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Appendix B Chapter 2

P2.1. In SI units, v(t) is in m/s and v̇(t) is in m/s2, and mv̇ and bv(t) are in N = kg m/s2, m is in kg and b is in
kg/s. Therefore λ =−b/m is in s−1 and τ =−λ−1 is in s.

P2.2. About x = 0 the function f (x) = tan−1(x) admits the Taylor Series expansion f (x) = x+O(x3) hence

c tan−1(α−1y) = cα−1y+O(y3)≈ cα−1y = by.

P2.3. If u(t) = (b/p)ȳ and w(t) = w̄ then

ẏ(t)+
b
m

y(t) =
p
m

u(t)+
p
m

w(t) =
b
m

ȳ+
p
m

w̄

and

y(t) = ỹ(1− eλ t)+ y0eλ t

where

λ =− b
m
, ỹ = ȳ+

p
b

w̄ = ȳ+G(0) w̄.

Consequently with y0 = ȳ

y(t) = (ȳ+G(0) w̄)(1− e−(b/m)t)+ ȳ e−(b/m)t = ȳ+(1− e−(b/m)t)G(0) w̄

and

∆y(t) = y(t)− y0 = y(t)− ȳ = (1− e−(b/m)t)G(0) w̄.

P2.4. With Newton’s second law help we write

mv̇ = F = mg−bv,

or mv̇+bv = mg.

P2.5. The solution to the first-order differential equation from P2.4 is

v(t) = ṽ(1− eλ t)+ v(0)e−λ t , λ =− b
m
, ṽ =

mg
b

.

If m = 1kg, g = 10m/s2, b = 10kg/s then

ṽ =
mg
b

= 1m/s, λ =− b
m

=−10s−1

with which

v(t) = 1+(v(0)−1)e−10t .

The responses when v(0) = 0, v(0) = 1m/s, and v(0) =−1m/s should be as in the following plot:
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Chapter 2 5
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P2.6. The vertical position is obtained after integrating the solution to problem P2.5 as in

x(t) = x(0)+
∫ t

0
v(τ)dτ = x(0)+

∫ t

0
1+(v(0)−1)e−10τ dτ

= x(0)+ t +
(v(0)−1)

10
(1− e−10t).

It is related to the height measured from the ground through

h(t) = h(0)− x(t)

The responses when x(0) = 0, h(0) = 1 and v(0) = 0, v(0) = 1m/s, and v(0) = −1m/s should be as in the
following plots:
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P2.7. Differentiate the given expression for v(t) and substitute into the differential equation.

P2.8. The terminal velocity in the free-fall and the parachute phases can be calculated using

lim
t→∞

v(t) = lim
t→∞

ṽ(1− eλ t)+ v(0)e−λ t = ṽ

where

λ =− b
m
, ṽ =

mg
b

.

In this problem m = 70kg, g = 10m/s2, and

ṽ f = 200km/h≈ 56m/s

during free-fall and

ṽc = 20km/h≈ 5.6m/s

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107187528-SOLUTIONS-5/


6 Chapter 2

after the parachute opens. From these we calculate

b f =
mg
ṽ f

=
700
56
≈ 12.6kg/s bc =

mg
ṽc

=
700
5.6
≈ 126kg/s

with which

λ f =−
b f

m
≈−0.18s−1 λc =−

b f

m
≈−1.8s−1.

The time constants in each phase are

τ f =−λ−1
f ≈ 5.5s, τc =−λ−1

c ≈ 0.55s.

Assuming that the speed at free-fall is close to ṽ f when the parachute opens we can calculate

vc(t) = ṽc (1− eλct)+ ṽ f e−λct

from which the time necessary to reach 29km/h is

vc(t∗) = ṽc (1− eλct∗ )+ ṽ f e−λct∗ = 29km/h≈ 8m/s.

or

5.6+(56−5.6)e−1.8t∗ ≈ 8m/s =⇒ t∗ ≈− 1
1.8

log
8−5.6

56−5.6
≈ 1.7s

so the parachute should be opened at least 1.7s prior to landing.
As for the height we calculate

hc(t) = hc(0)− xc(t) = hc(0)− xc(0)− ṽct +
(ṽ f − ṽc)

λc
(1− eλct)

where t = 0 is the moment the parachute opens and xc(0) can be considered equal to 0. If after t∗ ≈ 1.7s we
have landed then hc(t∗) = 0 and

hc(0) = 5.6×1.7+
(56−5.6)

1.8
(1− e−1.8×1.7)≈ 5.6×1.7+28×0.95≈ 36m

is the minimum height at which the parachute can be opened.
If the dive starts at 4km or 4000m with zero vertical velocity and the parachute is opened after 60s, at that

point the diver should be at the heigth

h f (60) = h f (0)− x f (0)− ṽ f ×60+
(v f (0)− ṽ f )

λ f
(1− eλ f×60)

= 4000−0−56×60+
56

0.18
(1− e−0.18×60)≈ 975m

From that height the fall will continue until

0 = hc(0)− xc(0)− ṽct +
(ṽ f − ṽc)

λc
(1− eλct)

= 975−0−5.6t +
(56−5.6)

1.8
(1− e−1.8×t)

This is approximately 975/5.6≈ 176s. One can solve the nonlinear equation for a more accurate solution of
about 181s. The total time airborne is approximately 60+181 = 240s, that is 4 minutes.

P2.9. The terminal velocity in the free-fall and the parachute phases can be calculated using

lim
t→∞

v(t) = lim
t→∞

1+α eλ t

1−α eλ t
ṽ = ṽ.

