

Solutions for Artificial Intelligence Foundations of
 Computational Agents 2nd Edition by Poole

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/
https://testbanks.ac/product/9781107195394-SOLUTIONS-5/
https://testbanks.ac/product/9781107195394-SOLUTIONS-5/
https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

Chapter 2

Agent Architectures and
Hierarchical Control

Exercise 2.1 The start of Section 2.3 on page 56 argued that it was impossible to build
a representation of a world independently of what the agent will do with it. This exercise
lets you evaluate this argument.

Choose a particular world, for example, the things on top of your desk right now.

i) Get someone to list all of the individuals (things) that exist in this world (or try it
yourself as a thought experiment).

ii) Try to think of twenty individuals that they missed. Make these as different from
each other as possible. For example, the ball at the tip of the rightmost ball-point
pen on the desk, the part of the stapler that makes the staples bend, or the third word
on page 72 of a particular book on the desk.

iii) Try to find an individual that cannot be described using your natural language (such
as a particular component of the texture of the desk).

iv) Choose a particular task, such as making the desk tidy, and try to write down all of
the individuals in the world at a level of description relevant to this task.

Based on this exercise, discuss the following statements.

(a) What exists in a world is a property of the observer.

(b) We need ways to refer to individuals other than expecting each individual to have a
separate name.

(c) Which individuals exist is a property of the task as well as of the world.

(d) To describe the individuals in a domain, you need what is essentially a dictionary of
a huge number of words and ways to combine them, and this should be able to be
done independently of any particular domain.

Exercise 2.2 Consider the top level controller of Example 2.6 on page 63

7

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

8 2. Agent Architectures and Hierarchical Control

g

Figure 2.1: A robot trap

(a) If the lower level reach the timeout without getting to the target position, what does
the agent do?

(b) The definition of the target position means that, when the plan ends, the top level
stops. This is not reasonable for the robot that can only change directions and cannot
stop. Change the definition so that the robot keeps going.

Exercise 2.3 The obstacle avoidance implemented in Example 2.5 on page 61 can easily
get stuck.

(a) Show an obstacle and a target for which the robot using the controller of Example 2.5
on page 61 would not be able to get around (and it will crash or loop).

(b) Even without obstacles, the robot may never reach its destination. For example, if
the robot is close to its target position, but not close enough to have arrived, it may
keep circling forever without reaching its target. Design a controller that can detect
this situation and find its way to the target.

Exercise 2.4 Consider the “robot trap” in Figure 2.11.

(a) This question is to explore why it is so tricky for a robot to get to location g. Explain
what the current robot does. Suppose one was to implement a robot that follows
the wall using the “right-hand rule”: the robot turns left when it hits an obstacle
and keeps following a wall, with the wall always on its right. Is there a simple
characterization of the situations in which the robot should keep following this rule
or head towards the target?

(b) An intuition of how to escape such a trap is that, when the robot hits a wall, it follows
the wall until the number of right turns equals the number of left turns. Show how
this can be implemented, explaining the belief state, and the functions of the layer.

Solution Replace the middle level with http://cs.ubc.ca/˜poole/aibook/
figures/ch02/robot-middle-trap.txt

CLICK HERE TO ACCESS THE COMPLETE Solutions

http://cs.ubc.ca/~poole/aibook/figures/ch02/robot-middle-trap.txt
http://cs.ubc.ca/~poole/aibook/figures/ch02/robot-middle-trap.txt
https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

9

Exercise 2.5 If the current target location were to be moved, the middle layer of Exam-
ple 2.5 on page 61 travels to the original position of that target and does not try to go to the
new position. Change the controller so that the robot can adapt to targets moving.

Solution Instead of remembering the coordinates, the robot remembers the location
name, then look up its coordinates every time. Replace the first rule of the high layer
with:

assign(target_pos,Loc,T) <-
arrived(T) &
was(to_do,[goto(Loc)|_],_,T).

Replace the first rule of the middle layer with:

target_direction(G,T) <-
val(robot_pos,(X0,Y0),T) &
val(target_pos,Loc,T) &
at(Loc,(X1,Y1)) &
direction((X0,Y0),(X1,Y1),G).

Replace the eighth rule of the middle layer with:

arrived(T) <-
was(target_pos,Loc,_,T) &
at(Loc,Target_Coords) &
robot_pos(Robot_Coords,T) &
close_enough(Target_Coords,Robot_Coords).

Exercise 2.6 The current controller visits the locations in the to do list sequentially.

