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64 Linear equations

Problems

(2.1) The form of the co-factor expansion is

det A = a31A31 + azAsz + axzAs;3

=2(—1)4det[ ?

=2det[ 305 }—Sdet[ 6

6] 63
+2(-1) det[z 1}

6
1y
+3(-1) det[ N

1 5 25 2 1

+2det[ 6 3 ]

(2.2) —2det +3det[ 4 "1]

-1 1

-1 3 43
1 1}_det[—1 1

(23) -10(4x1x-1/4%x10=-10)

(2.4) Cofactor expansion yields

det A = ar1Ar + axnAr + ar3Ax;

3 5 6 5 6 3
— h_1\3 IRTY RIS
=2(-1) det[ 3 9 + (D)(=1) det[ y o +5(-1) det[ ) 3 ]
35 6 5 6 3
——2det[ 3 9 + det ) }—Sdet[ ) 3 ]

(2.5) Cofactor expansion yields detA = ajjAj; + apAp + a13A13. The terms are a; =
3-D"' =3, a1, =5(-D)"? = -5, a;3 = 6(-1)'"*? = 6 and

(4 5]
A”—det»Z 4_—6
0 5
A12—det_l 4-—3
0 4
A13—det»1 2_—0

Making the substitution gives det A = 3.

(2.6) The fastest choice is co-factor expansion on the 4th row:

6 -2 3 6 1 3 6 1 -2
detA =-2det| 2 4 -1 |—2det| 2 -2 -1 |+det|] 2 -2 4
1 1 -1 1 -1 -1 1 -1 1

These remaining determinants can be evaluated using the formula for the 3x3 matrix
to give det A = 52.

(2.7) The determinant is -904
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(2.8) Cofactor expansion for i = 3 has the most zero entries, giving

[ 2 1 0 1]
-3 2 1 4
_(_ _ 13+
detA = (-1)(-1) det 79 3 4
3 4 1 2 |
3 1 0 1]
5 21 4
_1,(3+2)
+(0)(-1) det R 2 3 4
-4 4 1 2 |
3 2 0 1]
5 -3 1 4
_1\3+3)
+(1)(-1) det R -7 3 4
-4 3 1 2|
3 2 1 1]
5 -3 2 4
_1)3+)
+(0)(-1) det R -7 0 4
-4 3 4 2|
3 2 1 0]
5 -3 21
_1\3+5
+(3)(-1) det g -7 2 3
-4 3 4 1 |
which reduces to
2 1 0 1 3 2 0 1 3 2 1 0
-3 2 1 4 -3 1 4 5 -3 2 1
det A = —det 7 2 3 4 +det g -7 3 4 +3 det g 7 2 3
3 4 1 2 -4 3 1 2 -4 3 4 1

You could also expand on column j = 4 instead. Recall that detA = detA", so
expansions on columns are the same as expansions on rows.

(2.9) No solution (rows 2 and 3 are inconsistent)

(2.10) Use co-factor expansion on the last row of U. The only non-zero entry is U, ,. As a
result, the determinant after one co-factor expansion is

detU = U, ,(~1)*" detU,_,

where U,,_; is an (n — 1) X (n — 1) upper triangular matrix formed by removing the
last row and last column from U. Since 27 is even for any n, we have

detU = U,, detU,_,
If we now do the same co-factor expansion on the last row of U,_;, we have

detU = U, ,Up_i o1 (—=1)*" "V det U, _,
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where U,_, is an (n — 2) X (n — 2) upper triangular matrix formed by removing the
last row and last column from U,._;. The sign is again positive,

detU = Un,nUn—l,n—l detU,_»

If we continue at each step j = 0, 1, ...,n—1 with co-factor expansion on the (n— j)th
row of U,,_;, then we get the desired result:

detU = ﬁ Ui’,'
i=1

(2.11) The matrix determinants are

2 1 3]
detA=det| 1 2 1 |=5
2 3 4|
13 1 3]
detA; =det| 8 2 1 |=5
20 3 4 |
[ 2 13 3]
detA, =det|{ 1 8 1 |[=10
|2 20 4 |
[2 1 13 ]
detAs=det| 1 2 8 |=15
|2 3 20 |

Cramer’s rule says that x; = detA;/ det A, sowe have x = 1,y =2 and z = 3.
(2.12) The solutions are

1 1 -1
det| 4 0 2
0o -2 3
X = =0
2 1 -1
det| -1 0 2
4 2 3
2 1 -1
det| -1 4 2
4 0 3 51
y = = — = 3
1 -1 17
det| -1 O
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2 1 1
det| -1 0 4

4 2 0 34

: 2 1 1] 17
det| -1 0 2
2 3

[ 3
det| 1
| 1
[ 5
det| 5
| 1
[ 3
det| 1
| 1
[ 3
det| 1
| 1

This givesx =2, y=—landz =1

(2.14) 1 To solve the system by Cramers rule we must compute 4 determinants first

|A| = det
Next

|Aj| = det
and

|As| = det
Finally

|A5| = det

2 [=20

2
-1
0
2
-1 2 | =40
0
5
5
1

-3 |
1
2 [=-20
-3
2 5]
-1 51=20
0 1

3 2
4
1 1

[\
N W

=44

\S)

[\
[\
N

=44

=132

— AW
—_ N
O N o0

67
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Then we find the values of xj,x,,and x3 as follows

A1l
XI_W_l
XQ:@:

|A]
X3=@=

Al

2 For Gauss elimination first we right the augmented matrix:

3 2 3 8
4 2 2 2
1 1 2 9
eliminating the first row yeilds
3 2 3 8
14 —26
0 5 -6 =
5 19
105 1T 3
and the second
3 2 3 8
14 —26
0 3 -6 =%
2 66
007 7

forward elimination yeildsx; = 3, x, = 2, and x; = 1. The same solution found
using Cramers rule.
(2.15) The number of operations for each step are:

(a) The determinant of a 2 X 2 matrix is ad — bc. This calculation can be completed
with two multiplications and a subtraction. So this requires 3 operations. For
later use, let’s call this value g.

(b) For cofactor expansion of a 3 x 3 matrix, we end up with 3 matrices of size 2 x 2
and a pre-factor that multiplies the determinant of each of these 2 X 2 matrices.
So we have to do 3 X (1 + 3) = 12 operations. In terms of g, this is 3 X (1 + ¢)
operations.

(c) For cofactor expansion of a 4 X 4 matrix, we end up with 4 matrices of size 3 x3
and a pre-factor that multiplies the determinant of each of the 3 x 3 matrices. So
we have to do 4 X (1 + 12) = 52 operations. To make the next step easier, it is
convenient to write this as 4 X (1 + [3 X (1 + 3)]). If we rewrite in terms of the
starting value of n = 4, this becomes n X [1 + (n — 1) X (1 + g@)].

(d) For cofactor expansion of a 5 X 5 matrix (n = 5,) the last equation will now be
nX[l+m—-1)X[1+®m—-2)X%(1+¢g)]]. To see how this is the answer, we need
to see that (i) (n — 2) X (1 + g) is the effort required to compute the determinant
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of a 3 X 3 matrix, (ii) there are (n — 1) = 4 of these matrices and 1 pre-factor
multiplication per matrix, and (iii) the first cofactor expansion will produce an
additional pre-factor for each of the five 4 X 4 matrices.

(e) For n — oo, we do not need to worry about the effort for the pre-factors (the
terms of +1 in the last step). If we do so for n = 5 from the last step, we see that
the effort requires computing nx (n—1) X (n—2) determinants of size 2 x2, which
requires n X (n — 1) X (n — 2) X g = n! X g steps. As n gets larger and larger, the
estimate of calculating n! determinants of size 2 X 2 becomes increasingly more
accurate.

