Test Bank for Clinical Immunology and Serology 5th Edition by Miller CLICK HERE TO ACCESS COMPLETE Test Bank # Test Bank #### Chapter 02 Innate Immunity | Multip
Identij | | Choice
e choice that best completes the statement or answ | ers the question. | |-------------------|----|---|--| | | 1. | <u> </u> | mechanism? Surfactant in mucosal secretions Phagocytosis | | | 2. | a. External, adaptive immunity | by which of the following defense mechanisms? Internal, adaptive immunity Internal, innate immunity | | | 3. | a. Phagocytosis | ald encounter which external defense mechanism? Hydrochloric acid Lactic acid | | | 4. | a. Acidity | encounter which external defense mechanism? Keratin Lysozyme | | | 5. | Normal flora is best described by which of the a. One type of bacteria that is normally present. b. A mix of bacteria that are normally present. c. A mix of bacteria that are normally present. d. One type of bacteria that is normally present. | ent and never causes disease
nt that never cause disease
nt and do not typically cause disease | | | 6. | Inflammatory bowel syndrome may be bette a. Interaction between the innate immune s b. Interaction between the innate immune s c. Interaction between the adaptive immune d. Interaction between the adaptive immune | ystem and Candida albicans system and the gut microbiome | | | 7. | bacteria? a. Peptidoglycan | d molecular pattern (PAMP) found on gram-negative Flagellin Lipoproteins | | | 8. | a. B lymphocytes | ecognizing PAMPs? Macrophages T lymphocytes | | | 9. | Which of the following describes the role of a. Promotes release of cytokines and chemo b. Activation of phagocytic cells c. Activation of inflammation d. Recruitment of additional phagocytic cel | kines | | 10. | Which best describes the process of a neutropathogen? a. An adaptive immune response to a grant. b. An innate immune response to a yeast. c. An innate immune response to a grant. d. An adaptive immune response to a grant. | m-n
inva | asion
ative bacterial invasion | |---------|---|-------------|--| |
11. | The highest concentration of Toll-like rece cells? | epto | rs (TLRs) would be found in which of the following | | | a. Dendritic cellsb. Neutrophils | | Eosinophils
Lymphocytes | |
12. | Which of the following TLRs is found on a. TLR 3 b. TLR 7 | | surfaces? TLR 9 TLR 2 | |
13. | Acute phase reactants act by doing which ca. Promoting destruction by releasing prob. Promoting adherence to pathogens c. Limiting phagocytosis d. Limiting adherence to pathogens | | C | |
14. | Acute phase reactants contribute to innate following processes? a. Destruction of blood clots b. Surfactant secretion | c. | nunity most through their involvement in which of the
Phagocytosis
Decreasing Ph | |
15. | Which of the following acute phase reactars. a. C-reactive protein b. Serum amyloid A (SAA) | c. | are capable of opsonization?
Alpha 1- Antitrypsin (AAT)
Fibrinogen | |
16. | Which of the following acute phase reactars. a. C-reactive protein b. Complement | | ean lyse cells?