(a) Change the controller so that it is opportunistic; when it selects the next location to
visit, it selects the location that is closest to its current position. It should still visit
all the locations.

(b) Give one example of an environment in which the new controller visits all the loca-
tions in fewer time steps than the original controller.

(c) Give one example of an environment in which the original controller visits all the
locations in fewer time steps than the modified controller.

(d) Change the controller so that, at every step, the agent heads toward whichever target
location is closest to its current position.

(e) Can the controller from part (d) get stuck and never reach a target in an example
where the original controller will work? Either give an example in which it gets
stuck and explain why it cannot find a solution, or explain why it gets to a goal
whenever the original can.

Solution See http://www.ubc.ca/˜poole/aibook/figures/ch02/opportunistic-top.
txt for the AISpace.org applet robot controller. Note that this applet is really difficult
to use, as good debugging facilities have not been implemented.

Exercise 2.7 Change the controller so that the robot senses the environment to determine
the coordinates of a location. Assume that the body can provide the coordinates of a named
location.

CLICK HERE TO ACCESS THE COMPLETE Solutions

http://www.ubc.ca/~poole/aibook/figures/ch02/opportunistic-top.txt
http://www.ubc.ca/~poole/aibook/figures/ch02/opportunistic-top.txt
AISpace.org
https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

10 2. Agent Architectures and Hierarchical Control

Exercise 2.8 Suppose the robot has a battery that must be charged at a particular wall
socket before it runs out. How should the robot controller be modified to allow for battery
recharging?

Exercise 2.9 Suppose you have a new job and must build a controller for an intelligent
robot. You tell your bosses that you just have to implement a command function and a
state transition function. They are very skeptical. Why these functions? Why only these?
Explain why a controller requires a command function and a state transition function, but
not other functions. Use proper English. Be concise.

Solution A robot only has access to what it observes and what it remembers. At each
time step it has to act (hence the command function) and it has to determine what to re-
member for the future (which leads to the state transition function). As the robot is com-
pletely determined by its internal state and its behaviour, these are the only two function
necessary.

Sample Exam Questions

Exercise 2.10

(a) Explain why we use hierarchical (layered) controllers.
(b) What does it mean that the higher layers run at a different time scale than lower

layers?
(c) Give the intuition behind the notion of a transduction? Why do we define causal

transductions?
(d) Why does an agent have a state?

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

Chapter 2

Agents and Control

This implements the controllers described in Chapter 2.
In this version the higher-levels call the lower-levels. A more sophisti-

cated version may have them run concurrently (either as coroutines or in paral-
lel). The higher-levels calling the lower-level works in simulated environments
when there is a single agent, and where the lower-level are written to make sure
they return (and don’t go on forever), and the higher level doesn’t take too long
(as the lower-levels will wait until called again).

2.1 Representing Agents and Environments

An agent observes the world, and carries out actions in the environment, it also
has an internal state that it updates. The environment takes in actions of the
agents, updates it internal state and returns the percepts.

In this implementation, the state of the agent and the state of the environ-
ment are represented using standard Python variables, which are updated as
the state changes. The percepts and the actions are represented as variable-
value dictionaries.

An agent implements the go(n) method, where n is an integer. This means
that the agent should run for n time steps.

In the following code raise NotImplementedError() is a way to specify
an abstract method that needs to be overidden in any implemented agent or
environment.

agents.py — Agent and Controllers

11 import random
12

13 class Agent(object):
14 def __init__(self,env):

19

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

20 2. Agents and Control

15 """set up the agent"""
16 self.env=env
17

18 def go(self,n):
19 """acts for n time steps"""
20 raise NotImplementedError("go") # abstract method

The environment implements a do(action) method where action is a variable-
value dictionary. This returns a percept, which is also a variable-value dictio-
nary. The use of dictionaries allows for structured actions and percepts.

Note that Environment is a subclass of Displayable so that it can use the
display method described in Section 1.7.1.

agents.py — (continued)

22 from utilities import Displayable
23 class Environment(Displayable):
24 def initial_percepts(self):
25 """returns the initial percepts for the agent"""
26 raise NotImplementedError("initial_percepts") # abstract method
27

28 def do(self,action):
29 """does the action in the environment
30 returns the next percept """
31 raise NotImplementedError("do") # abstract method

2.2 Paper buying agent and environment

To run the demo, in folder ”aipython”, load ”agents.py”, using e.g.,
ipython -i agents.py, and copy and paste the commented-out
commands at the bottom of that file. This requires Python 3 with
matplotlib.