(2.16) The Gauss elimination steps gives the following set of matrices:

4 2 3 1|0
32 1 0]-3
0 2 3 5|4
4 -2 3 1|0

2 3 1 0
1/2 -5/4 -=-3/4|-3
2 3 5 4
—4 0 0 0

S OO s

Although you might want to swap rows at this point, it is not allowed in Gauss elim-
ination unless you are pivoting. So we continue and get

4 2 3 1 0

0 1/2 -5/4 -3/4| -3
0 0 8 8 16
0 0 -10 -6 |-24

23 1 ]o
12 -5/4 -3/4|-3
0 8 8 |16
0 0 4 | -4

S O O s

Applying the back substitution formulas gives

z=-1
16 — 8z
= :3
Y 8
~3 +3z/4 + 5y/4
x= ST EEENR
12
—z-3y-2
P ) e

4

We could also have done this problem setting the diagonal entries unity. While
you get the same answer, this is not used in the numerical implementation of Gauss
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elimination. If asked to do Gauss elimination, you should not do the following even
though it works:

4 2 3 1|0
32 1 0]-3
0 2 3 5| 4
4 -2 3 1|0

12 3/4 1/4 |0 ]
12 -5/4 -3/4|-3

o O O =
)
w
W
o~

1/2 3/4 1/4 | 0 ]
1 =5/2 -3/2|-6

(1 1/2 3/4 1/4] 0
0 1 =572 -3/2| -6
0o 0 8 8 | 16

0 0 -10 -6 |-24

(1 12 3/4 174 ] 0
0 1 =572 -3/2| -6
0 0 1 1 2

0 0 -10 -6 |-24 |

1 1/2 3/4 1/4 1|0

0 1 -5/2 -3/2|-6

0 O 1 1 2

0 O 0 4 | -4
Applying the back substitution formulas gives

z=-1

y=2-2)=3
x=-6—-(-3z/2-5y/2)=0
w=—(z/4+3y/4+x/2) =2
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(2.17)
3 8 9
2 _ _ _
d3=4-30=35-3=73

(2.18) First write the augmented matrix

2 -3 1 7
1 -1 -2 =2
31 -1 O
Then eliminate the first column
2 -3 1 7
0O 1 -5 -11

Then the second column

o
—
|
W

11
[0 0 50 100 |

Now back sub

)C3=2
_ 11 =-(=5@) _
= _—1_

_7-D@2) -3
X1 = ) =

X2 -1

1

(2.19) Starting with the augmented matrix

5 2 1 3 2
4 1 -1 -3 2

eliminate the first row

-27 -18
31 44 |

o O

— |

O W
Lo

R

w \O

then the second

-27 -18
-28 -14 |

()
I
w
|
=}

(@)
(e
|
—_
~
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now backwards elimination first for the solution in column 4

X3 = 2
-27-(-92)
Xy = _—3 = 3
_3-MH2-206) _
X1 = =-1
5
and now for column 5
X3 = 1
—18 - (=90
X2 = _—3 =3
_2-(MHMH-206) _
X1 = =-1
5
(2.20) The augemented matrix for this problem is
56 -3]1 00
1 3 10 1 0
4 2 6|0 0 1
eliminating the first row
5 6 -3 1

0 0
0 9/5 8/5 |-1/5 1 0
0 -14/5 -18/5|-4/5 0 1

Then the second

5 6 -3 1 0 O
0 9/5 8/5 -1/5 I 0
0 0 -10/9|-10/9 14/9 1

Solving for all three by back substitution give the following

2 -3 -3/5
A'=1 9/5 4/5
1 -7/5 -9/10
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(2.21) The second and fourth rows are switched to give

S O O =

(2.22) Swap row 6 with row 3

N W AN

W A =

— — 00 N
© A

Linear equations

73

(2.23) There is no pivoting at the first iteration (note that we are adding an extra step to make
the diagonal entries unity; this is not used in the numerical implementation of Gauss

elimination:

1 1/2
0 0
0 2
0 72

12
2
2

5/2

Make a partial pivot step and eliminate:

112
0 72
0 2
0 0

(1172
0 1
0 2

O

(1172
0 1
0 0

[0 0

1/2
5/2
2
2

1/2
5/7

12
5/7
47

NN W N

1/4
-1/2
3
13/4

1/4
13/4

W W O =
[\

-1/2

1/4
13/14

-1/2

1/4
13/14
8/7
-1/2

-1/2
-3/2

-1/2 ]

-3/7

-1/2 ]

-3/7
20/7
-8
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Make another partial pivot step and eliminate:

(1 172 172 1/4 | -1/2 ]
0 1 5/7 13/14|-3/7
0 0 2 -1/2] -8

L0 0 4/7 8/7 |20/7 |

(1 1/2 172 1/4 | =12 ]
0 1 5/7 13/14|-3/7
0 0 1 —1/4]| -4

0 0 4/7 87 |20/7 |

(1172 172 1/4 | -1/2 ]
0 1 5/7 13/14|-3/7
0 0 1 —1/4]| -4

0o 0 0 97 |36/7 |

Applying the back substitution formula gives
z2=036/7)/09/T) =4
y=-4+7z/4=-3
x=-=3/7T-(13z/14 +5y/7) = -2
w=-1/2-(z/4+y/2+x/2)=1

(2.24) Need to swap the first and second rows to get

05 2 3 -5 11
-1 3 -2 -3 2 -5
-3 2 9 0 4 1
31 -3 2 7 14
11 1 1 1 4

Elimination gives

10 5 2 3 =5 11
0 35 -18 -27 15 -39
0 35 96 09 25 43
0 -05 -36 11 85 107
0 05 08 07 15 29

The biggest entry is on the diagonal, so we can eliminate to get

10 5 2 3 -5 11
0 35 -1.8 2.7 1.5 -39
0 0 11.4 3.6 1 8.2
0 0 -3.8571 0.7143 8.7143 10.1429
0 0 10571 1.0857 1.2857 3.4571
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The biggest entry is on the diagonal, so we can eliminate to get

10 5 2 3 -5 11
0 35 -1.8 =2.7 1.5 -39
0 0 114 3.6 1 8.2
0 O 0 1.9323 9.0526 129173
0 O 0 0.7519 1.1930 2.6967

The biggest entry is on the diagonal, so we can eliminate to get

10 5 2 3 -5 11
0 35 -1.8 -2.7 1.5 -39
0 0 114 3.6 1 8.2
0 O 0 19323 9.0526 129173
0 O 0 0 -2.3294 -2.3294

Back substitution gives

N2 = T o=
Il
—_N O O =

(2.25) For the Gauss elimination with pivoting, first write as an augmented matrix

3 24 5|0

3 41 218
-1 0 3 2|2
-2 4 3 1|14

There is no pivoting on the first step, so we just eliminate to get

(3 2 4 -5 |0
0o 2 -3 7 |8
0 2/3 13/3 -11/3] 2

L0 16/3 17/3 -7/3 |14 |

We now pivot by exchanging rows 2 and 4:
(3 2 4 =5 0 ]
16/3 17/3 =7/3 | 14

0
0 2/3 13/3 -11/3| 2
0o 2 -3 7 8 |

and do the elimination:

2 4 -5 0
16/3 17/3  -7/3 14
0 87/24 -81/24|1/4
0 -16 18 2

S O O W

75
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(2.26)

(2.27)

(2.28)

We need to pivot again:

3 2 4 -5 0
0 16/3 17/3 -7/3 14
0 0 -16 18 2
0 0 87/24 -81/24|1/4
and do the elimination
3 2 4 -5 0
0 16/3 17/3 -7/3 14
0 0 -16 18 2

0 0 0  270/384 | 270/384

We now use back substitution to get x4 = 1, x3 = 1, x, = 2 and x; = —1. The
determinant comes from the product of the diagonals and the number of pivots, det A
= (=1)>(-180) = —180.