As in P2.8, m = 70kg, g = 10m/s2, and

ṽ f = 200km/h≈ 56m/s
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Chapter 2 7

during free-fall and

ṽc = 20km/h≈ 5.6m/s

after the parachute opens. From these we calculate

b f =
mg
ṽ2

f
=

700
562 ≈ 0.227kg/s2 bc =

mg
ṽ2

c
=

700
5.62 ≈ 22.7kg/s2

with which

λ f =−
b f

m
≈−0.36 λc =−

b f

m
≈−3.6.

Because the system is now nonlinear we have to calculate the time constants based on the definition, that
is τ is the time at which, starting from v(0) = 0,

v(t) = (1− e−1) ṽ

that is

1+α eλ t

1−α eλ t
= 1− e−1, α =

v(0)− ṽ
v(0)+ ṽ

=−1,

which implies

τ =−λ−1 ln(2e−1).

Using this formula the time constants in each phase are

τ f =−λ−1
f ≈ 4.1s, τc =−λ−1

c ≈ 0.41s.

Assuming that the speed at free-fall is close to ṽ f when the parachute opens we can calculate

vc(t) =
1+α eλct

1−α eλct
ṽ, α =

ṽ f − ṽc

ṽ f + ṽc
≈ 0.82

from which the time necessary to reach v(t∗) = 29km/h is

t∗ = λ−1
c ln

(
vc(t∗)− ṽc

(vc(t∗)+ ṽc)α

)
≈ 0.42s,

so the parachute should be opened at least 0.42s prior to landing.
In order to calculate the height we first integrate

xc(t) = xc(0)+
∫ t

0
vc(τ)dτ = xc(0)+ ṽct +

2 ṽc

λc
ln
(

1−α
1−α eλct

)

then calculate for t = t∗, hc(t∗) = 0, and xc(0) = 0, the quantity

hc(0) = hc(t∗)+ xc(t∗) = xc(t∗)≈ 6.9m,

which is the minimum height at which the parachute can be opened.
If the dive starts at 4km or h f (0) = 4000m with zero vertical velocity and the parachute is opened after

60s, at that point the diver should be at the heigth

h f (60) = h f (0)− x f (0)− ṽ f 60+
2 ṽ f

λ f
ln
(

1−α
1−α eλ f 60

)
≈ 880m

From that height the fall will continue until

0 = hc(t) = hc(0)− xc(t)

= 880−0− ṽct +
2 ṽc

λc
ln
(

1−α
1−α eλc60

)

This is approximately 880/5.6≈ 159s. One can solve the nonlinear equation for a more accurate solution of
about 58s. The total time airborne is approximately 60+158 = 228s, that is a bit less than 4 minutes.
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8 Chapter 2

P2.10. At the inertia J1

J1 ω̇1 = τ + f1 r1− f2 r1,

and at the inertia J2

J2 ω̇2 = f2 r2− f1 r2.

Since the inertias are coupled by a belt, the linear speeds must be the same:

ω1r1 = ω2r2 =⇒ ω2 = (r1/r2)ω1.

Multiplying the first equation by r2 and the second by r1 we obtain

r2J1 ω̇1 = r2τ + f1 r1r2− f2 r1r2,

r1J2 ω̇2 = f2 r1r2− f1 r1r2.

Adding these together:

r2J1 ω̇1 + r1J2 ω̇2 = r2τ.

Subsitituting ω2 = (r1/r2)ω1:

r2J1 ω̇1 + r2
1/r2J2 ω̇1 = r2τ,

and multiplying by r2

(J1r2
2 + J2r2

1) ω̇1 = r2
2τ.

P2.11. From P2.10

r2( f2− f1) = J2 ω̇2

so f2 = f1 only if ω̇2 = (r1/r2) ω̇1 = 0, that is at constant speed.

P2.12. At the inertia J1

J1 ω̇1 +b1ω1 = τ + f1 r1− f2 r1,

and at the inertia J2

J2 ω̇2 +b2ω2 = f2 r2− f1 r2.

Since the inertias are coupled by a belt, the linear speeds must be the same, that is

ω1r1 = ω2r2 =⇒ ω2 = (r1/r2)ω1.

Multiplying the first equation by r2 and the second by r1 we obtain

r2J1 ω̇1 + r2b1ω1 = r2τ + f1 r1r2− f2 r1r2,

r1J2 ω̇2 + r1b2ω2 = f2 r1r2− f1 r1r2.

Adding these together:

r2J1 ω̇1 + r1J2 ω̇2 + r2b1ω1 + r1b2ω2 = r2τ.

Substituting ω2 = (r1/r2)ω1,

r2J1 ω̇1 + r2
1/r2J2 ω̇1 + r2b1ω1 + r2

1/r2b2ω1 = r2τ,

and multiplying by r2

(J1r2
2 + J2r2

1) ω̇1 +(b1r2
2 +b2r2

1)ω1 = r2
2τ.
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Chapter 2 9

P2.13. The solution to the first-order differential equation from P2.12 when τ = τ̄ is constant is

ω1(t) = ω̃1 (1− eλ t)+ω1(0)e−λ t ,

where

λ =−b1r2
2 +b2r2

1
J1r2

2 + J2r2
1
, ω̃1 =

r2
2

b1r2
2 +b2r2

1
τ̄.

If τ = 1N m, r1 = 25mm, r2 = 500mm, b1 = 0.01kg m2/s, b2 = 0.1kg m2/s, J1 = 0.0031kg m2, J2 = 25kg m2,
then

ω̃1 ≈ 98rad/s, λ ≈−0.16s−1.

Because we are interested in ω2 we first calculate ω1 then ω2(t) = (r1/r2)ω1(t). Note that the initial condition
must also be translated as ω1(0) = (r2/r1)ω2(0).