This is an implementation of the paper buying example.

2.2.1 The Environment

The environment state is given in terms of the time and the amount of paper in
stock. It also remembers the in-stock history and the price history. The percepts
are the price and the amount of paper in stock. The action of the agent is the
number to buy.

Here we assume that the prices are obtained from the prices list plus a ran-
dom integer in range [0, max price addon) plus a linear ”inflation”. The agent
cannot access the price model; it just observes the prices and the amount in
stock.

agents.py — (continued)

33 class TP_env(Environment):

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

2.2. Paper buying agent and environment 21

34 prices = [234, 234, 234, 234, 255, 255, 275, 275, 211, 211, 211,
35 234, 234, 234, 234, 199, 199, 275, 275, 234, 234, 234, 234, 255,
36 255, 260, 260, 265, 265, 265, 265, 270, 270, 255, 255, 260, 260,
37 265, 265, 150, 150, 265, 265, 270, 270, 255, 255, 260, 260, 265,
38 265, 265, 265, 270, 270, 211, 211, 255, 255, 260, 260, 265, 265,
39 260, 265, 270, 270, 205, 255, 255, 260, 260, 265, 265, 265, 265,
40 270, 270]
41 max_price_addon = 20 # maximum of random value added to get price
42

43 def __init__(self):
44 """paper buying agent"""
45 self.time=0
46 self.stock=20
47 self.stock_history = [] # memory of the stock history
48 self.price_history = [] # memory of the price history
49

50 def initial_percepts(self):
51 """return initial percepts"""
52 self.stock_history.append(self.stock)
53 price = self.prices[0]+random.randrange(self.max_price_addon)
54 self.price_history.append(price)
55 return {'price': price,
56 'instock': self.stock}
57

58 def do(self, action):
59 """does action (buy) and returns percepts (price and instock)"""
60 used = pick_from_dist({6:0.1, 5:0.1, 4:0.2, 3:0.3, 2:0.2, 1:0.1})
61 bought = action['buy']
62 self.stock = self.stock+bought-used
63 self.stock_history.append(self.stock)
64 self.time += 1
65 price = (self.prices[self.time%len(self.prices)] # repeating pattern
66 +random.randrange(self.max_price_addon) # plus randomness
67 +self.time//2) # plus inflation
68 self.price_history.append(price)
69 return {'price': price,
70 'instock': self.stock}

The pick from dist method takes in a item : probability dictionary, and returns
one of the items in proportion to its probability.

agents.py — (continued)

72 def pick_from_dist(item_prob_dist):
73 """ returns a value from a distribution.
74 item_prob_dist is an item:probability dictionary, where the
75 probabilities sum to 1.
76 returns an item chosen in proportion to its probability
77 """
78 ranreal = random.random()
79 for (it,prob) in item_prob_dist.items():
80 if ranreal < prob:

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

22 2. Agents and Control

81 return it
82 else:
83 ranreal -= prob
84 raise RuntimeError(str(item_prob_dist)+" is not a probability distribution")

2.2.2 The Agent

The agent does not have access to the price model but can only observe the
current price and the amount in stock. It has to decide how much to buy.

The belief state of the agent is an estimate of the average price of the paper,
and the total amount of money the agent has spent.

agents.py — (continued)

86 class TP_agent(Agent):
87 def __init__(self, env):
88 self.env = env
89 self.spent = 0
90 percepts = env.initial_percepts()
91 self.ave = self.last_price = percepts['price']
92 self.instock = percepts['instock']
93

94 def go(self, n):
95 """go for n time steps
96 """
97 for i in range(n):
98 if self.last_price < 0.9*self.ave and self.instock < 60:
99 tobuy = 48

100 elif self.instock < 12:
101 tobuy = 12
102 else:
103 tobuy = 0
104 self.spent += tobuy*self.last_price
105 percepts = env.do({'buy': tobuy})
106 self.last_price = percepts['price']
107 self.ave = self.ave+(self.last_price-self.ave)*0.05
108 self.instock = percepts['instock']

Set up an environment and an agent. Uncomment the last lines to run the agent
for 90 steps, and determine the average amount spent.

agents.py — (continued)

110 env = TP_env()
111 ag = TP_agent(env)
112 #ag.go(90)
113 #ag.spent/env.time ## average spent per time period

2.2.3 Plotting

The following plots the price and number in stock history:

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

2.3. Hierarchical Controller 23

agents.py — (continued)