Using the formula for an upper triangular matrix with pivoting gives

detA = (1) [ | Ui = (-1)% = —4

The first step is a pivot to give
4 6 4
A=(1 1 1
2 3 4
The elimination factors are m; = 1/4 and m3; = 1/2. These give the upper triangular
matrix
4 6 4
U=|0 -1/2 0
0 0 2

Using the formula for the determinant with 1 pivot,
detA = (-1)'@)(~1/2)(2) = 4

B=n-p
C=k+1
D=k+p
E=k+1
F=k+p
G=n-p+1
H=k+1
L=n
M =k+1
N=n
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(2.29) A matrix is banded with size p and g (and bandwidth p+¢g+1ifa;; =0for j>i+p
and i > j + g. Analyze the p and g values for each diagonal and take the maximum

values
i p q
1 4 0
2 3 0
3 3 0
4 2 3
5 1 2
6 1 1
7 0 0

The maximum values are p = 4 and g = 3 so the bandwidth is 8.
230) 12(p=T7,9g=4)
(2.31) p =3, g =3, bandwidth =7
(2.32) LU=Agives 6+ L3 =9so0 Lz, = 3.

(2.33)
1 -1 2
u=(0 2 -1
o 0 1
1 00
L=(-2 1 0
1 1 1
(2.34)
1 0
w=|a ]
2 4
o=[5 7]
(2.35) Using Ly = b gives
1 0 0 1 5
2 1 0 yo | =1 10
1 L3,2 1 y3 0

From forward substitution, we get
yi=5
y2=10-2y, =0
y3=-y1—Lazy2 =-5
Using Ux =y gives

2 6 2 X1 5
01 4 x |=| O
0 0 3 X3 =5
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From back substitution, we get

x3 = =5/3
Xy = —4X3 = 20/3

(2.36) The first round of elimination gives

2 -3 1
1 =5
0 3 7
with
1 00
_| 1
L= g 1 0
5 71
The second round of elimination gives
2 -3 1
u-lo 4 2
0 0 25
with
1 0 O
_| 1
L= 2 1 0
5 111
First solve
I 0 O[] wn 7
11 0l »|=|-2
2011 1] s 0
which gives
Y 7
Y2 | = -5.5
y3 50
then solve
2 -3 X1 7
0 1 F || x»|=|-55
0 0 25 X3 | 50
which gives
X1 1
X2 = -1
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(2.37) The U matrix is

1 -1 2 1

0 4 -2 -4

U= 0 0 05 0

0 0 0 1

and the L matrix is

1 0 0 0

-3 -1 0 0

L= 1 025 1 0

1 025 -3 1

The solution is

XLy 12 -1
X2 y» 2|_|3 3 0
X3 Y3 23 4 -1 -3
X4 Y4 5 0 -5

(2.38) We need to create U and L from Gauss elimination:

1 1 1
U={0 -1 O
0 0 -1
1 00
L={2 1 0
31 1

For the first forcing function, we gety = [0,0,—1] and x = [-1,0, 1]. For the sec-
ond forcing function, we gety = [9, -3, —-4] and x = [2, 3,4]. For the third forcing
function, we gety = [0, -3,2] and x = [-1,3 - 2].

(2.39) The original matrix is

1 0 O 1 3 2
A=LU=| 2 1 0 0 -2 1
-2 -1 1 0o 0 2
which gives
1 3 2
A=| 2 4 5
-2 -4 -3 ]

The forcing function is

b=Ax=| 2 4 5
2 -4 31| 2
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which gives

2
b=| 8
-4
So the original problem was
1 3 2 X 2
2 4 5 x |=| 8
-2 -4 3 X3 -4
During LU decomposition, we would have
Ly=b
which gives
1 0 0 i 2
2 1 0 ya |=| 8
-2 -1 1 3 -4
The solution by forward substitution gives
i 2
=4
3 4
(2.40) First perform the LU decomposition with the U matrix on the left and the L matrix
on the right:
I -1 1 2 1 0 00
1 2 -2 3 71 00
2 1 3 1 7710
1 5 -5 9 7?7 71
1 -1 1 2 ] 1 0 0 O]
0 3 -3 1 1 100
0o 3 1 -3 2 7210
|0 6 -6 7 | 1?2 7 1]
1 -1 1 2 1 0 0 0]
0 3 -3 1 1 100
0O 0 4 -4 21 10
|0 0 0 5 1 2 2 1]
(1 -1 1 2 1 0 00
0 3 -3 1 1 1 00
0 0 4 -4 21 10
|0 0 0 5 1 2 0 1
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For the first forcing function, the equation for y is

=)
o - oo

1
1
2
1

Using forward substitution, we get

The corresponding equation for X is

-1
-3
4

1
0
0
0 0

S O W

Using back substitution, we get

0
0
0
1

V1
Y2
Y3
Y4

2
| 6
12

15

S L

X1
X2
X3

O

X4

—_— N W =

For the second forcing function, the equation for y is

—_ N = —
=)
S = O O

Using forward substitution, we get

I -1 1
0 3 -3
0 0 4
0 0 O

0
0
0
1

3
15
-2
42

12
-20
15

12
-20
15
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Using back substitution, we get

X1

X2 _ 1
X3 B -2
X4 3

For the third forcing function, the equation for y is

1 00 O][m 9
I 1.0 0l y|_|1
2 1 1 0]y | | 10
1 2 01 V4 -2
Using forward substitution, we get

J 9

y2|_| -8

y3 0

V4 5

The corresponding equation for X is

-1 1 2 [~ 9
0 3 3 1 ||x|_|-8
0 0 4 —4flx||o
00 0 5 [ 5

Using back substitution, we get

X1 4
X2 _ -2
X3 B 1
X4 1

(2.41) Starting from the matrix of constants A

4 3 -
A=| -2 -4 5

The first round of elimination gives

4 3 -1
Al 0 25 45
10 125 625

with

[~

1

|

=]

)]
o= O
- O O
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The second round of elimination yields

4 3 1]
U=|0 -25 45
|10 0 85|
with
1 0 0]
L=|-05 1 0
1025 -5 1|

Now we solve L b = y the forward elimination step yeilds

1

y= 2.5
4
Then we back eliminate to find
0.482
x=] —0.153
0.471
(2.42) The first round of elimination gives
2 4 1
0 5 5
0 -5 -1
with
1 0 0
L=|-1 10
2 7 1

The second round of elimination gives

2 4 1
U=(0 5 5
0 0 4
with
1 0 O
L=]-1 1 0
2 -1 1

For the first column of the inverse, we first solve

1 0 0 i 1
-1 1 0 Yy | = 0
2 -1 1] ys 0

83
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which gives

Y1 ]
»
y3 |
We then solve
2 4 1]
0 5 5
0 0 4|
which gives
xi
X2 =
X3

-11/40
9/20
-1/4

For the second column of the inverse, we first solve

1 0 O
-1 1 O
2 -1 1
which gives
Y1
»2
y3 |
We then solve
2 4 1]
05 5
0 0 4|
which gives
X1
X2 =
X3