The responses when ω2(0) = 0, ω2(0) = 3rad/s, and ω2(0) = 6rad/s should be as in the following plot:

0 10 20 30 40 50 60

t (s)

0

2

4

6

ω
2
 (

ra
d

/s
)

ω
2
(0) = 0

ω
2
(0) = 3

ω
2
(0) = 6

P2.14. In order to achieve a desired rotational speed ω̄2 = 4rad/s in steady-state we set a desired rotational
speed ω̄1 = (r2/r1) ω̄2 and calculate

τ = τ̄ =
b1r2

2 +b2r2
1

r2
2

ω̄1.

Substituting the data we obtain

ω̄1 = (r2/r1) ω̄2 = 80rad/s, τ̄ =
b1r2

2 +b2r2
1

r2
2

ω̄1 ≈ 0.82N m.

The responses when ω2(0) = 0, ω2(0) = 3rad/s, and ω2(0) = 6rad/s should be as in the following plot:
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P2.15. In this case the control would continue to be

τ = τ̄ =
b1r2

2 +b2r2
1

r2
2

r2

r1
ω̄2

while the velocity would converge to

ω̃2 =
r1

r2
ω̃1 =

r2
2

1.2(b1r2
2 +b2r2

1)
τ̄ =

1
1.2

ω̄2 ≈ 0.83ω̄2 ≈ 3.3rad/s.

The rate of convergence would also become faster since

λ =−1.2
b1r2

2 +b2r2
1

J1r2
2 + J2r2

1
,
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10 Chapter 2

would also be 20% larger.
The responses when ω2(0) = 0, ω2(0) = 3rad/s, and ω2(0) = 6rad/s should be as in the following plot:
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P2.16. The connection of the model

(J1r2
2 + J2r2

1) ω̇1 +(b1r2
2 +b2r2

1)ω1 = r2
2τ

with the controller

τ = K (ω̄2−ω2) = (r1/r2)K (ω̄1−ω1)

where ω̄1 = (r2/r1) ω̄2 produces the closed-loop differential equation

(J1r2
2 + J2r2

1) ω̇1 +(b1r2
2 +b2r2

1 + r1r2 K)ω1 = r1r2 K ω̄1.

The solution to this equation is

ω1(t) = ω̃1 (1− eλ t)+ω1(0)e−λ t ,

where

ω̃1 =
r1r2 K ω̄1

b1r2
2 +b2r2

1 + r1r2 K
, λ =−b1r2

2 +b2r2
1 + r1r2 K

(J1r2
2 + J2r2

1)
.

The closed-loop time-constant is

τ =−λ−1 =
J1r2

2 + J2r2
1

b1r2
2 +b2r2

1 + r1r2 K
.

Be careful not to confuse the time-constant with the torque! We want to select the control gain K to set τ = 3s.
Using the data from P2.13

K =
(J1r2

2 + J2r2
1)/τ− (b1r2

2 +b2r2
1))

r1r2
≈ 0.23

In open-loop the time-constant is

τ =−λ−1 =
J1r2

2 + J2r2
1

b1r2
2 +b2r2

1
≈ 6.4s

The steady state error is

ω̄2− ω̃2 = (r1/r2)(ω̄1− ω̃1)

= (r1/r2)

(
ω̄1−

r1r2 K ω̄1

b1r2
2 +b2r2

1 + r1r2 K

)

= (r1/r2)
b1r2

2 +b2r2
1

b1r2
2 +b2r2

1 + r1r2 K
ω̄1

= (r1/r2)
1

1+ r1r2 K/(b1r2
2 +b2r2

1)
ω̄1

Substituting the data

ω̄2− ω̃2 ≈ 1.9rad/s
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Chapter 2 11

The closed-responses when v1(0) = 0, v1(0) = 1m/s, and v1(0) =−1m/s should be as in the following plot:
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P2.17. In closed-loop the gain would remain the same and the steady-state error would be

ω̄2− ω̃2 = (r1/r2)
1

1+ r1r2 K/(1.2(b1r2
2 +b2r2

1))
ω̄1 ≈ 2.1rad/s

which is less than a 10% change.
The time-constant would also

τ =
J1r2

2 + J2r2
1

1.2(b1r2
2 +b2r2

1)+ r1r2 K
≈ 2.7s

which is also less than a 10% change. As expected, in closed-loop the sensitivity to system parameter variation
is reduced.

The closed-responses when v1(0) = 0, v1(0) = 1m/s, and v1(0) = −1m/s should be as in the following
plot:
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P2.18. At the inertia J1

J1 ω̇1 +b1ω1 = τ + r( f1− f2)

and at the inertia J2

J2 ω̇2 +b2ω2 = r( f4− f3).

Since the inertias are coupled by a belt, the linear speeds must be the same, that is

ω1r = ω2r =⇒ ω2 = ω1 = ω

Similarly

v1 = ωr, v2 =−ωr

so that at the masses

r m1ω̇ = m1v̇1 = m1g+ f3− f1,

r m2ω̇ =−m2v̇2 =−m2g+ f2− f4.

Multiplying the last two equations by r and adding to the first two equations we obtain

(J1 + J2 + r2m1 + r2m2) ω̇ +(b1 +b2)ω = τ +gr (m1−m2).
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12 Chapter 2

P2.19. The solution to the first-order differential equation from P2.18 when τ = 0 is

ω(t) = ω(0)e−λ t , λ =− b1 +b2

J1 + J2 + r2(m1 +m2)

If τ = 0N m, r = 1m, b1 = b2 = 120kg m2/s, J1 = J2 = 20kg m2, then

λ ≈−0.16s−1.

Because we are interested in v1 we first calculate ω then v1(t) = rω(t). Note that the initial condition must
also be translated as ω(0) = v1(0)/r.

