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Solutions to Chapter 2

2.1. We can set our sample space to be ⌦ = {(a
1

, a
2

) : 1  a
i

 6}. We have
#⌦ = 36 and each outcome is equally likely.

Denote by A the event that at least one number is even and by B the event that
the sum is 8. Then we need P (A|B) which can be computed from the definition as

P (A|B) = P (AB)

P (B)

.

We have B = {(2, 6), (3, 5), (4, 4), (5, 3), (6, 2)}, and hence P (B) = #B

#⌦

= 5

36

.

Moreover, AB = {(2, 6), (4, 4), (6, 2)} and hence P (AB) = #AB

#⌦

= 3

36

= 1

12

. Thus

P (A|B) = P (AB)

P (B)

=
1
12
5
36

= 3

5

.

Since the outcomes are equally likely, we can equivalently find the answer from
P (A|B) = #AB

#B

= 3

5

.

2.2. A = {second flip is tails} = {(H,T,H), (H,T, T ), (T, T,H), (T, T, T )},

B = {at most one tails} = {(H,H,H), (H,H, T ), (H,T,H), (T,H,H)}.

Hence AB = {(H,T,H)}, and since we have equally likely outcomes,

P (A |B) =
P (AB)

P (B)
=

#AB

#B
= 1

4

.

2.3. We set the sample space as ⌦ = {1, 2, . . . , 100}. We have #⌦ = 100 and each
outcome is equally likely.

Let A denote the event that the chosen number is divisible by 3 and B denote
the event that at least one digit is equal to 5. Then

B = {5, 15, 25, . . . , 95} [ {50, 51, . . . , 59}

and #B = 19. (As there are 10 numbers with 5 as the last digit, 10 numbers with
5 at the tens place, and 55 was counted both times.) We also have

AB = {15, 45, 51, 54, 57, 75}, #AB = 6.

29
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30 Solutions to Chapter 2

This gives P (A|B) = P (AB)

P (B)

= 6/100

19/100

= 6

19

.

2.4. Let A be the event that we picked the ball labeled 5 and B the event that we
picked the first urn. Then we have P (B) = 1/2, P (Bc) = P (we picked the second urn) =
1/2. Moreover, from the setup if the problem

P (A|B) = P (we chose the number 5 |we chose from the first urn) = 0,

P (A|Bc) = P (we chose the number 5 |we chose from the second urn) =
1

3
.

We compute P (A) by conditioning on B and Bc:

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc) = 0 · 1
2
+

1

3
· 1
2
=

1

6
.

2.5. Let A be the event that we picked the number 2 and B the event that we picked
the first urn. Then we have P (B) = 1/5, P (Bc) = P (we picked the second urn) =
4/5. Moreover, from the setup if the problem

P (A|B) = P (we chose the number 2 |we chose from the first urn) =
1

3
,

P (A|Bc) = P (we chose the number 2 |we chose from the second urn) =
1

4
.

Then we can compute P (A) by conditioning on B and Bc:

P (A) = P (A|B)P (B) + P (A|Bc)P (Bc) =
1

3
· 1
5
+

1

4
· 4
5
=

4

15
.

2.6. Define events

A = {Alice watches TV tomorrow} and B = {Betty watches TV tomorrow}.

(a) P (AB) = P (A)P (B|A) = 0.6 · 0.8 = 0.48.

(b) Intuitively, the answer must be the same 0.48 as in part (a) because Betty
cannot watch TV unless Alice is also watching. Mathematically, this says that
P (B|Ac) = 0. Then by the law of total probability,

P (B) = P (B|A)P (A) + P (B|Ac)P (Ac) = 0.8 · 0.6 + 0 · 0.4 = 0.48.

(c) P (ABc) = P (A)� P (AB) = 0.6� 0.48 = 0.12. Or, by conditioning and using
the outcome of Exercise 2.7(a),

P (ABc) = P (A)P (Bc|A) = P (A)
�
1� P (B|A)

�
= 0.6 · 0.2 = 0.12.

2.7. (a) By definition P (Ac|B) = P (A

c

B)

P (B)

. We have AcB [ AB = B, and the two

sets on the left are disjoint, so P (AcB) + P (AB) = P (B), and P (AcB) =
P (B)� P (AB). This gives

P (Ac|B) =
P (AcB)

P (B)
=

P (B)� P (AB)

P (B)
= 1� P (AB)

P (B)
= 1� P (A|B).

(b) From part (a) we have P (Ac|B) = 1 � P (A|B) = 0.4. Then P (AcB) =
P (Ac|B)P (B) = 0.4 · 0.5 = 0.2.

2.8. Let A
1

, A
2

, A
3

denote the events that the first, second and third cards are
queen, king and ace, respectively. We need to compute P (A

1

A
2

A
3

). One could
do this by counting favorable outcomes. But conditional probabilities provide an
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Solutions to Chapter 2 31

easier way because then we can focus on picking one card at a time. We just have
to keep track of how earlier picks influence the probabilities of the later picks.

We have P (A
1

) = 4

52

= 1

13

since there are 52 equally likely choices for the first
pick and four of them are queens. The conditional probability P (A

2

|A
1

) must
reflect the fact that one queen has been removed from the deck and is no longer
a possible outcome. Since the outcomes are still equally likely, the conditional
probability of getting a king for the second pick is 4

51

. Similarly, when we compute
P (A

3

|A
1

A
2

) we can assume that we pick a card out of 50 (with one queen and
one king removed) and thus the conditional probability of picking an ace will be
4

50

= 2

25

. Thus the probability of A
1

A
2

A
3

is given by

P (A
1

A
2

A
3

) = P (A
1

)P (A
2

|A
1

)P (A
3

|A
2

A
1

) = 1

13

· 4

51

· 2

25

= 8

16,575

.