)’1ﬁ

N | =

Y3 |

X1
X2 =
X3

-1/40
-1/20
1/4

For the third column of the inverse, we first solve

1 0 O
-1 1 0
2 -1 1
which gives
Y1
y2 | =

)’1ﬁ
» | =
y3 |

- o O
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We then solve

S O

which gives

So the inverse is

Al =

or, if you prefer nicer numbers

A—l

Linear equations

4 1 X1 [ 0
55 X2 = 0

0 4 X3 i 1

X1 3/8

x |=| -1/4

X3 1/4

-11/40 -1/40 3/8
9/20 -1/20 -1/4

-1/4 1/4 1/4

| -1 -1 15
=—| 18 -2 -10
40 -10 10 10

85

(2.43) While you do Gauss elimination, you can get the entries to L. The augmented matrix

is

For the first step of forward elimination, my; = 2 and m3; = 1, which gives

For the second step of eliminati

2 2 3 5
4 5 7 11
2 4 6 8

S O N
N =N
W = W
W = W

on, m3, = 2 and we get the upper-triangular matrix

[2 2 3 5]
01 1 1
|0 0 1 1]
Back-substitution gives
X3 = 1

)CQZI—X3:0

X1

From Gauss elimination, we know that

2
U=|0
0

_5—3)63—2)62 — 1
_—2 =
2 3 1 00
1 1|, L=12 10
0 1 1 2 1
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The first equation to solve is Ly = b

1 00 Vi 5
L=|2 10 yo | =] 11
1 2 1 y3 8
which we compute by forward substitution to get
=3
y2=11-2y,=11-10=1
3=8-y1 -2y, =8-5-2=1
The back substitution for Ux =y is identical to Gauss elimination.

(2.44) (a) We need to compute 3 determinants:

detA=4-3=1

3 3
detAl—det[ ) ]—O

2 3
A = =1
det A, det[1 2}

The unknowns are

_ detA1 -0
T detA T
and
_ det A, _
YT detA T
(b) There is no pivot so we just need to eliminate
2 3|3
1 22
which gives
2 3 3
0 1/2|1/2
Using back substitution gives
12 )
vk
and
3-3
Py
)

(c) For LU decomposition, we use the result from (b) to know that

10
L:[1/2 1}
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and
2 3

U _[ 0 1/2 ]
The forward substitution of

1 0 V1 3

L = =
R
gives
=3

and

yzzz—%‘:l/z

87

The rest of the problem is identical to part (b), using back substitution to solve

o Fv MR A

(a) For naive Gauss elimination, the augmented matrix is

1 2 316
4 5 6|15
1 3 216
One step of elimination gives
1 2 3|6
0 -3 -6|-9
0o 1 -1]0
The second step gives
1 2 3|6
0 -3 -6|-9
0 0 -3|-3
Back substitution gives
-3
= — = 1
T3
and
_=9+6z |
y=—"3 =
and
_6-3z-2y


https://testbanks.ac/product/9781107135116-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

88 Linear eauations

(b) For Gauss elimination with pivoting, we start with

(1 2 3|6 ]
45 615
1 3 2|6 |

The biggest entry is the second row, so we swap

(4 5 6]15]
1 2 3|6
13 2|6 |

and then eliminate the first column

4 5 6|15
0 3/4 3/2|3)2
0 7/4 1/2|3)2

In the second column, we see that we have to pivot again because the bottom
entry is bigger than the second row. (Remember that you don’t have to pivot,
only if the diagonal is the biggest entry.)

(4 5 6 |15 ]
0 7/4 1/2|3/2
0 374 3/2(3/2 |

Eliminating the second column gives

(4 5 6 | 15 ]
0 7/4 1/2|3/2
0 0 9/7|9/7 |

The back-substitution gives the same result as above.

(c) For LU decomposition, we just need to know the values we used for the naive
Gauss elimination. For the first elimination we used m;; = 4/1 and m3; = 1/1.
For the second elimination we used m3, = 1/ — 3. This means that the lower
triangular matrix is

1 0 0
L={4 1 0
1 -1/3 1

We already know the upper triangular matrix

1 2 3
U= 0 -3 -6
0 0 -3

If you want to be sure that this is correct, just check that

1 0 o 1 2 3 1 2 3
4 1 0 0 -3 -6(=14 526
0 -3 1 3 2

1 -1/3 1
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For the forward substitution we have
yi =6
and
=154y = -9

and
Vi= 6y + 2 =3
3

From the back substitution we get back the result from above. Indeed, it should
be clear from the method that the vector y is just the augmented matrix at the end
of naive Gauss elimination. This is the advantage of LU decomposition if you have
many forcing functions — you only need to do the elimination of A and then you can
quickly compute the y vectors for every forcing function.
Al = maxi<i<n 2jy laijl = max(8,28,20) = 28
To find the condition number, we need to compute

IAll, = 5.4772

We also need to find the inverse of A, which is

0.15 03 025
A= 025 -05 -025
0.05 0.1 -0.25

which has a Euclidian norm of 0.7906. The condition number is then 4.3301.
For the Euclidian norm, we get

Al = V22 + 42+ (-1 + 22 = Va2 +21 = 'V2

For later use, I have defined z = x> + 21. Note that this does not depend on the sign
of x.
For the 2-norm, we first need to compute

2 -1 2 x 5 2x—4
T _ _
AA_[x 4“—1 4}_[2x—4 2 +16

Now we need the eigenvalues

5-1  2x-4
det[ 2x-4 2 +16-1 ]‘0

Computing the determinant gives
G-DEP+16-D)-2x-4)?*=0
Working out the products yields
(5x* +80 =51 —Ax> =161+ %) — (4x* — 16x+16) =0
and grouping the terms gives

A +2D+ (P +16x+64)=0
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which we could also write as
-2+ x+8)72=0
Using the quadratic formula

Z+ 22 —4(x + 8)?

2

The largest eigenvalue is the positive one since z > 0. For simplicity, let’s also define
b = 4(x + 8)> > 0, independent of the sign of x. So the 2-norm is

(z + Vz2 - b]l/z
2

1=

IAll2 =

‘We can rewrite this in the form

Vz2 - b—z]l/2

Al = [z + 5

Since b > 0, we know that
V2-b-2z<0

As a result, the Euclidian norm is always larger than the 2-norm for any value of x.
249 lIxlli =25 Il =10+3+4+1+5=23

x> = ‘/Zixiz = VI00+9+ 16+ 1+25= V151 =123
I*lloc = max |x;| = 10
.50) L =9,L, = V88 ~ 9.38, Lo, = 12. The largest norm is L., and the smallest norm is
L.
2.51) Ly =19, L, = 19.799, L, = 26. The largest norm is L, and the smallest norm is L;.
(2.52) ||All; max; 3} la;;| = max(17,12,15,13) = 17
1ALl = /3 ¥ja; = V291 = 17.05
lAllo = max; 3 ;la;;| = max(8,18,12,19) = 19
(2.53) The 1-norm of

1 1 1

A=|2 1 2

4 0 2
is 7 (from the first column). We now need to compute the inverse:
1 1 1|1 0 O
A=]12 1 2|0 1 0
4 0 210 0 1

Eliminate the first column:

1 1 1 1 00
A={0 -1 0|-2 1 0
0 1
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Put 1 on the diagonal:

A=10 1 02 -1 0

Eliminate the 2nd column:

Put 1 on the diagonal:

A=10 1 02 -1 0
|0 0 1|-2 2 -1/2 |
Eliminate up the third column:
(1 1 0|3 -2 1/2 ]

A=l0 102 -1 o0
00 1|2 2 -1/2]

Eliminate up the second column:

(10 0] 1 -1 1/2 ]
A=|o0 2 -1 0
00 1|2 2 -1/2

—
)

The inverse is then

1 -1 12
Al=] 2 -1 o0
-2 2 -12

and its 1-norm is 5 (from the first column). So
cond(A) = Al [A™"]| = 35

(2.54) To compute the condition number, we first need the inverse of the matrix. We can
compute this using simultaneous Gauss elimination on the identity matrix:

1 1 2(1 0 O

1 3 1({0 1 O

01 2(0 0 1
11 2|1 00
02 -1|-1 10
01 2]0 01

01 -1/2|1-1/2 1/2 0
0 1 2 0 0 1
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11 2 1 0 0
0 1 -1/2]-1/2 12
00 521 172 -1/2

— O

1 1 2 1 0 0
0 1 -1/2|-1/2 1/2 0
0 0 1 1/5 -1/5 2/5

1 0| 3/5 2/5 -4/5
I 0|-2/5 2/5 1/5
0 1| 1/5 -=1/5 2/5

1 00 1 0 -1
01 0|-2/5 2/5 1/5
0O 0 1| 1/5 -1/5 2/5
So we have the inverse
1 0 -1
Alt=| -2/5 2/5 1/5
1/5 -1/5 2/5

The two Euclidian norms are [|All, = V22 = 4.69 and |A~'||, = V65/5 = 1.61 so the
condition number is the product of these norms, cond(A) = 7.56.
(2.55) We first need to compute the inverse of the matrix:

1 2]1 0 1 o1 -2
ﬁ
[0101} [01‘0 1}

so that

The two Euclidian norms are

Al 2+22+12+02 = V6
AT, = VIZ+ (=22 + 12+ 0% = V6

The condition number is thus
cond(A) = AIlA™"| =6

(2.56) The 1-norm is the maximum of (3,5), which is 5. The co-norm is the maximum of

(5,3), which is also 5. The Euclidian normis V4 +9+1+4 = V18 = 4.24. For the
spectral norm, we need to diagonalize:

oas[2 0] 35 8
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The trace of the matrix is 7 = 18 and its determinant is A = (5)(13) — 8% = 1. The
eigenvalues are
18+ /182 —4(1) 18+ V320

/l: =
2 2

The largest eigenvalue is the positive root, 4 = 17.9444. The spectral norm is the
square root of this number, ||A]|, = 4.236.

(2.57) The first step of Jacobi’s method is

0)
x(l):4 ! _—4_0=2
! 2 2
and the second step is
3-4Y 3.1

The value of Ax is

so the value of Ax — b is

SSHEHEH

The 1-norm is the sum of the absolute value of the entries, which is 3.

(2.58) The first iteration of Jacobi’s method is simple

AV =-9/6
x5 =9/8
A =17/10
MV =13/9

The next iteration is a bit more involved:

o —9— [9/86— 313/ _ 4 ges
@ 9 — [-2(-9/6) + 2;17/10) +303/91 _ 515
o 17 - [—9/6—61(3/8)—2(13/9)] gl

o 13- 12(-9/6) +9/8 + 3017/10)] _ | o

9
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(2.59) The first iteration of Gauss-Seidel gives

Y =-3/2

A = 9- [—28(—3/2)] —3/4

17 -[-3/2-6(3/4)] _
0 =23/10

13 —[2(=3/2) + 3/4 + 3(23/10)]
9

(1 _
Xy =

=0.928

1 _
X, =

In the second iteration, we get

x(12) _ -9 - [3/46— 3(0.928)] —_116

9 - [=2(1.16) + 2223/ 10) +3(0.928)] _ ) 1eq

17— [-1.16 — 6(-0.088) — 2(0.928)]
10 -
13 — [2(-1.16) — 0.088 + 3(1.95)]
5 =

(2.60) The first iteration of Gauss-Seidel gives

() _
x2 =

XY = 1.95

K= 1.06

6-0
M) _ —
X == 2
OISl (€0/(C))
2 3 3

(2.61) The first iteration of SOR gives

3
1) _ —
xl —O+§(2)—3

A = 3- (31)(3) _

3
1 _ —
X2 —O+§(0)—0

0

(2.62) Compute each r and the new term:

= 222 1609) z 0.1-3DI _ 4067

V= -0.9 +3/2(-0.067) = -1

, 2 92D+ 8(0-;;) +222) + 3D _ ) e7s

Y =0.1+3/2(-0.1875) = -0.181

s = 17 -[-1- 6(—0.1811())+ 10(2.2) - 2(1.1)] — 0289

K =22 +3/2(-0.289) = 1.767
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_ 13 -[2(-1) —0.1819+ 3(1.767) + 9(1.1)] - ~0.00218

Y = 1.1 +3/2(-0.00218) = 1.103

(2.63) No because 2 <6 +2 =8.
(2.64) To be diagonally dominant, we require that |a;| > 3 j, j # ila;;| on each row i. For
each row, we have
6>14+0+3=4 (=1
8>2+2+3=7 (i=2)
10>14+6+2=9 (=3)
9>24+143=6 (i=4)

(2.65) The components for linear regression are s, = 9.8, s, = 20.9, s, = 25.3 and s,, =
55.04 for n = 5 elements. The coefficients are

NSy — SeSy
ay = ———— =322
NSxy — §2
and
s s
y X
apg= — —a1— = -1.25
n n

so the linear regression is y = 3.22x — 1.25.
(2.66) (a) First we need to calculate how many numbers we can store in the memory
1024 KB 1024 bytes 8 bits 1 number
“TTMB T 1KB  lbye 64 bits
That is the total number of entries we can have in A and b to determine how
many equations we can store we take the sum of the space requirements n> + n
and set it equal to the total number of numbers we can store and solve

1MB = 131,072 numbers

131072 = n* +n
n=361.54

We must round down as storing half an equation is no use so 361 equations can
be stored by the Mac/SE30
(b) For the Cray supercomputer the same basic principle is employed

1024% word
500 MW  —— 0T _ 2 4y
1 MW

n* + n = 524,288,000
n =~ 22896 equations
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(c) We need to calculate the total number of operations we can do in one hour and
set it equal to the amount of time to solve the equation

.01 % 10° floatingpointoperations 3600 seconds n
%

w|

1 second 1hour
Solving yields n = 476 equations
(d) similarly for the Cray

100 * 10® floatingpointoperations 3600 seconds n
%

1 second Llhour -3
This gives a significantly larger answer n = 10, 260 equations
(e) Based on the above numbers the Mac seems limited by the memory since it
can solve more equations in a reasonable time than it can store. The Cray is the
opposite it an solve more equations than it can store in a similar amount of time
so it is limited by its processor speed.

(2.67) 10* (p = 2, ratio of time is n’/np* = (n/p)?)

(2.68) For a banded matrix, Jacobi’s method requires n values of x;, p evaluations per sum,
and k iterations. So the scaling is t ~ npk. It is OK if they write something more
accurate like # ~ n(p + g + 1)k, but that will change the numbers.

Gauss elimination scales like 73, so the ratio is

[Gauss n’ n
1 jacobi np k p k

Putting in the numbers gives
pk @S

Ljacobi = I’l_2 Gauss = W(z sec)

which gives 7.0 = 2 X 107 sec. Jacobi’s method is preferred.
(2.69) (a) n’ scaling gives r = 10° = 1000 sec.
(b) np? scaling gives

t= 1000("’)2 —1000( —2 )= L e
B n) 10002 ]~ 250
(c) n’k scaling gives
k
t=1-=0.1sec
n

(2.70) Gauss elimination is n® and Jacobi’s method is n?k. So we need k < n. OK if they
say k < n.
2.71) y =4 (x+ 3y = 5x with x = 3)
(2.72) The trace is T = 2 and the determinant is A = 3. So the eigenvalues are
2+ v4-4
= %(3) =1+ l\/z
Both eigenvalues have the same magnitude,

=12+ (V22 = V3

A
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2.73) (@1
(b) p=4,q=0,sothe bandwidthisp+g+1=35
(c) Column j = 3 has the biggest sum: 53 + 7 = 56.14157
(d) There are 5 eigenvalues. For an upper triangular matrix, it is easy to show that
the entries on the diagonal are the eigenvalues. The eigenvalues satisfy

detAI-A=0

If A = A;; for any i, then
]_[u ~A=0

(e) No
(2.74) (a) 15.
(b) No because it is not diagonally dominant.
(c) After pivoting the rows, aéz,; =2-(4/2)=0.
(2.75) Forward elimination without pivoting, Gauss elimination without pivoting or naive
Gauss elimination
(2.76) The system of equations is

2 3 1] xn 1
2 3 2|l x|=|4
1 2 5| x 2

The method of solution is Gauss-Seidel. To check for convergence, there are several
steps:

(a) Is there a unique solution?
Need to see if det A = 0.