The responses when v1(0) = 0, v1(0) = 1m/s, and v1(0) =−1m/s should be as in the following plot:
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P2.20. In this case there is a net torque due to the difference between the masses m1 and m2. The solution to
the first-order differential equation from P2.18 is then

ω(t) = ω̃ (1− eλ t)+ω(0)e−λ t ,

where

ω̃ = gr
m1−m2

b1 +b2
, λ =− b1 +b2

J1 + J2 + r2(m1 +m2)
.

Substituting the problem data

ω̃ ≈ 8.33rad/s, λ ≈−0.13s−1,

As before, we first calculate ω(t) then v1(t) = rω(t).
Note that because mass m2 is now smaller than mass m1 the masses will no longer converge to zero

velocities. Without braking, the mass m1 would move to the bottom of the elevator.
The responses when v1(0) = 0, v1(0) = 1m/s, and v1(0) =−1m/s should be as in the following plot:
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P2.21. In order to achieve a desired linear speed v̄1 = 2m/s in steady-state we set a desired rotational speed
ω = ω̄ = v̄1/r and calculate

τ = τ̄ = (b1 +b2) ω̄−gr (m1−m2).

Substituting the data we obtain

τ̄ = (b1 +b2) ω̄ = 480N m.

Note that the required torque is relatively small, since m2 = m1 and it only has to overcome friction.
The responses when v1(0) = 0, v1(0) = 1m/s, and v1(0) =−1m/s should be as in the following plot:

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107187528-SOLUTIONS-5/


Chapter 2 13

0 10 20 30 40 50 60

t (s)

-1

0

1

2

v
1
 (

m
/s

)

v1(0) = 0

v1(0) = 1

v1(0) = -1

v̄1

P2.22. Proceed as in P2.21 to show that the responses when m2 = 800kg, τ is as in P2.21 and v1(0) = 0,
v1(0) = 1m/s, and v1(0) =−1m/s should be as in the following plot:
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Note that the final velocity is no longer the desired velocity v̄1 = 2m/s. In order to achieve a desired speed
we need to recalculate

τ = τ̄ = (b1 +b2) ω̄−gr (m1−m2) =−1520N m.

The torque necessary to keep the velocity at 1m/s is now a breaking torque since m2 is lighter than m1. It is
also now much higher when compared to P2.21 since it also has to support the mismatch between the masses
m1 and m2.

The response with the modified torque should be as in the following plot:
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that looks very much like the response obtained in P2.21 except for a slightly smaller λ = −0.1304 when
compared with λ =−0.1176 from P2.21.

P2.23. The connection of the model

(J1 + J2 + r2m1 + r2m2) ω̇ +(b1 +b2)ω = τ +gr (m1−m2)

with the controller

τ = K(v̄1− v1) = r K(ω̄−ω)

where ω̄ = r v̄1 produces the closed-loop differential equation

(J1 + J2 + r2m1 + r2m2) ω̇ +(b1 +b2 + r K)ω = r Kω̄ +gr (m1−m2).

The solution to this equation is

ω(t) = ω̃ (1− eλ t)+ω(0)e−λ t ,

where

ω̃ =
r Kω̄ +gr (m1−m2)

b1 +b2 + r K
, λ =− b1 +b2 + r K

J1 + J2 + r2(m1 +m2)
.
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The closed-loop time-constant is

τ =−λ−1 =
J1 + J2 + r2(m1 +m2)

b1 +b2 + r K

Be careful not to confuse the time-constant with the torque! We want to select the control gain K to set τ = 5s.
Using the data from P2.19

K =
[J1 + J2 + r2(m1 +m2)]/τ− (b1 +b2)

r
≈ 168

In open-loop the time-constant is

τ =−λ−1 =
J1 + J2 + r2(m1 +m2)

b1 +b2
≈ 8.5s

The steady state error is

v̄1− ṽ1 = r (ω̄− ω̃)

= r
(

ω̄− r Kω̄ +gr (m1−m2)

b1 +b2 + r K

)

= r
(b1 +b2)ω̄−gr (m1−m2)

b1 +b2 + r K

= r
1

1+ r K/(b1 +b2)
ω̄−gr2 (m1−m2)/(b1 +b2)

1+ r K/(b1 +b2)

Substituting the data

v̄1− ṽ1 ≈ 1.18m/s

The closed-responses when v1(0) = 0, v1(0) = 1m/s, and v1(0) = −1m/s should be as in the following
plot:
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P2.24. The solution is as in P2.23 with τ = 0.5s. The relevant quantities are:

K ≈ 3840,

τ ≈ 8.5s (open-loop),

v̄1− ṽ1 ≈ 0.12m/s

Note how high the gain is. This high gain will produce high closed-loop torques that the motors might
have trouble delivering.

The closed-responses when v1(0) = 0, v1(0) = 1m/s, and v1(0) = −1m/s should be as in the following
plot:

0 10 20 30 40 50 60

t (s)

-1

0

1

2

v
1
 (

m
/s

)

v1(0) = 0

v1(0) = 1

v1(0) = -1

v̄1

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107187528-SOLUTIONS-5/


Chapter 2 15

P2.25. Using the data from P2.23 and m2 = 800kg we recalculate the control gain

K =
[J1 + J2 + r2(m1 +m2)]/τ− (b1 +b2)

r
≈ 128

and the steady state error

v̄1− ṽ1 = r
1

1+ r K/(b1 +b2)
ω̄−gr2 (m1−m2)/(b1 +b2)

1+ r K/(b1 +b2)
≈−4.13m/s.

