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Material for Chapter 2
Example 2.5.7

These sequences are known as Sturmian sequences. We have refrained from mention-
ing the name in the example to make it a little harder for students to look up the answers
instead of formulating their own hypotheses. Note, however, that the name and a refer-
ence are given in the final section of the chapter for the sake of completeness. Exercises
2.19,2.20, 2.21 and 2.41 all investigate the structure of these sequences.

In our teaching, Exercise 2.41 has often been used as a homework assignment to
give the students the opportunity to complete an independent experimental investiga-
tion that can reveal both superficial and quite deep structure. In the following, we give
some useful background theory for these sequences.

Definition 2.1. A sequence (x,),en € {0, 1}V is said to be
o Sturmian if the number of distinct subwords of length k is k + 1 for all k € N.

o balanced if for each k € N there exists wy € N such that each subword of length
k contains either precisely wy or precisely wi + 1 ones.

e cventually periodic if there exist k, N € N such that x,, = x,4 foralln > N.

For a more detailed introduction to Sturmian systems, see [Fog02]. The following two
theorems give fundamental descriptions of Sturmian sequences.

Theorem 2.2. A sequence (X)new C {0, 1) is Sturmian if and only if it is balanced
and not eventually periodic.

Theorem 2.3. A sequence (X,)nen C {0, 1}V is Sturmian if and only if there exist a €
10; 1[\Q and p € R such that

X, = (n+ Da +pl| — lna +pl.

An intuitive way to construct such a Sturmian sequence is to consider a coordinate
system and a line with irrational slope @. Build a sequence by considering the inter-
sections with the grid lines of the positive integers: For each n, the nth entry should
be 1 if the line crosses a horizontal line between n — 1 and n, otherwise it should be 0.
This is sketched in Figure[I} Note that the irrationality of @ guarantees that this gives a
well-defined sequence, and that this sequence has the form specified in Theorem [2.3]

Sturmian sequences have the following properties:

e A Sturmian sequence has the property that either 00 or 11 is not a subword.

e The number of distinct subwords of length 7 in an unbalanced aperiodic sequence
grows exponentially with n. The growth rate of a Sturmian sequence is the small-
est possible for an aperiodic sequence (in other words, a Sturmian sequence has
minimal entropy).

e The frequency of ones in the N first elements of a Sturmian sequence given by «
and p converges to @ as N goes to infinity.
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Figure 1: Construction of a Sturmian sequence with a = % and p = 0.

e A Sturmian sequence where 00 is not a subword can be recoded by replacing
each block of ones by the length of the block and throwing away the zeroes.
Since a Sturmian sequence is balanced, these blocks will have length k and k + 1
for some k € N.

e Replacing each k by a 0 and each k + 1 by a 1 (or vice versa) in the sequence
constructed in the preceding entry gives a new Sturmian sequence in {0, 1},
Iterating the process yields a sequence of Sturmian sequences. For each Sturmian
sequence, one can consider the length of the basic blocks of zeroes/ones and
these numbers are given by the continued fraction expansion of the @ which
defines the original sequence. In short, this allows the Sturmian sequence to give
an optimally efficient approximation of @. We touch on this theme in Exercise
5.23.

Example 2.6.2

For odd n, Player B should always choose the opposite of whatever digit Player A last
played. It is not hard to prove that this is a winning strategy. However, it is much
harder to find winning strategies for even n. Indeed, we do not know who can win the
game at even n > 8. See also the discussion in Example 6.5.5. Note that Exercise 2.43
asks students to carry out an independent investigation of this problem. We have tried
to make it clear that some values of n are untractable.

Example 2.8.1

In our experience, it is surprisingly hard to get students to make thorough automatic
tests. This simple example has been chosen to show how such a test may be set up,
but when students solve the accompanying exercises (Exercise 2.41 in particular), they
often fail to carry out such tests.
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Example 2.8.2

Let 8 € R with 8 > 1. For each ¢ € [0; 1] define sequences (7,,(¢)),en and (x,,(t))nen by
ri(t) = (Br), ra(t) = (Bra-1(1)),
xl(t) = |ﬁtJ, xn(t) = Lﬁrn—l(t)_]’

where |y] is the integer part — and (y) is the fractional part — of y € R. The sequence
x1(0)x,(¢) - - - 1s said to be the S-expansion of t, and Rényi has proved that

e i x[,;it).

n=1

The B-expansion of 1 is denoted e(58). The sequences considered in the example are
such expansions of 1 and knowing this greatly facilitates the study. Such sequences
may be finite, periodic, eventually periodic or aperiodic depending on . For example,
e(B) = 11000 - - for B = (1 + V5)/2.

Define Bg = {x,(t)--- x,(t) | 1 < n < m,t € [0;1]}. This set Bg is the language of
a kind of shift space known as a beta-shift. The alphabet Ay consisting of the symbols
that appear in the words in Bg is either {0,...,8 — 1} or {0,...,|3]} depending on
whether $ is an integer or not.