2.9. Let C be the event that we chose the ball 3 and D the event that we chose
from the second urn. Then we have

P (D) =
4

5
, P (Dc) =

1

5
, P (C|D) =

1

4
, P (C|Dc) =

1

3
.

We need to compute P (D|C), which we can do using Bayes’ formula:

P (D|C) =
P (C|D)P (D)

P (C|D)P (D) + P (C|Dc)P (Dc)
=

1

4

· 4

5

1

4

· 4

5

+ 1

3

· 1

5

=
3

4
.

2.10. Define events:

A = {outcome of the roll is 4} and B
k

= {the k-sided die is picked}.
Then

P (B
6

|A) =
P (A \B

6

)

P (A)
=

P (A|B
6

)P (B
6

)

P (A|B
4

)P (B
4

) + P (A|B
6

)P (B
6

) + P (A|B
12

)P (B
12

)

=
1

6

· 1

3

1

4

· 1

3

+ 1

6

· 1

3

+ 1

12

· 1

3

=
1

3
.

2.11. Let A be the event that the chosen customer is reckless. Let B be the event
that the chosen customer has an accident. We know the following:

P (A) = 0.2, P (Ac) = 0.8, P (B|A) = 0.04, and P (B|Ac) = 0.01.

The probability asked for is P (Ac|B). Using Bayes’ formula we get

P (Ac|B) =
P (B|Ac)P (Ac)

P (B|A)P (A) + P (B|Ac)P (Ac)
=

0.01 · 0.80
0.04 · 0.2 + 0.01 · 0.80 =

1

2
.

2.12. (a) A = {X is even}, B = {X is divisible by 5}. #A = 50, #B = 20 and
AB = {10, 20, . . . , 100} so #AB = 10. Thus

P (A)P (B) = 50

100

· 20

100

= 1

10

and P (AB) = 10

100

= 1

10

.

This shows P (A)P (B) = P (AB) and verifies the independence of A and B.

(b) C = {X has two digits} = {10, 11, 12, . . . , 99} and #C = 90.

D = {X is divisible by 3} = {3, 6, 9, 12, . . . , 99} and #D = 33.

CD = {12, 15, . . . , 99} and #C = 30. Thus

P (C)P (D) = 90

100

· 33

100

⇡ 0.297 and P (CD) = 30

100

= 3

10

.
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32 Solutions to Chapter 2

This shows P (C)P (D) 6= P (CD) and verifies that C and D are not indepen-
dent.

(c) E = {X is a prime} = {2, 3, 5, 7, 11, 13, 17, 19, 23, 29, 31, 37, 41, 43, 47,
53, 59, 61, 67, 71, 73, 79, 83, 89, 97},

and #E = 25.

F = {X has a digit 5} = {5, 15, 25, . . . , 95} [ {50, 51, . . . , 59}

and #F = 19. EF = {5, 53, 59} and #EF = 3. We have

P (E)P (F ) = 25

100

· 19

100

= 0.0475 and P (EF ) = 3

100

.

This shows P (E)P (F ) 6= P (EF ) and verifies that E and F are not independent.

2.13. We need to check whether or not we have

P (AB) = P (A)P (B).

We know that P (A)P (B) = 1

3

· 1

3

= 1

9

. We also know that A = AB [ABc and that
the events AB and ABc are disjoint. Thus,

1

3
= P (A) = P (AB) + P (ABc) = P (AB) +

2

9
.

Thus,

P (AB) =
1

3
� 2

9
=

1

9
= P (A)P (B),

so A and B are independent.

2.14. Since P (AB) = P (?) = 0 and independence requires P (A)P (B) = P (AB),
disjoint events A and B are independent if and only if at least one of them has
probability zero.

2.15. Number the days by 1,2,3,4,5 starting from Monday. Let X
i

= 1 if Ramona
catches her bus on day i and X

i

= 0 if she misses it. Then we need to compute
P (X

1

= 1, X
2

= 1, X
3

= 0, X
4

= 1, X
5

= 0). By assumption, the events {X
1

= 1},
{X

2

= 1}, {X
3

= 0}, {X
4

= 1}, {X
5

= 0} are independent from each other, and
P (X

i

= 1) = 9

10

and P (X
i

= 0) = 1

10

. Thus

P (X
1

= 1, X
2

= 1, X
3

= 0, X
4

= 1, X
5

= 0)

= P (X
1

= 1)P (X
2

= 1)P (X
3

= 0)P (X
4

= 1)P (X
5

= 0)

=
9

10
· 9

10
· 1

10
· 9

10
· 1

10
=

729

10000
.

2.16. Let us label heads as 0 and tails as 1. The sample space is

⌦ = {(s
1

, s
2

, s
3

) : each s
i

2 {0, 1}},

the set of ordered triples of zeros and ones. #⌦ = 8 and so for equally likely
outcomes we have P (!) = 1/8 for each ! 2 ⌦. The events and their probabilities
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we need for answering the question of independence are

P (A
1

) = P{(0, 0, 0), (0, 0, 1), (0, 1, 0), (0, 1, 1)} = 4

8

= 1

2

,

P (A
2

) = P{(0, 1, 0), (0, 1, 1), (1, 0, 0), (1, 0, 1)} = 4

8

= 1

2

,

P (A
3

) = P{(0, 1, 1), (1, 0, 1), (1, 1, 0), (0, 0, 0)} = 4

8

= 1

2

,

P (A
1

A
2

) = {(0, 1, 0), (0, 1, 1)} = 2

8

= 1

4

= 1

2

· 1

2

= P (A
1

)P (A
2

),

P (A
1

A
3

) = {(0, 1, 1), (0, 0, 0)} = 2

8

= 1

4

= 1

2

· 1

2

= P (A
1

)P (A
3

),

P (A
2

A
3

) = {(0, 1, 1), (1, 0, 1)} = 2

8

= 1

4

= 1

2

· 1

2

= P (A
1

)P (A
3

),

P (A
1

A
2

A
3

) = {(0, 1, 1)} = 1

8

= 1

2

· 1

2

· 1

2

= P (A
1

)P (A
2

)P (A
3

).