The open-loop time-constant is

τ =−λ−1 =
J1 + J2 + r2(m1 +m2)

b1 +b2
≈ 7.67s

The closed-responses when v1(0) = 0, v1(0) = 1m/s, and v1(0) = −1m/s should be as in the following
plot:
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P2.26. The solution is as in P2.25 with τ = 0.5s. The relevant quantities are:

K ≈ 3440,

τ ≈ 8.5s (open-loop),

v̄1− ṽ1 ≈−0.41m/s

Note how high the gain is. This high gain will produce high closed-loop torques that the motors might
have trouble delivering.

The closed-responses when v1(0) = 0, v1(0) = 1m/s, and v1(0) = −1m/s should be as in the following
plot:
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P2.27. With Newton’s second law help we write

mẍ = f −bẋ− k∆`= f −bẋ− k(x+ x0− `0)

which becomes mẍ+ bẋ+ kx = f with the choice x0 = `0. A different choice of x would make the equation
depend on `0.

P2.28. With Newton’s second law help we write

mẍ = mgsinθ −bẋ− k(x+ x0− `0)

which is equal to the equation in the statement after the choice of x0 = `0.
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P2.29. Let

x = y+ k−1mgsinθ , ẋ = ẏ, ẍ = ÿ

and substitute into the equation obtained in P2.28 to obtain

mÿ+bẏ+ ky+mgsinθ = mgsinθ

or

mÿ+bẏ+ ky = 0.

This means that the constant force provided by gravity does not affect the dynamic behavior of this system.
As expected it shifts the static equilibrium from x0 = `0 to x0 = `0 + k−1mgsinθ .

P2.30. With Newton’s second law help we write

mẍ =−bẋ− k1(x+ x0− `0,1)+ k2(d− x− x0−w− `0,2)

=−bẋ− (k1 + k2)x− k1(x0− `0,1)+ k2(d− x0−w− `0,2)

=−bẋ− (k1 + k2)x

after the choice

x0 =
k1`0,1 + k2(d−w− `0,2)

k1 + k2
.

When d ≥ w+ `0,1 + `0,2 both springs are stretched so that the mass experiences tensile forces. When d ≤
w+ `0,1 + `0,2 both springs are compressed so that the mass experiences compressive forces.

P2.31. Yes, a spring with stiffness k = k1 + k2.

P2.32. With Newton’s second law help we write

m1ẍ1 =−b1ẋ1 +b2(ẋ2− ẋ1)− k1x1 + k2(x2− x1)

=−(b1 +b2)ẋ1− (k1 + k2)x1−b2ẋ2− k2x2

and

m2ẍ2 =−b2(ẋ2− ẋ1)− k2(x2− x1)+ f2

after choosing x1 and x2 as displacements from equilibrium.

P2.33. With Newton’s second law help we write

m1 ẍ1 =−b(ẋ1− ẋ2)− k(x1− x2),

m2 ẍ2 =−b(ẋ2− ẋ1)− k(x2− x1).

Because

x1 = y1 +
m2

M
y2, x2 = y1−

m1

M
y2, M =

m1 +m2

2
,

we have

m1 ÿ1 +
m1m2

M
ÿ2 =−b ẏ2− k y2,

m2 ÿ1−
m1m2

M
ÿ2 = b ẏ2 + k y2.

Adding the two equations:

Mÿ1 = 0,

and subtracting after multiplying the first equation by m2 and the second by m1:

m1m2 ÿ2 =−(m1 +m2)b ẏ2− (m1 +m2)k y2

which are “decoupled”. The first equation is the dynamic of the center of mass (m1x1 +m2x2)/M and the
second is the dynamics of the body, which we expect to be decoupled from physics.
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P2.34. Using Kirchoff’s voltage and current law:

v = vC + vR

= vC +RiR
= vC +RiC
= vC +RCv̇C

which is the desired differential equation.

P2.35. The solution to the differential equation from P2.34 when v(t) = v̄ is constant and under the assumption
of zero initial conditions is

vC(t) = ṽ(t)(1− eλ t)

where

λ =− 1
RC

=− 1
1×106×10×10−6 =−0.1s−1, ṽ = v̄ = 10V

which should be as in the following plot:
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The current

i(t) = iC(t) =C v̇C(t) =−
Cṽ
λ

eλ t , −Cṽ
λ

=
10×10−6×10

0.1
= 1mA.

which should be as in the following plot:
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P2.36. Using Kirchoff’s voltage and current law:

v = vC + vR + vL

= vC +RiR +Li̇L
= vC +RiC +Li̇C
= vC +RCv̇C +LCv̈C,

which is the desired equation.

P2.37. Comparing

LCv̈C +RCv̇C + vC = v

to

mẍ+bẋ+ kx = f
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we first normalize

v̈C +
R
L

v̇C +
1

LC
vC =

1
LC

v,

ẍ+
b
m

ẋ+
k
m

x =
k
m

f
k
,

from which one can simulate the response of the mass-spring-damper system to a scaled force f/k by setting
R, L and C so that

R
L
=

b
m
,

1
LC

=
k
m
.

P2.38. Use the given equations to write:

v = R1iR1

= R1(iC2 − iC1 )

=−R1C2v̇o−R1C1v̇

which is the desired equation.
The solution to the auxiliary equation is

z(t) = z(0)− 1
R1 C2

∫ t

0
v(τ)dτ

and

vo(t) = R1 C1 ż(t)+ z(t),

= z(0)− C1

C2
v(t)− 1

R1 C2

∫ t

0
v(τ)dτ.

Multiplying by R1 C2 and differentiating under the integral

R1 C2 v̇o(t) =−R1 C1v̇− v(t).

P2.39. From P2.38 With a constant voltage v(t) = 10 V and zero initial conditions the response looks like

vo(t) =−
C1

C2
v(t)− 1

R1 C2

∫ t

0
v(τ)dτ

=−10−10
∫ t

0
dτ =−10(1+ t),

which looks like
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.