Haptoglobin
SAA | |
17. | Which acute phase reactant rises most signa. Ceruloplasmin b. Haptoglobin | c. | antly in bacterial infections? Fibrinogen SAA | |
18. | Measurement of C-reactive protein is an esa. Cardiovascular disease b. Irritable bowel syndrome | c. | lished tool in the analysis of which disease? Crohn's disease Coronary artery disease | | 19. | Which of the following occurs during an in a. Constriction of the blood vessels b. Decreased permeability of fluid throug c. Diapedesis d. Migration of macrophages within 30 m | h th | e vessels | | 20. | Which inflammatory response is responsible for the symptom of swelling? a. Phagocytosis b. Increased permeability of fluid through vessels c. Diapedesis d. Increased blood flow to area | |-----|---| | 21. | Which of the following phagocytic steps should occur after the others? a. Formation of phagosome c. Outflowing of cytoplasm b. Release of lysosomal contents d. Fusion of lysosomal granules | | 22. | Which of the following is responsible for digestion of microorganisms through phagocytosis? a. Phagosome c. Lactic acid b. Exocytosis d. Hydrolytic enzymes | | 23. | What is the importance of lysosomal granules in phagocytc cells? a. Proteolytic enzymes are needed for digestion of pathogens b. Myeloperoxidase is needed or the invagination of the pathogen c. Proteolytic enzymes are needed to migrate the phagosome to the center of the cell d. Proteolytic enzymes are needed to fuse granules to the phagosome | | 24. | How do phagocytic cells get pathogens inside their cytoplasm? a. Adhesion to selectins b. Chemotaxis c. Invagination with pseudopods from the cytoplasm d. Release of proteolytic enzymes from granules | | 25. | Phagocytosis is a critical part of which of the following? a. Innate, specific, internal defense mechanism b. Innate, non-specific, internal defense mechanism c. Innate, non-specific, external defense mechanism d. Adaptive, specific, internal defense mechanism | | 26. | How does phagocytosis contribute to adaptive immunity? a. Neutrophils present peptides from pathogens to T cells b. Neutrophils present peptides from pathogens to B cells c. Macrophages present peptides from pathogens to B cells d. Macrophages present peptides from pathogens to T cells | | 27. | Which of the following would best describe the role of NK cells in innate immunity? a. A school hall monitor b. A school custodian c. A school morning greeter d. A school principal | | 28. | NK cells routinely check cells for to determine if they are healthy? a. Class II major histocompatibility complex b. Perforins c. Class I major histocompatibility complex d. Granzymes | | | 29. | Which of the following is a substance released by NK cells and causes channeling into a target cell's membrane? | | | | | | |--|----------|---|-----------------|--|--|--|--| | | | a. Granzymes | c. | Myeloperoxidase | | | | | | | b. Lactic acid | | Perforins | | | | | | 30. | If an NK cell ultimately deems a ho | ost cell as ui | nhealthy or infected, the result is: | | | | | | | a. phagocytosis | c. | inflammatory response | | | | | | | b. cell lysis | d. | T cell activation | | | | | | 31. | Innate lymphoid cells (ILCs) are for | ound primari | lly where in our bodies? | | | | | | | a. Peripheral blood | - | Mucosal sites | | | | | | | b. Bone marrow | d. | Tissues | | | | | | 32. | The primary function of innate lym | nphoid cells | (ILCs)is: | | | | | | | a. release of cytokines | - | cell lysis | | | | | | | b. phagocytosis | | inflammation | | | | | | 33. | Inhibitory receptors, such as killer cells bind to which of the following | | oglobulin-like receptors (KIRs), on the surface of NK? | | | | | | | a. Toll-like receptors | - | Defensins | | | | | | | b. MHC Class I | | Immunoglobulins | | | | | | 34. | All of the following are true of den | ndritic cells e | excent: | | | | | | <i>.