2 31
det| =2 3 2 [=304+46-4-3+8-30)=32+19=51#0
1 25

So there is a unique solution.
(b) Is the matrix diagonally dominant?
Only row 3 is diagonally dominant.

Since diagonal dominance is sufficient but not necessary, the answer to this question
is that we do not know if the program will converge.

(2.77) (a) This program solves the linear algebraic system
3x1+2x =2
X] — X2 = -1

(b) This problem uses Jacobi’s method

(c) The criteria for stopping is that the absolute value of the residual is less than or
equal to 10~* or the number of iterations is greater than 20.
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(2.78)

(d) The initial residual is

| 7]

and the one norm is ||r]|; = 2 + 1 = 3. The formatted output to the screen is
® 0.000000 0.000000 3.0000e0
(e) After one iteration of Jacobi’s method, x; = 2/3 and x, = 1. The residual is then

-2
R=
25 ]
and the one norm is ||7||; = 2+ 2/3 = 2.6667. The formatted output to the screen
is
1 0.666667 1.000000 2.6667e0
(@)

det

i~ \]
e Bl
—_ D

If they say det A that’s OK too.

(b) Gauss elimination with pivoting

(c) The size of the matrix

(d) The value of the determinant

(e) If there was a pivot (row swap) during this step of elimination. Another OK
answer is that s keeps track of the sign of the determinant.

(f) Forward elimination or Gauss elimination. Another OK answer is calculation of
the product of the diagonal elements.

(g) We just need to do the forward elimination. There is a pivot on the first step
(s = —1) to give

4 2 1
2 1 3
1 11
Doing the forward elimination gives
4 2 1
0 0 25
0 05 0.75

We really need to pivot on the next step (s = 1 now) because the diagonal is
zero!

4 2 1
0 05 0.75
0 0 25

There is nothing left to do. The product of the diagonal is 5. Since we pivoted
twice, there is no sign change. The output of the last line is
g = 5.000000
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Be sure to have the right number of decimal places from the formatting com-
mand.
(2.79) (a) The problem is

3 10 -5 X -2
-4 1 2 x =] 1
1 1 -4 X3 0
(b) successive relaxation
(c) The initial condition is
0
xP =10
0

(d) The criteria for convergence is
IAX® —b| < 1077

OK if they use < instead of < or do not put the superscript on x. The actual value
k or k + 1 depends how you count, so that’s not something worth checking.

(e) Dampen oscillations

(f) Becomes Gauss-Seidel

(g) Diverges since w > 2.

(h) The sum will be computed incorrectly. The value from the previous iteration
will carry over to the next iteration.

(i) The matrix is not diagonally dominant. You can make it diagonally dominant by
swapping the first and second equations.

Computer Problems

(2.80) (a) The files for this problem are contained in the folder s15c4p2 matlab.

The Matlab script is:

1 function s15h4p2
2 clc

3

4 A = zeros(1l2);

5 b = zeros(12,1);
6

7

8 A(l,1) = -1;

9 A(l,2) = 1;

0o A(1,3) = 1;

1 A(l,4) = 1;

2 A(l1,5) = 1;

13 b(l) = 0;

14

15

6 A(2,2) = -1;

17 A(2,9) = 1;

18 A(2,10) = 1;
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23 A(3,5) = -1;
24 A(3,6) = 1;
25 A(3,7) = 1;
26 A(3,8) = 1;
27 b(3) = 0;

30 A(4,4) = 1;
31 A(4,7) = 1;
32 A(4,11) = 1;
33 A(4,12)
4 b((4) = 0;

Il
|
—
~

37 A(5,1) = 1;
33 b(5) = 100;

4 A(6,5) = 1;
2 A(6,8) = -5;
43 b(6) =

o

46 A(7,4) = 1;

41 A(7,7) 1;

4 A(7,12) = -0.84;
49 Db(7) = 0;

52 A(8,1)
53 A(8,2)
54 A(8,3)
55 b(8) =

-0.7;
1;
1;

o

58 A(9,1) = -0.55;
59 A(9,9) 1;

60 A(9,12) = 1;

6l b(9) = 0;

6 A(10,9) = -0.2;
6s A(10,10) = 1;
6 b(10) = 0;

67
68

¢ A(l1l,2) = -0.85;
70 A(11,9) = 1;

71 A(11,11) = 1;
72 b(ll) = 0;
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75 A
76 A
77 A
78 Db
79

80 fprintf('The matrix A = \n'")

st for i = 1:12

82 for j = 1:12

5 fprintf ('54.26\t, AL, §))
84 end

85 fprintf('\n")

s¢ end

87

88 fprintf ('\n\n'")

8 fprintf ('The vector b = \n')

90 for i = 1:12

91 fprintf ('%4.2f\n",b (1))

92 end

(b)

The files for this problem are contained in the folder s15c4p3_matlab.
The Matlab script is:

function s15h4p3
clc

AW =

[A,b] = writeAB;

N

xGaussNaive = linear_ngaussel (A,Db)

8 xXGaussPivot = linear_gauss-pivot (A,Db)
10 xMatlab = A\b

12 function [A,b] = writeAB
13 clc

15 A = zeros(1l2);

>
o
Il

zeros (12,1);

_l;

g w N
| = — < — —
I
~

~

|
e e e

~.

N B S

3
o
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33
34
35
36
37
38
39
40
41
4
43
44
45
46
47
48
49
50
51

52
53
54
55
56
57
58
59
60
61

62
63
64
65
66
67
68
69
70
71

7
73
74
75
76
77
78
79
80
81

82
83
84
85
86
87

88

Linear eauations

A(3,5) = -1;
A(3,6) = 1;
A(3,7) = 1;
A(3,8) = 1;
b(3) = 0;
A(4,4) = 1;
A(4,7) = 1;
A(4,11) = 1;
A(4,12) = -1;
b(4) = 0;
A(5,1) = 1;
b(5) = 100;
A(6,5) = 1;
A(6,8) = -5;
b(6) = 0;
A(7,4) 1;
A(7,7) = 1;
A(7,12) = -0.84;
b(7) = 0;
A(8,1) = -0.7;
A(8,2) = 1;
A(8,3) = 1;
b(8) = 0;
A(9,1) = -0.55;
A(9,9) = 1;
A(9,12) = 1;
b(9) = 0;
A(10,9) = -0.2;
A(10,10) = 1;
b(10) = 0;
A(11,2) = -0.85;
A(11,9) = 1;
A(11,11) = 1;
b(11) = 0;
A(12,6) = 3.2;
A(12,7) = -1;
A(12,8) = -1;
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89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144