P2.40. From the solution to P2.38 when C1 = 0 we obtain

vo(t) = z(t) = z(0)− 1
R1 C2

∫ t

0
v(τ)dτ.

This circuit is an integrator. It can be used as a building block to realize linear systems.

P2.41. Solving for the current

ia =
1

Ra
va−

Ke

Ra
ω
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so that

J ω̇ +bω = τ
= Kt ia,

=
Kt

Ra
va−

Kt Ke

Ra
ω

which is equal to the expression sought after rearranging.

P2.42. The mechanical power is τω = Kt ia ω and the electrical power is veia = Ke ω ia, therefore Kt = Ke.

P2.43. The differential equation can be rewritten as

ω̇ +α ω = β va

where

α =
b
J
+

Kt Ke

JRa
, β =

Kt

JRa
.

The solution to the differential equation when va = v̄a is constant is

ω(t) = ω̃ (1− eλ t)+ω(0)e−λ t , λ =−α, ω̃ =
β
α

v̄a.

Knowing that when v̄a = 12V the time-constant is equal to 0.1s and the terminal velocity is 5000RPM means
that

λ =−α =−1/0.1 =−10s−1, ω̃ =
β v̄a

α
= 5000RPM,

from which it is possible to estimate

α = 10s−1, β =
ω̃α
v̄a

=
5000×10

12
≈ 4166

RPM
V s

.

In SI units

β =
2π
60

4166≈ 436.3
rad

V s2 .

There is not enough information to estimate all physical parameters.

P2.44. With knowledge of the stall torque, τ , and the motor resistance, Ra, we determine

Kt =
Raτ
va

=
0.2×1.2

12
≈ 0.02

N m
A

and from P2.42 Ke = Kt = 0.02V s/rad.
Since β is already known we calculate

J =
Kt

βRa
=

0.02
436.3×0.2

≈ 229.1×10−6kg m2

and

b = αJ− Kt Ke

Ra
= 10×229.1×10−6− 0.022

0.2
≈ 291.8×10−6kg m2/s.

P2.45. Because

α =
1
J

(
b+

Kt Ke

Ra

)
, α ′ =

1
J+ J′

(
b+

Kt Ke

Ra

)
,

J+ J′

J
=

1+ J
J′

J
J′

=
α
α ′

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107187528-SOLUTIONS-5/


20 Chapter 2

we calculate with J′ = 0.001kg m2 α = 1/0.1 = 10s−1 and α ′ = 1/0.54≈ 1.86s−1

J =
J′

α
α ′ −1

=
J′α ′

α−α ′
≈ 227.2×10−6kg m2

After determining J we can calculate

Kt =
α JRaω̃

v̄a
=

10×227.2×10−6×0.2×2π5000
60×12

≈ 0.02
N m

A

and Ke = Kt = 0.02V s/rad. The last unknown quantity is

b = αJ− Kt Ke

Ra
= 10×227.2×10−6− 0.022

0.2
≈ 289.4×10−6kg m2/s.

P2.46. Kirchoff’s voltage law for the circuit is:

va = Raia +La i̇a +Keω

The mechanical equation of motion is

J ω̇ +bω = τ = Kt ia

Multiplying by Ra

JRa ω̇ +bRa ω = τ = Kt Raia

and then by La and differentiating

JLa ω̈ +bLa ω̇ = Kt La i̇a

so that

JLa ω̈ +(bLa + JRa) ω̇ +bRa ω = Kt(La i̇a +Raia)

= Kt(va−Keω)

which is equal to the expression sought after rearranging.
When La = 0

JRa ω̇ +(bRa−Kt Ke)ω = Kt va

which is the equation obtained before multiplied by Ra.

P2.47. In P2.43 you calculated the model

ω̇ +αω = βva, α = 10s−1, β ≈ 436.3 rad
/
(V s2)

The closed-loop connection of this model with the controller produces the differential equation:

ω̇ +(α +Kβ )ω = Kβω̄

Its solution is

ω(t) = ω̃ (1− eλ t)+ω(0)eλ t

where

λ =−(α +Kβ ), ω̃ =
Kβ ω̄

α +Kβ
.

For ω̄ = (2π/60)4000≈ 418.9rad/s the steady-state error is

ω̄− ω̃ = ω̄− Kβ ω̄
α +Kβ

=
αω̄

α +Kβ
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In order to obtain

|ω̄− ω̃|
|ω̄| =

|α|
|α +Kβ | ≤ 0.1

we must select

K ≥ 9α
β
≈ 0.2.

The closed-loop time-constant corresponding to K = 0.2 is

τ =
1

α +Kβ
≈ 0.01s

The response when ω(0) = 0 should be as in the following plot:
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The corresponding voltage va(t) should be as in the following plot:
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The maximum value of va(t) is at t = 0 which is

va(0) = K(ω̄−ω(0)) = Kω̄ ≈ 86.4V.

P2.48. We proceed as in P2.47 but this time we select K such that

va(0) = Kω̄ ≤ 12

when ω̄ = (2π/60)4000≈ 418.9rad/s

K ≤ 12
ω̄
≈ 0.029

The time-constant corresponding to K = 0.029 is

τ =
1

α +Kβ
≈ 0.044s

The response when ω(0) = 0 should be as in the following plot:

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

t (s)

0

200

400

600

ω
 (

ra
d

/s
)

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107187528-SOLUTIONS-5/


22 Chapter 2

The corresponding voltage va(t) should be as in the following plot:
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which, as expected has a maximum voltage va(0) = 12V. Note that the closed-loop response is now slower.