115 import matplotlib.pyplot as plt
116

117 class Plot_prices(object):
118 """Set up the plot for history of price and number in stock"""
119 def __init__(self, ag,env):
120 self.ag = ag
121 self.env = env
122 plt.ion()
123 plt.xlabel("Time")
124 plt.ylabel("Number in stock. Price.")
125

126 def plot_run(self):
127 """plot history of price and instock"""
128 num = len(env.stock_history)
129 plt.plot(range(num),env.stock_history,label="In stock")
130 plt.plot(range(num),env.price_history,label="Price")
131 #plt.legend(loc="upper left")
132 plt.draw()
133

134 # pl = Plot_prices(ag,env)
135 # ag.go(90); pl.plot_run()

2.3 Hierarchical Controller

To run the hierarchical controller, in folder ”aipython”, load
”agentTop.py”, using e.g., ipython -i agentTop.py, and copy and
paste the commands near the bottom of that file. This requires Python
3 with matplotlib.

In this implementation, each layer, including the top layer, implements the en-
vironment class, because each layer is seen as an environment from the layer
above.

We arbitrarily divide the environment and the body, so that the environ-
ment just defines the walls, and the body includes everything to do with the
agent. Note that the named locations are part of the (top-level of the) agent,
not part of the environment, although they could have been.

2.3.1 Environment

The environment defines the walls.

agentEnv.py — Agent environment

11 import math
12 from agents import Environment
13

14 class Rob_env(Environment):

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

24 2. Agents and Control

15 def __init__(self,walls = {}):
16 """walls is a set of line segments
17 where each line segment is of the form ((x0,y0),(x1,y1))
18 """
19 self.walls = walls

2.3.2 Body

The body defines everything about the agent body.

agentEnv.py — (continued)

21 import math
22 from agents import Environment
23 import matplotlib.pyplot as plt
24 import time
25

26 class Rob_body(Environment):
27 def __init__(self, env, init_pos=(0,0,90)):
28 """ env is the current environment
29 init_pos is a triple of (x-position, y-position, direction)
30 direction is in degrees; 0 is to right, 90 is straight-up, etc
31 """
32 self.env = env
33 self.rob_x, self.rob_y, self.rob_dir = init_pos
34 self.turning_angle = 18 # degrees that a left makes
35 self.whisker_length = 6 # length of the whisker
36 self.whisker_angle = 30 # angle of whisker relative to robot
37 self.crashed = False
38 # The following control how it is plotted
39 self.plotting = True # whether the trace is being plotted
40 self.sleep_time = 0.05 # time between actions (for real-time plotting)
41 # The following are data structures maintained:
42 self.history = [(self.rob_x, self.rob_y)] # history of (x,y) positions
43 self.wall_history = [] # history of hitting the wall
44

45 def percepts(self):
46 return {'rob_x_pos':self.rob_x, 'rob_y_pos':self.rob_y,
47 'rob_dir':self.rob_dir, 'whisker':self.whisker() , 'crashed':self.crashed}
48 initial_percepts = percepts # use percept function for initial percepts too
49

50 def do(self,action):
51 """ action is {'steer':direction}
52 direction is 'left', 'right' or 'straight'
53 """
54 if self.crashed:
55 return self.percepts()
56 direction = action['steer']
57 compass_deriv = {'left':1,'straight':0,'right':-1}[direction]*self.turning_angle
58 self.rob_dir = (self.rob_dir + compass_deriv +360)%360 # make in range [0,360)
59 rob_x_new = self.rob_x + math.cos(self.rob_dir*math.pi/180)

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

2.3. Hierarchical Controller 25

60 rob_y_new = self.rob_y + math.sin(self.rob_dir*math.pi/180)
61 path = ((self.rob_x,self.rob_y),(rob_x_new,rob_y_new))
62 if any(line_segments_intersect(path,wall) for wall in self.env.walls):
63 self.crashed = True
64 if self.plotting:
65 plt.plot([self.rob_x],[self.rob_y],"r*",markersize=20.0)
66 plt.draw()
67 self.rob_x, self.rob_y = rob_x_new, rob_y_new
68 self.history.append((self.rob_x, self.rob_y))
69 if self.plotting and not self.crashed:
70 plt.plot([self.rob_x],[self.rob_y],"go")
71 plt.draw()
72 plt.pause(self.sleep_time)
73 return self.percepts()

This detects if the whisker and the wall intersect. It’s value is returned as a
percept.

agentEnv.py — (continued)