All the four possible combinations of more than two events from A
1

, A
2

, A
3

satisfy
the product identity. Hence independence of A

1

, A
2

, A
3

has been verified.

2.17. We have AB [ C = ABCc [ C, and the events ABCc and C are disjoint.
Thus P (AB [ C) = P (ABCc) + P (C). Since A,B,C are mutually independent,
this is also true for A,B,Cc. Thus

P (ABCc) = P (A)P (B)P (Cc) =
1

2
· 1
3
·
⇣
1� 1

4

⌘
=

1

8
,

From this we get

P (AB [ C) = P (ABCc) + P (C) =
1

8
+

1

4
=

3

8
.

Here is another solution: by inclusion-exclusion P (AB[C) = P (AB)+P (C)�
P (ABC). Because of independence

P (AB) = P (A)P (B) =
1

2
·1
3
=

1

6
, P (ABC) = P (A)P (B)P (C) =

1

2
·1
3
·1
4
=

1

24
.

Thus

P (AB [ C) = P (AB) + P (C)� P (ABC) =
1

6
+

1

4
� 1

24
=

3

8
.

2.18. There are 90 numbers to choose from and so each outcome has probability
1

90

.

(a) From enumerating the possible values of X, we see that P (X = k) = 1

9

for
each k 2 {1, 2, . . . , 9}. (For example, the event {X = 3} = {30, 31, . . . , 39}
has 10 outcomes from the 90 total.) For Y we have P (Y = `) = 1

10

for each
` 2 {0, 1, 2, . . . , 9}. (For example, the event {Y = 3} = {13, 23, 33, . . . , 93} has
9 outcomes from the 90 total.)

The intersection {X = k, Y = `} contains exactly one number from the 90
outcomes, namely 10k + `. (For example {X = 3, Y = 5} = {35}). Thus for
each pair (k, `) of possible values,

P (X = k, Y = `) = P{10k + `} = 1

90

= 1

9

· 1

10

= P (X = k)P (Y = `).

Thus we have checked that X and Y are independent.

(b) To show that independence fails, we need to find only one case where the
product property P (X = k, Z = m) = P (X = k)P (Z = m) fails. Let’s take
an extreme case. The smallest possible value for Z is 1 that comes only from
the outcome 10, since the sum of the digits is 1 + 0 = 1. (Formally, since Z is
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a function on ⌦, Z(10) = 1 + 0 = 1.) And so P (Z = 1) = P{10} = 1

90

. If we
take X = 2, we cannot get Z = 1. Here is the precise derivation:

P (X = 2, Z = 1) = P ({20, 21, . . . , 29} \ {10}) = P (?) = 0.

Since P (X = 2)P (Z = 1) = 1

9

· 1

90

= 1

810

6= 0, we have shown that X and Z are
not independent.

2.19. (a) If we draw with replacement then we have 72 equally likely outcomes for
the two picks. Counting the favorable outcomes gives

P (X
1

= 4) =
1 · 7
7 · 7 =

1

7

P (X
2

= 5) =
7 · 1
7 · 7 =

1

7

P (X
1

= 4, X
2

= 5) =
1

7 · 7 =
1

49
.

(b) If we draw without replacement then we have 7 · 6 equally likely outcomes for
the two picks. Counting the favorable outcomes gives

P (X
1

= 4) =
1 · 6
7 · 6 =

1

7

P (X
2

= 5) =
6 · 1
7 · 6 =

1

7

P (X
1

= 4, X
2

= 5) =
1

7 · 6 =
1

42
.

(c) The answer to part (b) showed that P (X
1

= 4)P (X
2

= 5) 6= P (X
1

= 4, X
2

= 5).
This proves that X

1

and X
2

are not independent when drawing without replace-
ment.

Part (a) showed that the events {X
1

= 4} and {X
2

= 5} are independent when
drawing with replacement, but this is not enough for proving that the random

variables X
1

and X
2

are independent. Independence of random variables requires
checking P (X

1

= a)P (X
2

= b) = P (X
1

= a,X
2

= b) for all possible choices of a
and b. (This can be done and so independence of X

1

and X
2

does actually hold
here.)

2.20. (a) Let S
5

denote the number of threes in the first five rolls. Then

P (S
5

 2) =
2X

k=0

✓
5

k

◆�
1

6

�
k

�
5

6

�
5�k

.

(b) Let N be the number of rolls needed to see the first three. Then from the p.m.f.
of a geometric random variable,

P (N > 4) =
1X

k=5

�
5

6

�
k�1

�
1

6

�
=
�
5

6

�
4

.

Equivalently,

P (N > 4) = P (no three in the first four rolls) =
�
5

6

�
4

.
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(c) We can approach this in a couple di↵erent ways. By using the independence of
the rolls,

P (5  N  20)

= P (no three in the first four rolls, at least one three in rolls 5–20)

=
�
5

6

�
4

�
1�

�
5

6

�
16

�
=
�
5

6

�
4 �

�
5

6

�
20

.

Equivalently, thinking of the roll at which the first three comes,

P (5  N  20) = P (N � 5)� P (N � 21)

=
1X

k=5

�
5

6

�
k�1

�
1

6

�
�

1X

k=21

�
5

6

�
k�1

�
1

6

�

=
�
5

6

�
4 �

�
5

6

�
20

.

2.21. (a) Let S be the number of problems she gets correct. Then S ⇠ Bin(4, 0.8)
and

P (Jane gets an A) = P (S � 3) = P (S = 3) + P (S = 4)

=

✓
4

3

◆
(0.8)3(0.2) + (0.8)4

= 0.8192.