P2.49. When q, w, To, and Ti are constants the solution to the differential equation is

mcṪ +

(
wc+

1
R

)
T = q+wcTi +

1
R

To.

which has as solution

T (t) = T̃ (1− eλ t)+T (0)eλ t

where

λ =−Rwc+1
Rmc

, T̃ =
Rq+RwcTi +To

Rwc+1
.

P2.50. With q = 0 and w = 0

mcṪ +
1
R

T =
1
R

To

which has as solution

T (t) = T̃ (1− eλ t)+T (0)eλ t

where

λ =− 1
Rmc

, T̃ = To.

With T (0) = 60◦C and To = 25◦C, after 7 days t = 7×24×3600 = 604800s and

25+(60−25)eλ t = T (t) = 27

or

λ =
1

604800
log

27−25
60−25

≈−4.73×10−6s−1,

from which m = 997.1×0.19≈ 189kg, c = 4186J/kg K and

R =− 1
mcλ

≈ 0.27K/W

P2.51. In the same conditions as in P2.50, if w = 21×10−6m3/s 6= 0 and Ti = 25◦C

mcṪ +

(
wc+

1
R

)
T = wcTi +

1
R

To.

which has as solution

T (t) = T̃ (1− eλ t)+T (0)eλ t

where R = 0.27K/W,

λ =−Rwc+1
Rmc

≈−115.3×10−6s−1

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107187528-SOLUTIONS-5/


Chapter 2 23

and

T̃ =
RwcTi +To

Rwc+1
.

If Ti = To = 25◦C and T (t) = 27◦C then T̃ = Ti = To = 25◦C and

t =
1
λ

log
T (t)− T̃
T (0)− T̃

≈ 24833s

or about 6.9hours. Compare this number with the case when no water was flowing through the heater: from 7
days to 7 hours!

P2.52. In the same conditions as in P2.50, if q = 12kW and w = 0

mcṪ +
1
R

T = q+
1
R

To.

which has as solution

T (t) = T̃ (1− eλ t)+T (0)eλ t

where

λ =− 1
Rmc

≈−4.73×10−6s−1

and

T̃ = To +Rq≈ 3222◦C.

If T (0) = 25◦C and T (t) = 60◦C then

t =
1
λ

log
T (t)− T̃
T (0)− T̃

≈ 2326s

or about 39 minutes.

P2.53. With q = 12kW, w = 21×10−6m3/s 6= 0 and Ti = 25◦C

mcṪ +

(
wc+

1
R

)
T = q+wcTi +

1
R

To.

which has as solution

T (t) = T̃ (1− eλ t)+T (0)eλ t

where R = 0.27K/W,

λ =−Rwc+1
Rmc

≈−115.3×10−6s−1

and

T̃ =
Rq

Rwc+1
+

RwcTi +To

Rwc+1
≈ 156.3◦C

so that for T (0) = 25◦C and T (t) = 60◦C

t =
1
λ

log
T (t)− T̃
T (0)− T̃

≈ 2690s

or about 45 minutes. This is a 15% increase when compared to the case without flow.
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P2.54. We solve the problem by considering two phases: a) after the heater is turned on at T = T = 50◦C until
it is turned off at T = T = 60◦C; b) after the heater is turned off at T = T = 60◦C until it is turned on at
T = T = 50◦C.

In the first phase, q = 12kW, w = 0, T (0) = T and

mcṪ +
1
R

T = q+
1
R

To.

which has as solution

T (t) = T̃1 (1− eλ t)+T eλ t

where

λ =− 1
Rmc

≈−4.67×10−6s−1

and

T̃1 = To +Rq≈ 3265◦C.

The heater stays in this phase for

t1 =
1
λ

log
T − T̃1

T − T̃1
≈ 667s

or about 11 minutes. The average temperature in this phase is

T1 =
1
t1

∫ t1

0
T (τ)dτ =

∫ t1

0
T̃1 +(T − T̃1)eλτ dτ = T̃1 +

T − T̃1

λ t1
(eλ t1 −1)≈ 55.0◦C.

In the second phase, q = 0, w = 0, T (0) = T and

mcṪ +
1
R

T =
1
R

To.

which has as solution

T (t) = T̃2 (1− eλ t)+T eλ t

where λ is as before and

T̃2 = To ≈ 25◦C.

The heater stays in this phase for

t2 =
1
λ

log
T − T̃2

T − T̃2
≈ 72045s

or about 1201 minutes or 20 hours. The average temperature in this phase is

T2 =
1
t2

∫ t1

0
T (τ)dτ =

∫ t2

0
T̃2 +(T − T̃2)eλτ dτ = T̃2 +

T − T̃2

λ t2
(eλ t1 −1)≈ 54.7◦C.

The temperature of the water during 24 hours looks like in the plot:
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During one complete on/off cycle the average temperature is

T =
t1T1 + t2T2

t1 + t2
≈ 54.7◦C.

The average power consumption was

P =
t1q

t1 + t2
≈ 110W

since power is only consumed in phase 1.

P2.55. We solve the problem by considering two phases: a) after the heater is turned on at T = T = 50◦C until
it is turned off at T = T = 60◦C; b) after the heater is turned off at T = T = 60◦C until it is turned on at
T = T = 50◦C.

In the first phase, q = 12kW, w = 21×10−6m3/s, T (0) = T and

mcṪ +

(
wc+

1
R

)
T = q+wcTi +

1
R

To.

which has as solution

T (t) = T̃1 (1− eλ t)+T eλ t

where

λ =−Rwc+1
Rmc

≈−115.3×10−6s−1

and

T̃1 =
Rq

Rwc+1
+

RwcTi +To

Rwc+1
≈ 156.4◦C

The heater stays in this phase for

t1 =
1
λ

log
T − T̃1

T − T̃1
≈ 857s

or about 14 minutes. The average temperature in this phase is

T1 =
1
t1

∫ t1

0
T (τ)dτ =

∫ t1

0
T̃1 +(T − T̃1)eλτ dτ = T̃1 +

T − T̃1

λ t1
(eλ t1 −1)≈ 55.1◦C.