</i> | a. they ingest both whole microon | | = | | | | | | | phagocytosis | | | | | | | | | b. they are capable of presenting phagocytosis | pathogen-de | rived peptide to T cells after | | | | | | | c. they express TLRs | | | | | | | | | d. all of the responses are true of | dendritic cel | ls | | | | | | 35. | Which of the following is true of C | C-type lectin | receptors (CLRs)? | | | | | | | a. CLRs are involved in recogniti | • • | • | | | | | | | b. CLRs are expressed predominantly by NK cells | | | | | | | | | c. When bound to mannan or β-glucans on fungal cell walls, CLRs result in the | | | | | | | | | production of cytokines and ch | | | | | | | | | d. CLRs are found on both the pla | | rane and in the cytoplasm of innate | | | | | | | immune cells | | | | | | ### Chapter 02 Innate Immunity Answer Section #### MULTIPLE CHOICE | 1. | ANS: | D P | ΓS: | 1 | OBJ: | 1 | MSC: | Taxonomy 1 | |-----|--------|-------|-----|---|------|--------|------|------------| | 2. | ANS: | B PT | ΓS: | 1 | OBJ: | 1 | MSC: | Taxonomy 3 | | 3. | ANS: | B PT | ΓS: | 1 | OBJ: | 2 | MSC: | Taxonomy 2 | | 4. | ANS: | A PT | ΓS: | 1 | OBJ: | 2 | MSC: | Taxonomy 2 | | 5. | ANS: | C PI | ΓS: | 1 | OBJ: | 3 | MSC: | Taxonomy 2 | | 6. | ANS: | A PT | ΓS: | 1 | OBJ: | 3 | MSC: | Taxonomy 3 | | 7. | ANS: 1 | D PT | ΓS: | 1 | OBJ: | 4 | MSC: | Taxonomy 1 | | 8. | ANS: | C PT | ΓS: | 1 | OBJ: | 3 | MSC: | Taxonomy 1 | | 9. | ANS: | A PT | ΓS: | 1 | OBJ: | 5 | MSC: | Taxonomy 1 | | 10. | ANS: | B PT | ΓS: | 1 | OBJ: | 4 & 5 | MSC: | Taxonomy 3 | | 11. | ANS: | A PT | ΓS: | 1 | OBJ: | 6 | MSC: | Taxonomy 1 | | 12. | ANS: 1 | D P | ΓS: | 1 | OBJ: | 6 | MSC: | Taxonomy 1 | | 13. | ANS: | B PT | ΓS: | 1 | OBJ: | 7 | MSC: | Taxonomy 1 | | 14. | ANS: | C PT | ΓS: | 1 | OBJ: | 7 | MSC: | Taxonomy 2 | | 15. | ANS: | A PT | ΓS: | 1 | OBJ: | 7 & 8 | MSC: | Taxonomy 2 | | 16. | ANS: | B PT | ΓS: | 1 | OBJ: | 8 | MSC: | Taxonomy 2 | | 17. | ANS: 1 | D P | ΓS: | 1 | OBJ: | 9 | MSC: | Taxonomy 2 | | 18. | ANS: | A PT | ΓS: | 1 | OBJ: | 9 | MSC: | Taxonomy 1 | | 19. | ANS: | C P | ΓS: | 1 | OBJ: | 10 | MSC: | Taxonomy 2 | | 20. | ANS: | B PT | ΓS: | 1 | OBJ: | 10 | MSC: | Taxonomy 3 | | 21. | ANS: | B PT | ΓS: | 1 | OBJ: | 11 | MSC: | Taxonomy 2 | | 22. | ANS: 1 | | ΓS: | 1 | OBJ: | 11 | MSC: | Taxonomy 1 | | 23. | ANS: | A PI | ΓS: | 1 | OBJ: | 12 | MSC: | Taxonomy 2 | | 24. | ANS: 0 | C PT | ΓS: | 1 | OBJ: | 12 | MSC: | Taxonomy 2 | | 25. | ANS: | B PT | ΓS: | 1 | OBJ: | 13 | MSC: | Taxonomy 2 | | 26. | ANS: 1 | D P | ΓS: | 1 | OBJ: | 13 | MSC: | Taxonomy 2 | | 27. | ANS: | A PI | ΓS: | 1 | OBJ: | 14 | MSC: | Taxonomy 3 | | 28. | ANS: 0 | C P | ΓS: | 1 | OBJ: | 14 | MSC: | Taxonomy 2 | | 29. | ANS: 1 | D P | ΓS: | 1 | OBJ: | 15 | MSC: | Taxonomy 1 | | 30. | ANS: | B PT | ΓS: | 1 | OBJ: | 15 | MSC: | Taxonomy 1 | | 31. | ANS: 0 | C PT | ΓS: | 1 | OBJ: | 16 | MSC: | Taxonomy 1 | | 32. | ANS: | A PI | ΓS: | 1 | OBJ: | 16 | MSC: | Taxonomy 1 | | 33. | ANS: | B PT | ΓS: | 1 | OBJ: | 14 | MSC: | Taxonomy 1 | | 34. | ANS: 1 | D P | ΓS: | 1 | OBJ: | 6 & 13 | MSC: | Taxonomy 2 | | 35. | ANS: 0 | C PI | ΓS: | 1 | OBJ: | 5 | MSC: | Taxonomy 2 | | | | | | | | | | |