(b) Let S
2

be the number of problems Jane gets correct out of the last three. Then
S
2

⇠ Bin(3, 0.8). Let X
1

⇠ Bern(0.8) model whether or not she gets the first
problem correct. By assumption, S

2

and X
1

are independent. We have

P (S � 3 |X
1

= 1) =
P (S � 3, X

1

= 1)

P (X
1

= 1)

=
P (S

2

� 2, X
1

= 1)

P (X
1

= 1)
=

P (S
2

� 2)P (X
1

= 1)

P (X
1

= 1)
.

The last equality followed by the independence of S
2

and X
1

. Hence,

P (S � 3|X
1

= 1) = P (S
2

� 2) =

✓
3

2

◆
(0.8)2(0.2) + (0.8)3 = 0.896.

2.22. (a) Let us encode the possible events in a single round as

A
R

= {Annie chooses rock}, A
P

= {Annie chooses paper}
and A

S

= {Annie chooses scissors}

and similarly B
R

, B
P

and B
S

for Bill. Then, using the independence of the
players’ choices,

P (Ann wins the round) = P (A
R

B
S

) + P (A
P

B
R

) + P (A
S

B
P

)

= P (A
R

)P (B
S

) + P (A
P

)P (B
R

) + P (A
S

)P (B
P

)

= 1

3

· 1

3

+ 1

3

· 1

3

+ 1

3

· 1

3

= 1

3

.

Conceptually quicker than enumerating cases would be to notice that no
matter what Ann chooses, the probability that Bill makes a losing choice is 1

3

.
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Hence by the law of total probability, Ann’s probability of winning must be 1

3

.
Here is the calculation:

P (Ann wins the round) = P (Ann wins the round |A
R

)P (A
R

)

+ P (Ann wins the round |A
P

)P (A
P

)

+ P (Ann wins the round |A
S

)P (A
S

)

= 1

3

· P (A
R

) + 1

3

· P (A
P

) + 1

3

· P (A
S

)

= 1

3

·
�
P (A

R

) + P (A
P

) + P (A
S

)
�
= 1

3

.

(b) By the independence of the outcomes of di↵erent rounds,

P (Ann’s first win happens in the fourth round)

= P (Ann does not win any of the first three rounds,

Ann wins the fourth round)

= 2

3

· 2

3

· 2

3

· 1

3

= 8

81

.

(c) Again by the independence of the outcomes of di↵erent rounds,

P (Ann does not win any of the first four rounds) =
�
2

3

�
4

= 16

81

.

2.23. Whether there is an accident on a given day can be treated as the outcome
of a trial (where success means that there is at least one accident). The success
probability is p = 1� 0.95 = 0.05 and the failure probability is 0.95.

(a) The probability of no accidents at this intersection during the next 7 days is the
probability that the first seven trials failed, which is (1� p)7 = 0.957 ⇡ 0.6983.

(b) There are 30 days in September. Let X be the number of days that have at
least one accident. X counts the number of ‘successes’ among 30 trials, so X ⇠
Bin(30, 0.05). Using the probability mass function of the binomial we get

P (X = 2) =

✓
30

2

◆
0.0520.9528 ⇡ 0.2586.

(c) Let N denote the number of days we have to wait for the next accident, or
equivalently, the number of trials needed for the first success. N has geometric
distribution with parameter p = 0.05. We need to compute P (4 < N  10).
The event {4 < N  10} is the same as {N 2 {5, 6, 7, 8, 9, 10}}. Using the
probability mass function of the geometric distribution,

P (4 < N  10) =
10X

k=5

P (N = k) =
10X

k=5

(1� p)k�1p =
10X

k=5

0.95k�10.05

⇡ 0.2158.

Here is an alternative solution. Note that

P (4 < N  10) = P (N  10)� P (N  4)

= (1� P (N > 10))� (1� P (N > 4))

= P (N > 4)� P (N > 10).
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For any positive integer k the event {N > k} is the same as having k failures
in the first k trials. By part (a) the probability of this is (1� p)k, which gives
P (N > k) = (1� p)k = 0.95k and then

P (4 < N  10) = P (N > 4)� P (N > 10) = (1� p)4 � (1� p)10

= 0.954 � 0.9510 ⇡ 0.2158.

2.24. (a) X is hypergeometric with parameters (6, 4, 3).

(b) The probability mass function of X is

P (X = k) =

�
4

k

��
2

3�k

�
�
6

3

� for k 2 {0, 1, 2, 3},

with the convention that
�
a

k

�
= 0 for integers k > a � 0. In particular, P (X =

0) = 0 because with only 2 men available, a team of 3 cannot consist of men
alone.

2.25. Define events: A = {first roll is a three}, B = {second roll is a four}, D
i

=
{the die has i sides}. Assume that A and B are independent, given D

i

, for each
i = 4, 6, 12.

P (AB) =
X

i=4,6,12

P (AB|D
i

)P (D
i

) =
X

i=4,6,12

P (A|D
i

)P (B|D
i

)P (D
i

)

=
�
( 1
4

)2 + ( 1
6

)2 + ( 1

12

)2
�
· 1

3

.

P (D
6

|AB) =
P (AB|D

6

)P (D
6

)

P (AB)
=

( 1
6

)2 · 1

3�
( 1
4

)2 + ( 1
6

)2 + ( 1

12

)2
�
· 1

3

= 2

7

.

2.26.

P ((AB) \ (CD)) = P (ABCD) = P (A)P (B)P (C)P (D) = P (AB)P (CD).

The very first equality is set algebra, namely, the associativity of intersection. This
can be taken as intuitively obvious, or verified from the definition of intersection
and common sense logic:

! 2 (AB) \ (CD) () ! 2 AB and ! 2 CD

()
�
! 2 A and ! 2 B

�
and

�
! 2 C and ! 2 D

�

() ! 2 A and ! 2 B and ! 2 C and ! 2 D

() ! 2 ABCD.