In the second phase, q = 0, w = 21×10−6m3/s, T (0) = T and

mcṪ +

(
wc+

1
R

)
T = wcTi +

1
R

To.

which has as solution

T (t) = T̃2 (1− eλ t)+T eλ t

where λ is as before and

T̃2 = Ti = To ≈ 25◦C.

The heater stays in this phase for

t2 =
1
λ

log
T − T̃2

T − T̃2
≈ 2921s

or about 48 minutes. The average temperature in this phase is

T2 =
1
t2

∫ t1

0
T (τ)dτ =

∫ t2

0
T̃2 +(T − T̃2)eλτ dτ = T̃2 +

T − T̃2

λ t2
(eλ t1 −1)≈ 54.7◦C.

The temperature of the water during 24 hours looks like in the plot:
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During one complete on/off cycle the average temperature is

T =
t1T1 + t2T2

t1 + t2
≈ 54.8◦C.

The average power consumption was

P =
t1q

t1 + t2
≈ 2723W

since power is only consumed in phase 1.
This is more than 20 times the amount consumed when there was no flow.

P2.56. Solution is the same as P2.54.
Key quantities in the first phase are:

λ =− 1
Rmc

≈−4.67×10−6s−1,

T̃1 = Rq+
RwcTi +To

Rwc+1
≈ 3265◦C,

t1 =
1
λ

log
T − T̃1

T − T̃1
≈ 133s,

T1 = T̃1 +
T − T̃1

λ t1
(eλ t1 −1)≈ 55.0◦C.

In the second phase:

T̃2 = Ti = To ≈ 25◦C,

t2 =
1
λ

log
T − T̃2

T − T̃2
≈ 14280s,

T2 = T̃2 +
T − T̃2

λ t2
(eλ t1 −1)≈ 55.0◦C.

The temperature of the water during 24 hours looks like in the plot:

0 5 10 15 20

t (h)

54

54.5

55

55.5

56

T
 (
°
 C

)

During one complete on/off cycle the average temperature is

T =
t1T1 + t2T2

t1 + t2
≈ 55.0◦C.

The average power consumption is:

P =
t1q

t1 + t2
≈ 111W
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Compared with P2.54, the temperature is better regulated and there is a slight increase in the consumed
power. Note how the number of cycles has increased since both t1 and t2 got smaller.

P2.57. Solution is the same as P2.55.
Key quantities in the first phase are:

λ =−Rwc+1
Rmc

≈−115.3×10−6s−1,

T̃1 =
Rq

Rwc+1
+

RwcTi +To

Rwc+1
≈ 156.4◦C,

t1 =
1
λ

log
T − T̃1

T − T̃1
≈ 171s,

T1 = T̃1 +
T − T̃1

λ t1
(eλ t1 −1)≈ 55.0◦C.

In the second phase:

T̃2 = Ti = To ≈ 25◦C,

t2 =
1
λ

log
T − T̃2

T − T̃2
≈ 578s

T2 = T̃2 +
T − T̃2

λ t2
(eλ t1 −1)≈ 55.0◦C.

The temperature of the water during 24 hours looks like in the plot:
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During one complete on/off cycle the average temperature is

T =
t1T1 + t2T2

t1 + t2
≈ 55.0◦C.

The average power consumption is:

P =
t1q

t1 + t2
≈ 2740W

Compared with P2.55, the temperature is better regulated and there is a slight increase in the consumed
power. Note how the number of cycles has increased since both t1 and t2 got smaller.
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Appendix C Chapter 3

P3.1. Follows from the fact that the integral is a linear operator.

P3.2. We seek to evaluate:

L

{∫ t

0−
f (τ)dτ

}
=
∫ ∞

0−

∫ t

0−
f (τ)dτ e−st dt.

Integrating by parts with u =
∫ t

0− f (τ)dτ and dv = e−st dt:

∫ ∞

0−

∫ t

0−
f (τ)dτ e−st dt = − e−st

s

∫ t

0−
f (τ)dτ

∣∣∣∣
∞

0−
−
∫ ∞

0−
f (t)
−e−st

s
dt

=
F(s)

s
+ − e−st

s

∫ t

0−
f (τ)dτ

∣∣∣∣
∞

0−

If | f (t)| ≤Meαt then for any s = β + jγ
∣∣∣∣e−st

∫ t

0−
f (τ)dτ

∣∣∣∣≤
∣∣e−st ∣∣

∫ t

0−
| f (τ)|dτ ≤M

∣∣e−st ∣∣
∫ t

0−
eατ dτ =

M
α

e(α−β )t

so that for β large enough

− e−st

s

∫ t

0−
f (τ)dτ

∣∣∣∣
∞

0−
= 0,

which proves the integration property.

P3.3. We seek to evaluate:

L

{
d f (t)

dt

}
=
∫ ∞

0−

d f (t)
dt

e−st dt.

Integrating by parts with u = e−st and dv = d f (t)
dt dt:

∫ ∞

0−

d f (t)
dt

e−st dt = f (t)e−st ∣∣∞
0− +

∫ ∞

0−
f (t)se−st dt

= sF(s)+ f (t)e−st ∣∣∞
0−

If | f (t)| ≤Meαt then for any s = β + jγ
∣∣ f (t)e−st ∣∣≤Me(α−β )t

so that for β large enough

f (t)e−st ∣∣∞
0− = f (0−),

which proves the differentiation property.
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