75 def whisker(self):
76 """returns true whenever the whisker sensor intersects with a wall
77 """
78 whisk_ang_world = (self.rob_dir-self.whisker_angle)*math.pi/180
79 # angle in radians in world coordinates
80 wx = self.rob_x + self.whisker_length * math.cos(whisk_ang_world)
81 wy = self.rob_y + self.whisker_length * math.sin(whisk_ang_world)
82 whisker_line = ((self.rob_x,self.rob_y),(wx,wy))
83 hit = any(line_segments_intersect(whisker_line,wall)
84 for wall in self.env.walls)
85 if hit:
86 self.wall_history.append((self.rob_x, self.rob_y))
87 if self.plotting:
88 plt.plot([self.rob_x],[self.rob_y],"ro")
89 plt.draw()
90 return hit
91

92 def line_segments_intersect(linea,lineb):
93 """returns true if the line segments, linea and lineb intersect.
94 A line segment is represented as a pair of points.
95 A point is represented as a (x,y) pair.
96 """
97 ((x0a,y0a),(x1a,y1a)) = linea
98 ((x0b,y0b),(x1b,y1b)) = lineb
99 da, db = x1a-x0a, x1b-x0b

100 ea, eb = y1a-y0a, y1b-y0b
101 denom = db*ea-eb*da
102 if denom==0: # line segments are parallel
103 return False
104 cb = (da*(y0b-y0a)-ea*(x0b-x0a))/denom # position along line b
105 if cb<0 or cb>1:
106 return False

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

26 2. Agents and Control

107 ca = (db*(y0b-y0a)-eb*(x0b-x0a))/denom # position along line a
108 return 0<=ca<=1
109

110 # Test cases:
111 # assert line_segments_intersect(((0,0),(1,1)),((1,0),(0,1)))
112 # assert not line_segments_intersect(((0,0),(1,1)),((1,0),(0.6,0.4)))
113 # assert line_segments_intersect(((0,0),(1,1)),((1,0),(0.4,0.6)))

2.3.3 Middle Layer

The middle layer acts like both a controller (for the environment layer) and an
environment for the upper layer. It has to tell the environment how to steer.
Thus it calls env.do(·). It also is told the position to go to and the timeout. Thus
it also has to implement do(·).

agentMiddle.py — Middle Layer

11 from agents import Environment
12 import math
13

14 class Rob_middle_layer(Environment):
15 def __init__(self,env):
16 self.env=env
17 self.percepts = env.initial_percepts()
18 self.straight_angle = 11 # angle that is close enough to straight ahead
19 self.close_threshold = 2 # distance that is close enough to arrived
20 self.close_threshold_squared = self.close_threshold**2 # just compute it once
21

22 def initial_percepts(self):
23 return {}
24

25 def do(self, action):
26 """action is {'go_to':target_pos,'timeout':timeout}
27 target_pos is (x,y) pair
28 timeout is the number of steps to try
29 returns {'arrived':True} when arrived is true
30 or {'arrived':False} if it reached the timeout
31 """
32 if 'timeout' in action:
33 remaining = action['timeout']
34 else:
35 remaining = -1 # will never reach 0
36 target_pos = action['go_to']
37 arrived = self.close_enough(target_pos)
38 while not arrived and remaining != 0:
39 self.percepts = self.env.do({"steer":self.steer(target_pos)})
40 remaining -= 1
41 arrived = self.close_enough(target_pos)
42 return {'arrived':arrived}

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

2.3. Hierarchical Controller 27

This determines how to steer depending on whether the goal is to the right or
the left of where the robot is facing.

agentMiddle.py — (continued)

44 def steer(self,target_pos):
45 if self.percepts['whisker']:
46 self.display(3,'whisker on', self.percepts)
47 return "left"
48 else:
49 gx,gy = target_pos
50 rx,ry = self.percepts['rob_x_pos'],self.percepts['rob_y_pos']
51 goal_dir = math.acos((gx-rx)/math.sqrt((gx-rx)*(gx-rx)
52 +(gy-ry)*(gy-ry)))*180/math.pi
53 if ry>gy:
54 goal_dir = -goal_dir
55 goal_from_rob = (goal_dir - self.percepts['rob_dir']+540)%360-180
56 assert -180 < goal_from_rob <= 180
57 if goal_from_rob > self.straight_angle:
58 return "left"
59 elif goal_from_rob < -self.straight_angle:
60 return "right"
61 else:
62 return "straight"
63