Linear eauations
b(12) = 0;
fprintf ('The matrix A = \n')
for i = 1:12
for j = 1:12
fprintf ('%4.2£\t",A (i, J))
end
fprintf('\n")
end
fprintf ('\n\n")
fprintf ('The vector b = \n')
for i = 1:12
fprintf('%4.2f\n',b(i))
end
function x = linear_gauss_pivot (A,Db)
n=length (b) ;
x=zeros(n,1);
for k=1:n-1
Amax = abs (A(k,k));
swap-row = k;
for i = k+1l:n
if abs(A(i,k)) > abs (Amax)
Amax = A(i,k);
swap-row = 1ij;
end
end
if swap.row ~= k
old-pivot (1,:) = A(k,:);
old-b = b(k);
A(k,:) = A(swap-row, :);
A(swap-row,:) = old_pivot;
b (k) = b(swap-row);
b (swap-row) = old.b;
end
fprintf('On elimination step %2d the matrix is n0w:\n',k)

for i = 1:12
for j = 1:12
fprintf ('%4.2F\t",A (L, §))
end
fprintf('\n")
end
fprintf ('\n\n\n\n")

103
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145
146 for i=k+1l:n
147 m=A(i,k)/A(k,k);
148 for j=k+l:n
149 A(i, j)=A(i,J)mxA(k,]);
150 end
151 b(i)=b (i) -m*b(k);
152 end
153 end

154
155 x(n)=b(n)/A(n,n);
156 for i=n-1:-1:1

157 S=b (i) ;

158 for j=i+l:n

159 S=S—-A (i, J)*x(J);

160 end

161 x(1)=S/A(i,1);

162 end

163

164 function x = linear_ngaussel (A, Db)

165
166

167 n=length (b);
168 x=zeros(n,1);
169

170 for k=1l:n-1

171 for i=k+1l:n

172 m=A (i, k)/A(k,k);

173 for j=k+1l:n

174 A(i,J)=A(i,J) mxA(k,]J);
175 end

176 b(i)=b (i) -m*b(k);

177 end

178 end

179
180 x(n)=b(n)/A(n,n);
181 for i=n-1:-1:1

182 S=b (1) ;

183 for j=i+l:n

184 S=S-A(i,J)*x(J);
185 end

186 x(1i)=S/A(i,1);

187 end

You need to solve this problem with pivoting to avoid a zero. Note that the pro-
gram in the book was incorrect and needed to be fixed in two places to use
absolute value for the pivoting!

(2.81) The files for this problem are contained in the folder s12c4p2 matlab.

The Matlab script is:

W o =

function sl2c4dp2
close all
set (0, 'defaulttextinterpreter', 'latex"')
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A = [6, 1; 4, -8];
b = [13;0];
x-solve = A\b;

x = [5,0];

[xplot,yplot,err_plot,k] = jacobi(A,x,b);
xplot = xplot;

yplot = yplot;

h = figure;

plot (xplot,yplot, '-ob")

xlabel ('SxS$', "FontSize',14), ylabel ('Sys$', 'FontSize',14)
title('Solution to sl2cdp2','FontSize',14)

saveas (h, 'sl2c4p2_solution_figurel.eps', 'psc2')

small = 0.001;

axis([x-solve (l)-small,x_-solve(l)+small, x-solve (2)-small,
x_solve (2)+smalll])

saveas (h, 'sl2cdp2_solution_figure2.eps', 'psc2')

g = figure;
semilogy (err_plot, '-ob'")

xlabel ('Iteration', 'FontSize',14), ylabel ('Error','FontSize',14)

title('Solution to sl2c4p2', '"FontSize',14)
saveas (h, 'sl2c4p2_solution_figure3.eps', 'psc2')

function [x_plot,y-plot,err_plot,k]=jacobi (A, x,b)
x_0ld = x;

err = 100;

x_plot(l) = x(1);

y-plot (1) = x(2);

k =1;

while err > 10°-4
k = k+1;
x(1) = (b(1)-A(1,2)*x_01d(2))/A(1,1);
x(2) = (b(2)-A(2,1)*x_01d(1))/A(2,2);

err = norm(x-x_old);

x_.0old = x;

err_plot (k-1) = err;

x_plot (k) = x(1);

y-plot (k) = x(2);
end

105

The output files are:
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Solution to s12c¢4p2
25 T T

051 q

0 L L L L L L
1.5 2 25 3 35 4 4.5
x

1.001

Solution to s12c4p2
T T

T
1.0008 - 1
1.0006 - q
1.0004 - q
1.0002 - 4

= 1 4
0.9998 - 1
0.9996 - 1
0.9994 - q

0.9992 - q

0.999 L L L L L L L L L
1.999 1.9992 1.9994 1.9996 1.9998 2 20002 2.0004 2.0006 2.0008 2.001
T

Solution to s12c4p2
1.001 T T T

1.0008 - 1

1.0006 - 1

1.0004 - q

1.0002 - q

E —

0.9998 - q

0.9996 - 1

0.9994 - q

0.9992 - q

0.999 L L L L L L L L L
1.999  1.9992 1.9994 1.9996 1.9998 2 2.0002 2.0004 2.0006 2.0008 2.001
€T

(2.82) The files for this problem are in the folder s10c2pl matlab.
The Matlab script is:
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1 function s10c2pl
2 close all
3 set (0, 'defaulttextinterpreter','latex')
4
5 n = 500;
6 output = zeros(3,n);
7 for p = 1:n-1
8 if mod(p,50)==
9 disp (p)
10 end
1 A = make_sparse (n,p);
12 output (3,p) = size(find(Ar),1);
13 b = rand(n,1);
14 tic;
15 x = A\b;
16 output (1,p) = p;
17 output (2,p) = toc;
18 end
19 h = figure;
20 loglog (output (1, :),output(2,:),'o", '"MarkerSize',8)
21 xlabel ('Value for p', 'FontSize',14)
22 ylabel ('Time for solution (seconds)', 'FontSize',14)
23 title('Solution to s10c2pl', 'FontSize',14)
24 saveas (h, 's1l0c2pl_solution_figurel.eps', 'psc2')
25 figure
26 plot (output (1, :),output(3,:),'o", 'MarkerSize',8)
27 xlabel ('Value of p', 'FontSize',14)
28 ylabel ('Number of non-zero elements in A', 'FontSize', 14)
29 title('Solution to s10c2pl', 'FontSize',14)
30 saveas (h, 's1l0c2pl_solution_figure2.eps', 'psc2')
31
32 out = 1;
33
34
35 function out = make_sparse (n,p,q)
3% A = zeros(n,n);
37
3 for i = 1:n
39
40 j-end = min(n,i+p);
41 for j = i:j_end
42 A(i,j) = rand();
43 end
44
45
46 for j = i:j_end
47 A(j,1) = rand();
48 end
49 end

50
51 out = A;
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The output files are:

-1

10

Solution to s10c2pl

"
<
=
IS
<
(5]
E
=
o
'E @]
= o2
3 10°F q
@
.
S
<
<
E
H
3
10 . :
10° 10’ 10° 10°
Value for p
\ Solution to s10c¢2pl
10" T T
=
=]
=
IS
(5]
[
@
z
o
2
= O
= 2
= 107 1
@
.
S
2
o
g
IS
1073 0 ‘1 ‘2 3
10 10 10 10

Value for p

(2.83) The files for this problem are contained in the folder s12c4p3_matlab.
The Matlab script is:

function sl12c4p3
clc
close all

2 owow

w

set (0, 'defaulttextinterpreter', 'latex"')

load sl2c4p3.data
n = 100;