Then we used the product rule first for all four events A,B,C,D, and then
separately for the pairs A,B and C,D.

2.27. (a) First introduce the necessary events. Let A be the event that we picked
Urn I. Then Ac is the event that we picked Urn II. Let B

1

the event that we
picked a green ball. Then

P (A) = P (Ac) =
1

2
, P (B

1

|A) =
1

3
, P (B

1

|Ac) =
2

3
.

P (B
1

) is computed from the law of total probability:

P (B
1

) = P (B
1

|A)P (A) + P (B
1

|Ac)P (Ac) =
1

3
· 1
2
+

2

3
· 1
2
=

1

2
.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781108415859-SOLUTIONS-5/


38 Solutions to Chapter 2

(b) The two experiments are identical and independent. Thus the probability of
picking green both times is the square of the probability from part (a): 1

2

· 1
2

= 1

4

.

(c) Let B
2

be the event that we picked a green ball in the second draw. The
events B

1

, B
2

are conditionally independent given A (and given Ac), since we
are sampling with replacement from the same urn. Thus

P (B
2

|A) =
1

3
, P (B

2

|Ac) =
2

3
,

P (B
1

B
2

|A) = P (B
1

|A)P (B
2

|A), P (B
1

B
2

|Ac) = P (B
1

|Ac)P (B
2

|Ac).

From this we get

P (B
1

B
2

) = P (B
1

B
2

|A)P (A) + P (B
1

B
2

|Ac)P (Ac)

= P (B
1

|A)P (B
2

|A)P (A) + P (B
1

|Ac)P (B
2

|Ac)P (Ac)

= ( 1
3

)2 1

2

+ ( 2
3

)2 1

2

= 5

18

.

(d) The probability of getting a green from the first urn is 1

3

and the probability
of getting a green from the second urn is 2

3

. Since the picks are independent,
the probability of both picks being green is 1

3

· 2

3

= 2

9

.

2.28. (a) The number of aces I get in the first game is hypergeometric with pa-
rameters (52, 4, 13).

(b) The number of games in which I receive at least one ace during the evening is
binomial with parameters (50, 1� (

�
48

13

�
/
�
52

13

�
)).

(c) The number of games in which all my cards are from the same suit is binomial

with parameters (50,
�
52

13

��1

).

(d) The number of spades I receive in the 5th game is hypergeometric with param-
eters (52, 13, 13).

2.29. Let E
1

, E
2

, E
3

, N be the events that Uncle Bob hits a single, double, triple,
or not making it on base, respectively. These events form a partition of our sample
space. We also define S as the event Uncle Bob scores in this turn at bat. By the
law of total probability we have

P (S) = P (SE
1

) + P (SE
2

) + P (SE
3

) + P (SN)

= P (S|E
1

)P (E
1

) + P (S|E
2

)P (E
2

) + P (S|E
3

)P (E
3

) + P (S|N)P (N)

= 0.2 · 0.35 + 0.3 · 0.25 + 0.4 · 0.1 + 0 · 0.3
= 0.185.

2.30. Identical twins have the same gender. We assume that identical twins are
equally likely to be boys or girls. Fraternal twins are also equally likely to be boys
or girls, but independently of each other. Thus fraternal twins are two girls with
probability 1

2

· 1

2

= 1

4

. Let I be the event that the twins are identical, F the event
that the twins are fraternal.

(a) P (two girls) = P (two girls | I)P (I) + P (two girls |F )P (F ) = 1

2

· 1

3

+ 1

4

· 2

3

= 1

3

.

(b) P (I | two girls) =
P (two girls | I)P (I)

P (two girls)
=

1

2

· 1

3

1

3

=
1

2
.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781108415859-SOLUTIONS-5/


Solutions to Chapter 2 39

2.31. (a) The sample space is

⌦ = {(g, b), (b, g), (b, b), (g, g)},

and the probability measure is simply

P (g, b) = P (b, g) = P (b, b) = P (g, g) =
1

4
,

since we assume that each outcome is equally likely.

(b) Let A be the event that there is a girl in the family. Let B be the event that
there is a boy in the family. Note that the question is asking for P (B|A). Begin
to solve by noting that

A = {(g, b), (b, g), (g, g)} and P (A) =
3

4
.

Similarly,

B = {(g, b), (b, g), (b, b)} and P (B) =
3

4
.

Finally, we have

P (B|A) =
P (AB)

P (A)
=

P ({(g, b), (b, g)})
3/4

=
2/4

3/4
=

2

3
.

(c) Let C = {(g, b), (g, g)} be the event that the first child is a girl. B is as above.
We want P (B|C). Since P (C) = 1/2 we have

P (B|C) =
P (BC)

P (C)
=

P{(g, b)}
1/2

=
1/4

1/2
=

1

2
.

2.32. (a) The sample space is

⌦ = {(b, b, b), (b, b, g), (b, g, b), (b, g, g), (g, b, b), (g, b, g), (g, g, b), (g, g, g)},

and each sample point has probability 1

8

since we assume all outcomes equally
likely.

(b) Let A = {(b, g, g), (g, b, g), (g, g, b), (g, g, g)} be the event that there are at least
two girls in the family. Let

B = {(b, b, b), (b, b, g), (b, g, b), (b, g, g), (g, b, b), (g, b, g), (g, g, b)}

be the event that there is a boy in the family.

P (B|A) =
P (AB)

P (A)
=

P ({(b, g, g), (g, b, g), (g, g, b)})
P{(b, g, g), (g, b, g), (g, g, b), (g, g, g)} =

3/8

4/8
=

3

4
.

(c) Let C = {(g, g, b), (g, g, g)} be the event that the first two children are girls. B
is as above. We want P (B|C). We have

P (B|C) =
P (BC)

P (C)
=

P{(g, g, b)}
P{(g, g, b), (g, g, g)} =

1

2
.