The following theorem is one of the properties that experimentation may reveal.

Theorem 2.4 (Parry). A sequence aa;--- is the B-expansion of 1 for some 3 > 1 if
and only if ayai+1 -+ < a1ap -+ (in lexicographic order) for all k € N. Such a B is
uniquely given by the expansion of 1.

Let aja; - - - be the S-expansion of 1 for some S > 1. For each n € N let ¢, be the
number of words in ﬂ; that are smaller than a;a; - - - a, in lexicograpic order. Then c,
grows exponentially with n and the growth rate is given by 8. Note that ¢, counts the
number of elements of By of length n.

Exercise 2.19-2.21

See the discussion of Examples 2.5.7 and 2.8.1 above.

Exercise 2.22

When we gave this exercise in our course recently, we provided an example

b(5/2,11=1[2,1,0,1,1,1,0,0,0,0,1,1,0,1,2,1,0,0,0, 1, 1,
1,1,1,2,1,0,0,0,1,0,0,2,0,0,0,1,0,0, 1, 2,0,
,o,0,1,1,1,1,1,0,0,0,1,1,0,0,1,2,0,0,0, 1,
2,0,0,1,2,0,1,1,1,1,0,0,0,2,0,1,0,0,2,0,0,
1,0,1,0,1,1,0,1,1,0,1,1,0,1,2,0,0, 1,1, 1, 1,
2,0,1,1,0,0,0,1,1,2,0,0,0,0,2,0,2,0,0,0,1,...].
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and explicitly asked the students to test their program against it. Nevertheless, a vast
majority of students had made a program using evalf to speed up computations, and
this would cause their program to return

b[5/2,11=12,1,0,1,1,1,0,0,0,0,1,1,0,1,2,1,0,0,0, 1, I,
1,1,1,2,1,0,0,0,1,0,0,1,2,0,1,0,1,...]

at standard precision. Interestingly, none of the students computing the incorrect val-
ues had noted it — they happily concluded that their program worked after visually
inspecting, one may assume, the first line or so. This of course provided for a very
useful discussion afterwards, and the students were taught a lesson they are nok likely
to forget! We strongly recommend that you set up your students for this or a similar
experience.

See also the discussion of Example 2.8.2 above.

Exercise 2.23-2.24

See discussion of Example 2.8.2 above.

Exercise 2.25

See discussion of Example 1.6.2 above.

Exercise 2.26-2.40

All of these exercises concern very hard problems, some of which are open. They
are included here to give students the opportunity to get experience with experimental
investigation and the formulation of hypotheses. Clearly, this will not result in new
information about the Goldbach conjecture, and in several cases the students will for-
mulate false hypotheses because extremely extensive computations are needed to find
the first counterexample. However, we believe that these classical problems can still
give excellent training. Indeed, formulating a conjecture based on experimental evi-
dence and later realizing that the conjecture is false may be a very important lesson.

Note that Table 2.1 gives references to relevant literature and a summary of the state
of each problem. However, we believe that the exercises will be more interesting if the
students try to solve them without first consulting the table.

Exercise 2.41

See the discussion of Example 2.5.7 and 2.8.1 above. In our teaching, this exercise has
often been used as part of the first homework assignment.

Exercise 2.43

See discussion of Example 2.6.2 above.
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Exercise 2.44

See discussion of Example 2.8.2 above for a list of interesting features that may be
revealed by such an investigation. Inspired by Example 2.5.7 and 2.8.1, students may
attempt to find a systematic dependency between 8 and the frequency of zeroes, ones
and twos. However, such an investigation is non-trivial due to problems with round-
ing errors and can easily lead to false hypotheses. For more on this subject, see the
discussion of Exercise 4.39 below.
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Material for Chapter 3

Exercise 3.1

The answer is 97. This is probably most easily seen by bisecting the intervals on which
the program is run (and using forget repeatedly).

Exercise 3.3
The zeroes are listed in A28488.

Exercise 3.5

The matrices can be created with MM (9), MM (13) and MM (29) where we define MM as
below.

[> MM:=n->Matrix(n,n,convert (map (x—>(x[1]+1,x[2]+1)=1,
map (x—>subs (x, [c,d]), [msolve (a"4+b"4+c”4=d"4,n)]1)),set));

Exercise 3.12
With

[> t:=proc(m,N)
if m=0 then
return 1;
else
return (N-1)x*t (m-1,N)+ (N+1) " (m-1);
end if;
end proc;

we get the correct output which is given in Exercise 5.14. The closed form is

(N=1)"+ (N + 1y
2

which may be implemented as

[> tt:=(m,N)—>((N-1) "m+ (N+1) "m) /2;

The test computes all differences and returns O precisely if they all agree.

Exercise 3.13
We have used

[> isPower:=proc(y,n, k) local x;
if (k=1) then return is(y=floor(y~(1/n))"n); end if;
for x from max(l,floor ((y/k) " (1/n))) to floor(y~(1/n)) do
if (isPower (y-x"n,n,k-1)) then
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