© ® a9 o
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2 for z = 1:19
13 w = 0.1%z;
14 w_plot (z) = w;
15 fprintf('\h*********k*kkkkkkkkx—KKNA—A—A—A—A—A***A*AA*****\N')
16 fprintf ('\n \n Starting calculation for w $3.1f \n',w)
17 k = 0;
18 x = zeros(n,1l);
19 err = norm(Axx-Db);
20 err_plot = err;
21
2 while err > 10°-4
23 k = k+1;
24 for i = 1:n
25 s 0;
26 for j = 1:n
27 s = s + A(i,3)*x(3);
28 end
29 r = (b(i) - s)/A(i,1);
30 x (i) = x (1) + wxr;
31 end
32 err = norm(Axx-Db);
33 if k >= 200
34 fprintf ('Did not converge! \n \n')
35 err = 0;
36 n_iter(z) = -1;
37 end
38 end
39 fprintf ('k = %4d \t Error = %8.6e \h',k,err)
40 n_iter(z) = k;
41 end
42 h = figure;
43 plot(w_plot,n_iter,'-ok")
4 xlabel ('Relaxation parameter, S$w$', 'FontSize',14),
45 ylabel ('Solution to sl2c4p3','FontSize',14)
46 saveas (h, 'sl2cd4p3_solution_figure.eps', 'psc2')
The output file is:
180
160 ,
140~ 4
2
?‘)120* 4
3
2 100 4
é 80| B
=
=}
wn 60 |
40t ,
20 ,
00 0‘.2 0.‘4 U‘.G 0.‘8 1‘ 112 1‘.4 116 1‘.8 2

Relaxation parameter, w
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The number of iterations increase dramatically at extreme values of w but it is
rather flat around w = 1. This behavior indicates that the linear system is relatively
well behaved and does not benefit much from SOR — the result for Gauss-Seidel
(w = 1) is very fast. Recall that SOR is only stable for 0 < w < 1.9. If you play
around with values of w very close to the stability limits, the time for the solution
increases dramatically.

(2.84) The files for this problem are contained in the folder s11c3pl matlab.
The Matlab script is:

1 function s1lc3pl

2 clc

3 close all

4 set (0, 'defaulttextinterpreter', 'latex")
5

6 npts = 30;

7

8

9 n_output = zeros(npts,1);

1o iter_output = zeros(npts,1);

11 diag.output = zeros (npts,1);

12 err_output = zeros(npts,1l);

13 write_ouptut = zeros (npts,3);

14

15

16 for k = l:npts

17 n = 5xk;

18 n_output (k) =

19 fprintf ('\n\n n = $3d =============\n',n)
20

21 A = zeros(n); b = zeros(n,1);

2 for i = 1:n

23 for j = 1:n

24 if 1 == 3

25 A(i,J) = 8+0.2%*1i;
26 else

27 A(i,J) = (i+3)/1/73;
28 end

29 end

30 b(i,1) = ixn;

31 end

32

33

34

35 diag-check = 0;

36 for i = 1:n

37 sum_-row = 0;

38 for j = 1:n

39 sum_-row = sum-row + A(i,J);
40 end

41 sum_row = sum.row - A(i,i);
2 if sum_row > A(i,1i)

43 diag-check = diag.check + 1;
44 end
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46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80

81
82
83
84
85
86
87
88
89
9%
91
[
93
94
95
9%
97
98
99

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong

Linear equations

end

if diag-check > 0
diag_output (k) = 0;

fprintf ('The matrix is not diagonally dominant!\n')

else

diag-output (k) = 1;

fprintf ('The matrix is diagonally dominant.\n')
end

tol = 1le-8;

x = zeros(n,1l);
iterations = 0;
err = 1000;

while err > tol

iterations = iterations+1l;
for i = 1:n
sum_term = 0;
for j = 1:n
sum_term = sum_term + A (i, J)*x(J);
end
sum_term = sum_term — A(i,1i)=*x(1);
x(i) = (b(i) - sum.term)/A(i,1);
end
err = norm(Axx-Db);

fprintf ('The error after iteration %3d is %8.6e
\n',iterations,err)

if iterations > 100
fprintf('Failed to converge.\n')

err = —-1000;
end
end
iter_output (k) = iterations;
err_output (k) = err;

end

h = figure;

plot (n_output, iter_output, 'ob',n_output,n_output, ':b"',
'MarkerSize', 8)

axis([0,150,0,1007)

xlabel ('SnS$', 'FontSize',14)

111
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100 ylabel ('k', 'FontSize',14)

o1 title('Solution to sllc3pl','FontSize',14)

12 saveas (h, 'sllc3pl_.solution_figure.eps', 'psc2"')
103

15 write_output = n_output;

= diag-output;
= err_output;
= iter_output;

(:
106 write_output (:
107 write_output (:
18 write_output (:
109

1o dlmwrite('sllc3pl_output.txt',write_output)

The output figure is:

Solution to sllc3pl
100 T

90 1
80 —
70- oA
60 1

A4 50 o i

40 o ,

301 o N

0 50 100 150

The text output is:

I 5,1,1.8466e-09,10
2 10,0,6.8661e-09,12
3 15,0,7.4406e-10,15
4 20,0,1.6447¢-09,16
s 25,0,2.4971e-09,17
6 30,0,2.8452e-09,18
7 35,0,8.615e-09,18
s 40,0,2.9148e-09,19
9 45,0,1.4053e-09,20
0 50,0,8.6347e-09,20
1 55,0,4.1406e-09, 20
2 60,0,8.1553e-09,21
3 65,0,3.6799e-09,21
4 70,0,8.7412e-09,22
s 75,0,4.8083e-09,23
6 80,0,4.7562e-09,26
7 85,0,8.0456e-09,29
18 90,0,8.029e-09,32
v 95,0,7.4525e-09, 35

2 100,0,7.0643e-09,38

21 105,0,7.067e-09,41

» 110,0,7.5676e-09,44
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23 115,0,8.6687e-09,47
2 120,0,5.9007e-09, 51
25 125,0,8.0926e-09,54
2% 130,0,7.0545e-09, 58
27 135,0,6.9511e-09,62
2% 140,0,7.6793e-09, 66
29 145,0,9.521e-09,70
3 150,0,8.8e-09,75

For the small values of n, it looks like the scaling for the work required by Gauss-
Seidel is less than Gauss elimination. As we get to larger values of n, the Gauss-Seidel
starts to look like a linear scaling. Note that the absolute value of the line k = n does
not reflect the total work required by Gauss elimination. Rather, it is the way that
the work scales with increasing n. So when you are comparing the two methods, you
want to look at the slope of the lines rather than their absolute value. The absolute
value will depend on both the scaling of the algorithm and how well you write your
program. It is possible to have a method that does not scale well be the faster method
if the program is written in a very efficient manner.

(2.85) The files for this problem are contained in the folder s10c3pl matlab.

The Matlab script for this problem is:

1 function s10c3pl

3 close all
4 set (0, 'defaulttextinterpreter', 'latex"')

A= [312; 6 33; 312;1;
8 b = [7;10;8];

n for i = 1:15

12 epsilon = 10" (-1i/1);

13 A(3,3) = A(1l,3)+epsilon;

14 epsilon_out (i) = epsilon;

15 condition_out (i) = cond(A);

16 x = A\b;

17 error_out (i) = abs(epsilon*x(3) - 1);
18 end

19

20 h = figure;

21 loglog(epsilon_out,condition_out, '--0o', '"MarkerSize', 8)
22 xlabel ('S 5

23 ylabel ( t
24 title('Solution t

25 saveas (h,'s 2"

2% h = figure;

27 loglog(condition_out,error_out,'--o', 'MarkerSize', 8)
28 xlabel('C 5

29 ylabel ('Relati erro 1 $x_38 ontSize',14)

30 title('Sc
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31 saveas (h, 'sl0c3pl_solution_figureZ.eps', 'psc2')

The output files are:
Solution to s10¢3pl

10"

Condition Number
3
/
.

o =
epsilon

Solution to s10c¢3pl
10 T T T

Relative error in z3
3 3
-
N
Q
[V)
\
. .

. . .
10° 10" 10" 10
Condition Number
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