectivity as Fig. 20,
(c) R close to 1 in the polariton region.
(d) For the LO mode there is an additional restoring force coming from the dipole field.

46

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9780521513319-SOLUTIONS-5/


Figure 20: Frequency-dependent reflectivity

II.15. Density functional theory.
Within the Kohn-Sham formalism, we write the energy of the system as a function of the charge
density and Kohn-Sham orbitals as

E[ρ] = Eext[ρ] + T [{φ}] + Eee[ρ] + Exc[ρ]

Eext =
∫

d3r vext(r)ρ(r)

T = −1
2
∑
i

ni

∫
d3r φ∗i (r)∇2φi(r)

Eee = e2

2

∫
d3r d3r′

ρ(r)ρ(r′)
|r− r′|

Exc =
∫

d3r vxc(r)ρ(r)

ρ(r) =
∑
i

niφ
∗
i (r)φi(r)

(285)

Note that
∂ρ(r)
∂nj

= |φj(r)| (286)

So the derivative of each term is

∂Eext
∂nj

=
∫

d3r vext(r)φ∗j (r)φj(r)

∂T

∂nj
= −1

2

∫
d3r φ∗j (r)∇2φj(r)

∂Eee
∂nj

= e2
∫

d3r d3r′
φ∗j (r)φj(r)ρ(r′)
|r− r′|

= e2
∫

d3r vH(r)φ∗j (r)φj(r)

∂Exc
∂nj

=
∫

d3r vxc(r)φ∗j (r)φj(r)

(287)
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We recognize the Kohn-Sham Hamiltonian as

HKS = −1
2∇

2 + vext(r) + vH(r) + vxc(r) (288)

So,
∂E

∂nj
=
∫

d3r φ∗j (r)HKSφj(r) = εKSj (289)

This result is also known as Janak’s theory; a slightly more complete derivation including self-
consistent effects is found in PRB 18, 7165 (1978). In principle, this relation shows that there is a
connection between the eigenvalues of the Kohn-Sham equations and the energy to add or remove
an electron to the system. However, this relation alone is not enough to prove this property,
since this relation is only valid for infinitesimal changes in the number of electrons, which is not
physical. It can still be shown that, if the exact exchange-correlation is known, then the Kohn-
Sham eigenvalues for the highest occupied and lowest orbitals correspond to the ionization potential
and electron affinity of the system, respectively. See PRL 49, 1691 (1982).

II.16. Kohn effect.
For a free electron gas model, the Lindhard dielectric function has the form:

ε(q, 0) = 1 + 4πe2

q2
n

2
3EF

[
1
2 + 4k2

F − q2

8kF q
ln
∣∣∣∣2kF + q

2kF − q

∣∣∣∣
]

(290)

ε(q, 0) is continuous at q = 2kF , but ∂ε(q,0)
∂q has a logarithmic infinity at q = 2kF . The phonon

frequency is determined by the motion of ions. Actually, the potential between ions is screened
by the electronic dielectric function. Therefore, there will be some dependence of the phonon
frequency on ε(q). As q increase through 2kF , the dielectric constant suddenly decrease. Then, it
leads to a sudden (small) increase in the frequency ω of a lattice vibration at q = 2kF . This effect
influence the longitudinal modes since ε(q, 0) above is the longitudinal dielectric constant. For the
transverse mode, the influence is not so simple and so large as for longitudinal mode. The detailed
effect of the Fermi surface on phonon spectra anomaly is discussed in (PR126, 1693(62) by Kohn
et al.).

Sec. III
III.1. Light absorption in InSb.
InSb is a direct band gap semiconductor. We ignore the heavy hole valence band for now. We use
the energy and momentum conservation relation in the optical absorption:

p2
e

2m∗c
+ p2

h
2m∗v

= Ephoton − Egap (291)
pe = ph (292)

The electron and hole kinetic energies are 0.309 eV and 0.011 eV, respectively. If the photon
momentum is included, we have

pe = ph + Ephoton
c

(293)

The electron and hole momenta differ by approximately 0.8%.

III.2. Exciton.
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