2.33. (a) Let B
k

be the event that we choose urn k and let A be the event that we
chose a red ball. Then

P (B
k

) = 1

5

, P (A|B
k

) = k

10

, for 1  k  5.
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By conditioning on the urn we chose and using (2.7) we get

P (A) =
5X

k=1

P (A |B
k

)P (B
k

) =
5X

k=1

k

10

· 1

5

= 1+2+3+4+5

50

= 3

10

.

(b)

P (B
k

|A) =
P (A|B

k

)P (B
k

)
P

5

k=1

P (A |B
k

)P (B
k

)
=

k

10

· 1

5

3

10

=
k

15
.

2.34. Since the urns are interchangeable, we can put the marked ball in urn 1.
There are three ways to arrange the two unmarked balls. Let case i for i 2 {0, 1, 2}
denote the situation where we put i unmarked balls together with the marked ball,
and the remaining 2� i unmarked balls in the other urn. Let M denote the event
that your friend draws the marked ball, and A

j

the event that she chooses urn j,
j = 1, 2. Since P (M |A

2

) = 0, we get the following probabilities.

Case 0: P (M) = P (M |A
1

)P (A
1

) = 1 · 1

2

= 1

2

.

Case 1: P (M) = P (M |A
1

)P (A
1

) = 1

2

· 1

2

= 1

4

.

Case 2: P (M) = P (M |A
1

)P (A
1

) = 1

3

· 1

2

= 1

6

.

So (a) you would put all the balls in one urn (Case 2) while (b) she would put
the marked ball in one urn and the other balls in the other urn.

(c) The situation is analogous. If we put k unmarked balls together with the
marked ball in urn 1, then

P (M) = P (M |A
1

)P (A
1

) = 1

k+1

· 1

2

= 1

2(k+1)

.

Hence to minimize the chances of drawing the marked ball, put all the balls in one
urn, and to maximize the chances of drawing the marked ball, put the marked ball
in one urn and all the unmarked balls in the other.

2.35. Let A be the event that the first card is a queen and B the event that the
second card is a spade. Note that A and B are not independent, and there is no
immediate way to compute P (B|A). We can compute P (AB) by counting favorable
outcomes. Let ⌦ be the collection of all ordered pairs drawn without replacement
from 52 cards. #⌦ = 52 · 51 and all outcomes are equally likely. We can break up
AB into the union of the following two disjoint events:

C = {first card is queen of spades, second is a spade},
D = {first card is a queen but not a spade, the second card is a spade}.

We have #C = 12, as we can choose the second card 12 di↵erent ways. We have
#D = 3·13 = 39 as the first card can be any of the three non-spade queens, and the
second card can be any of the 13 spades. Thus #AB = #C +#D = 12 + 39 = 51
and we get P (AB) = #AB

#⌦

= 51

52·51 = 1

52

.

2.36. Let A
j

be the event that a j-sided die was chosen and B the event that a six
was rolled.
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(a) By the law of total probability,

P (B) = P (B|A
4

)P (A
4

) + P (B|A
6

)P (A
6

) + P (B|A
12

)P (A
12

)

= 0 · 7

12

+ 1

6

· 3

12

+ 1

12

· 2

12

= 1

18

.

(b)

P (A
6

|B) =
P (B|A

6

)P (A
6

)

P (B)
=

1

6

· 3

12

1

18

= 3

4

.

2.37. (a) Let S,E, T, and W be the events that the six, eight, ten, and twenty sided
die is chosen. Let X be the outcome of the roll. Then

P (X = 6) = P (X = 6|S)P (S) + P (X = 6|E)P (E)

+ P (X = 6|T )P (T ) + P (X = 6|W )P (W )

=
1

6
· 1

10
+

1

8
· 2

10
+

1

10
· 3

10
+

1

20
· 4

10

=
11

120
.

(b) We want

P (W |X = 7) =
P (W,X = 7)

P (X = 7)
=

P (X = 7|W )P (W )

P (X = 7)
.

Following part (a), we have

P (X = 7) = P (X = 7|S)P (S) + P (X = 7|E)P (E)

+ P (X = 7|T )P (T ) + P (X = 7|W )P (W )

= 0 · 1

10
+

1

8
· 2

10
+

1

10
· 3

10
+

1

20
· 4

10
=

3

40
.

Thus,

P (W |X = 7) =
(1/20) · (4/10)

(3/40)
=

4

15
.

2.38. Let R denote the event that the chosen letter is R and let A
i

be the event
that the ith word of the sentence is chosen.

(a) P (R) =
P

4

i=1

P (R|A
i

)P (A
i

) = 0 · 1

4

+ 0 · 1

4

+ 1

3

· 1

4

+ 1

5

· 1

4

= 2

15

.

(b) P (X = 3) = 1

4

, P (X = 4) = 1

2

, P (X = 5) = 1

4

.

(c) P (X = 3 |X > 3) = 0.

P (X = 4 |X > 3) =
P ({X = 4} \ {X > 3})

P (X > 3)
=

P (X = 4)

P (X = 4) + P (X = 5)
=

�
1

2

�
�
3

4

� =
2

3
.

P (X = 5 |X > 3) =
P ({X = 5} \ {X > 3})

P (X > 3)
=

�
1

4

�
�
3

4

� =
1

3
.
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(d) Use below that R \A
1

= R \A
2

= A
3

\ {X > 3} = ?.

P (R |X > 3) =
4X

i=1

P (RA
i

|X > 3) = P (RA
3

|X > 3) + P (RA
4

|X > 3)

=
P (R \A

3

\ {X > 3})
P (X > 3)

+
P (R \A

4

\ {X > 3})
P (X > 3)

=
P (R \A

4

)

P (X = 4) + P (X = 5)
=

P (R |A
4

)P (A
4

)

P (X = 4) + P (X = 5)

=
1

5

· 1

4

1

2

+ 1

4

= 1

15

.