64 def close_enough(self,target_pos):
65 gx,gy = target_pos
66 rx,ry = self.percepts['rob_x_pos'],self.percepts['rob_y_pos']
67 return (gx-rx)**2 + (gy-ry)**2 <= self.close_threshold_squared

2.3.4 Top Layer

The top layer treats the middle layer as its environment. Note that the top layer
is an environment for us to tell it what to visit.

agentTop.py — Top Layer

11 from agentMiddle import Rob_middle_layer
12 from agents import Environment
13

14 class Rob_top_layer(Environment):
15 def __init__(self, middle, timeout=200, locations = {'mail':(-5,10),
16 'o103':(50,10), 'o109':(100,10),'storage':(101,51)}):
17 """middle is the middle layer
18 timeout is the number of steps the middle layer goes before giving up
19 locations is a loc:pos dictionary
20 where loc is a named location, and pos is an (x,y) position.
21 """
22 self.middle = middle
23 self.timeout = timeout # number of steps before the middle layer should give up
24 self.locations = locations
25

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

28 2. Agents and Control

26 def do(self,plan):
27 """carry out actions.
28 actions is of the form {'visit':list_of_locations}
29 It visits the locations in turn.
30 """
31 to_do = plan['visit']
32 for loc in to_do:
33 position = self.locations[loc]
34 arrived = self.middle.do({'go_to':position, 'timeout':self.timeout})
35 self.display(1,"Arrived at",loc,arrived)

2.3.5 Plotting

The following is used to plot the locations, the walls and (eventually) the move-
ment of the robot. It can either plot the movement if the robot as it is go-
ing (with the default env.plotting = True), or not plot it as it is going (setting
env.plotting = False; in this case the trace can be plotted using pl.plot run()).

agentTop.py — (continued)

37 import matplotlib.pyplot as plt
38

39 class Plot_env(object):
40 def __init__(self, body,top):
41 """sets up the plot
42 """
43 self.body = body
44 plt.ion()
45 plt.clf()
46 plt.axes().set_aspect('equal')
47 for wall in body.env.walls:
48 ((x0,y0),(x1,y1)) = wall
49 plt.plot([x0,x1],[y0,y1],"-k",linewidth=3)
50 for loc in top.locations:
51 (x,y) = top.locations[loc]
52 plt.plot([x],[y],"k<")
53 plt.text(x+1.0,y+0.5,loc) # print the label above and to the right
54 plt.plot([body.rob_x],[body.rob_y],"go")
55 plt.draw()
56

57 def plot_run(self):
58 """plots the history after the agent has finished.
59 This is typically only used if body.plotting==False
60 """
61 xs,ys = zip(*self.body.history)
62 plt.plot(xs,ys,"go")
63 wxs,wys = zip(*self.body.wall_history)
64 plt.plot(wxs,wys,"ro")
65 #plt.draw()

The following code plots the agent as it acts in the world:

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

2.3. Hierarchical Controller 29

agentTop.py — (continued)

67 from agentEnv import Rob_body, Rob_env
68

69 env = Rob_env({((20,0),(30,20)), ((70,-5),(70,25))})
70 body = Rob_body(env)
71 middle = Rob_middle_layer(body)
72 top = Rob_top_layer(middle)
73

74 # try:
75 # pl=Plot_env(body,top)
76 # top.do({'visit':['o109','storage','o109','o103']})
77 # You can directly control the middle layer:
78 # middle.do({'go_to':(30,-10), 'timeout':200})
79 # Can you make it crash?

Exercise 2.1 The following code implements a robot trap. Write a controller that
can escape the “trap” and get to the goal. See textbook for hints.

agentTop.py — (continued)

81 # Robot Trap for which the current controller cannot escape:
82 trap_env = Rob_env({((10,-21),(10,0)), ((10,10),(10,31)), ((30,-10),(30,0)),
83 ((30,10),(30,20)), ((50,-21),(50,31)), ((10,-21),(50,-21)),
84 ((10,0),(30,0)), ((10,10),(30,10)), ((10,31),(50,31))})
85 trap_body = Rob_body(trap_env,init_pos=(-1,0,90))
86 trap_middle = Rob_middle_layer(trap_body)
87 trap_top = Rob_top_layer(trap_middle,locations={'goal':(71,0)})
88

89 # Robot trap exercise:
90 # pl=Plot_env(trap_body,trap_top)
91 # trap_top.do({'visit':['goal']})

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781107195394-SOLUTIONS-5/