(e)

P (A
4

|R) =
P (R |A

4

)P (A
4

)

P (R)
=

1

5

· 1

4

2

15

= 3

8

.

2.39. (a) Let B
i

the event that we chose the ith word (i = 1, . . . , 8). Events
B

1

, . . . , B
8

form a partition of the sample space and P (B
i

) = 1

8

for each i. Let
A be the event that we chose the letter O. Then P (A|B

3

) = 1

5

, P (A|B
4

) = 1

3

,
P (A|B

6

) = 1

4

with all other P (A|B
i

) = 0. This gives

P (A) =
8X

i=1

P (A|B
i

)P (B
i

) =
1

8

✓
1

5
+

1

3
+

1

4

◆
=

47

480
.

(b) The length of the chosen word can be 3, 4, 5 or 6, so the range of X is the
set {3, 4, 5, 6}. For each of the possible value x we have to find the probability
P (X = x).

p
X

(3) = P (X = 3) = P (we chose the 1st, the 4th or the 7th word)

= P (B
1

[B
4

[B
7

) =
3

8
,

p
X

(4) = P (X = 4) = P (we chose the 6th or the 8th word) = P (B
6

[B
8

) =
2

8
,

p
X

(5) = P (X = 5) = P (we chose the 2nd or the 3rd word) = P (B
2

[B
3

) =
2

8
,

p
X

(6) = P (X = 6) = P (we chose the 5th word) = P (B
5

) =
1

8
.

Note that the probabilities add up to 1, as they should.

2.40. (a) For i 2 {1, 2, 3, 4} let A
i

be the event that the student scores i on the
test. Let M be the event that the student becomes a math major.

P (M) =
4X

i=1

P (M |A
i

)P (A
i

) = 0 · 0.1 + 1

5

· 0.2 + 1

3

· 0.6 + 3

7

· 0.1 ⇡ 0.2829.

(b)

P (A
4

|M) =
P (M |A

4

)P (A
4

)

P (M)
=

3

7

· 0.1
1

5

· 0.2 + 1

3

· 0.6 + 3

7

· 0.1
⇡ 0.1515.
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2.41. Introduce the following events:

B = {the phone is not defective}, A = {the phone comes from factory II}.

Then Ac is the event that the phone is from factory I. We know that

P (A) = 0.4 =
2

5
, P (Ac) = 0.6 =

3

5
, P (Bc|A) = 0.2 =

1

5
, P (Bc|Ac) = 0.1 =

1

10
.

Note that this also gives

P (B|A) = 1� P (Bc|A) =
4

5
, P (B|Ac) = 1� P (Bc|Ac) =

9

10
.

We need to compute P (A|B). By Bayes’ formula,

P (A|B) =
P (B|A) · P (A)

P (B|A)P (A) + P (B|Ac)P (Ac)
=

4

5

· 2

5

4

5

· 2

5

+ 9

10

· 3

5

=
16

16 + 27

=
16

43
⇡ 0.3721.

2.42. Let R be the event that the transferred ball was red, and W the event that
the transferred ball was white. Let V be the event that a white ball was drawn from
urn B. Then P (R) = 1

3

and P (W ) = 2

3

. If a red ball was transferred, then the new
composition of urn B is 2 red and 1 white, while if a white ball was transferred,
then the new composition of urn B is 1 red and 2 white. Putting all this together
gives the following calculation.

P (W |V ) =
P (WV )

P (V )
=

P (V |W )P (W )

P (V |W )P (W ) + P (V |R)P (R)

=
2

3

· 2

3

2

3

· 2

3

+ 1

3

· 1

3

= 4

5

.

2.43. (a) Let A
1

be the event that the first sample had two balls of the same color.
If we imagine that the draws are done one at a time in order then there are 5 ·4
possible outcomes. Counting the green-green and yellow-yellow cases separately
we get that 3 ·2+2 ·1 of those outcomes have two balls of the same color. Thus

P (A
1

) =
3 · 2 + 2 · 1

5 · 4 =
2

5
.

(b) Let A
2

be the event that the second sample had two balls of the same color.
We have P (A

2

|A
1

) = 1, since if the first sample had two balls of the same
color then this must be true for the second one. Furthermore, P (A

2

|Ac

1

) = 1

2

,
because if we sample twice with replacement from an urn containing one yellow
and one green ball, then 1/2 is the probability that the second draw has the
same color as the first one. (Or, dividing the number of favorable outcomes by
the total, 1·1+1·1

2·2 = 1

2

.) From part (a) we know that P (A
1

) = 2

5

and P (Ac

1

) = 3

5

.
Altogether this gives

P (A
2

) = P (A
2

|A
1

)P (A
1

) + P (A
2

|Ac

1

)P (Ac

1

) = 1 · 2
5
+

1

2
· 3
5
=

7

10
.

(c) Using the already computed probabilities:

P (A
1

|A
2

) =
P (A

2

|A
1

)P (A
1

)

P (A
2

)
=

1 · 2

5

7

10

=
4

7
.
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2.44. Let A
i

be the event that bin i was chosen (i = 1, 2) and Y
j

the event that
draw j (j = 1, 2) is yellow.

(a)

P (A
1

|Y
1

) =
P (Y

1

|A
1

)P (A
1

)

P (Y
1

|A
1

)P (A
1

) + P (Y
1

|A
2

)P (A
2

)

=
4

10

· 1

2

4

10

· 1

2

+ 4

7

· 1

2

=
14

34
⇡ 0.4118.

(b) This question asks for the conditional probability of A
1

, given that two draws
with replacement from the chosen urn yield yellow. We assume that draws
with replacement from the same urn are independent. This translates into
conditional independence of Y

1

and Y
2

, given A
i

.

P (A
1

|Y
1

Y
2

) =
P (Y

1

Y
2

|A
1

)P (A
1

)

P (Y
1

Y
2

|A
1

)P (A
1

) + P (Y
1

Y
2

|A
2

)P (A
2

)

=
P (Y

1

|A
1

)P (Y
1

|A
1

)P (A
1

)

P (Y
1

|A
1

)P (Y
1

|A
1

)P (A
1

) + P (Y
1

|A
2

)P (Y
1

|A
2

)P (A
2

)

=
4

10

· 4

10

· 1

2

4

10

· 4

10

· 1

2

+ 4

7

· 4

7

· 1

2

=
196

596
⇡ 0.3289.

2.45. (a) Let B, G, and O be the events that a 7-year-old like the Bears, Packers,
and some other team, respectively. We are given the following:

P (B) = 0.10, P (G) = 0.75, P (O) = 0.15.

Let A be the event that the 7-year-old goes to a game. Then we have

P (A|B) = 0.01, P (A|G) = 0.05, P (A|O) = 0.005.

P (A) is computed from the law of total probability:

P (A) = P (A|B)P (B) + P (A|G)P (G) + P (A|O)P (O)

= 0.01 · 0.1 + 0.05 · 0.75 + 0.005 · 0.15 = 0.03925.

(b) Using the result of (a) (or Bayes’ formula directly):

P (G|A) =
P (AG)

P (A)
=

P (A|G)P (G)

P (A)
=

0.05 · 0.75
0.03925

=
0.0375

0.03925
⇡ 0.9554.

2.46. A sample point is an ordered triple (x, y, z) where x is the number drawn
from box A, y is the number drawn from box B, and z the number drawn from box
C. All 6 · 12 · 4 = 288 outcomes are equally likely, so we can solve these problems
by counting.

(a) The number of outcomes with exactly two 1s is

1 · 1 · 3 + 1 · 11 · 1 + 5 · 1 · 1 = 19.

The number of outcomes with a 1 from box A and exactly two 1s is

1 · 1 · 3 + 1 · 11 · 1 = 14.
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Thus

P (ball 1 from A | exactly two 1s) =
P (ball 1 from A and exactly two 1s)

P (exactly two 1s)

=
14/288

19/288
=

14

19
.

(b) There are three sample points whose sum is 21: (6, 12, 3), (6, 11, 4), (5, 12, 4).
Two of these have 12 drawn from B. Hence the answer is 2/3. Here is the
formal calculation.

P (ball 12 from B | sum of balls 21) =
P (ball 12 from B and sum of balls 21)

P (sum of balls 21)

=
P{(6, 12, 3), (5, 12, 4)}

P{(6, 12, 3), (6, 11, 4), (5, 12, 4)} =
2/288

3/288
=

2

3
.

2.47. Define random variables X and Y and event S:

X = total number of patients for whom the drug is e↵ective

Y = number of patients for whom the drug is e↵ective, excluding your friends

S = trial is a success for your two friends.

We need to find

P (S|X = 55) =
P (S \ {X = 55})

P (X = 55)
.

Note that X ⇠ Bin(80, p), and thus P (X = 55) =
�
80

55

�
p55(1 � p)25. Moreover,

S \ {X = 55} = S \ {Y = 53}. The events S and {Y = 53} are independent, as S
depends on the trial outcomes for your friends, and Y on the trial outcomes of the
other patients. Thus

P (S \ {X = 55}) = P (S \ {Y = 53}) = P (S)P (Y = 53).

We have P (S) = p2 and P (Y = 53) =
�
78

53

�
p53(1�p)25, as Y ⇠ Bin(78, p). Collecting

everything:

P (S|X = 55) =
P (S \ {X = 55})

P (X = 55)
=

p2 ·
�
78

53

�
p53(1� p)25

�
80

55

�
p55(1� p)25

=

�
78

53

�
�
80

55

�

=
297

632
⇡ 0.4699.

2.48. Define events G = {Kevin is guilty}, A = {DNA match}. Before the DNA
evidence P (G) = 1/100, 000. After the DNA match

P (G|A) =
P (A|G)P (G)

P (A|G)P (G) + P (A|Gc)P (Gc)
=

1 · 1

100,000

1 · 1

100,000

+ 1

10,000

· 99,999

100,000

=
1

1 + 10� 10�4

⇡ 1

11
.

2.49. (a) The given numbers are nonnegative, so we just need to check that
P1

k=0

P (X =
k) = 1:

1X

k=0

P (X = k) =
4

5
+

1X

k=1

1

10

·
�
2

3

�
k

=
4

5
+

1

10

· 2

3

1� 2

3

= 1.
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(b) For k � 1, by changing the summation index from j to i = j � k:

P (X � k) =
1X

j=k

1

10

·
�
2

3

�
j

= 1

10

·
�
2

3

�
k

1X

i=0

�
2

3

�
i

= 1

10

·
�
2

3

�
k

1

1� 2

3

= 1

5

�
2

3

�
k�1

.

Thus again for k � 1,

P (X � k |X � 1) =
P ({X � k} \ {X � 1})

P (X � 1)
=

P (X � k)

P (X � 1)

=
1

5

�
2

3

�
k�1

1

5

=
�
2

3

�
k�1

.

The numerator simplified because {X � k} ⇢ {X � 1}. The answer shows
that conditional on X � 1, X has Geom( 1

3

) distribution.

2.50. (a)

P (A|D) =
P (D|A)P (A)

P (D|A)P (A) + P (D|B)P (B) + P (D|C)P (C)

=
p · 1

3

p · 1

3

+ 0 · 1

3

+ 1 · 1

3

=
p

1 + p
.

(b)

P (C|D) =
P (D|C)P (C)

P (D)
=

1 · 1

3

(p+ 1) · 1

3

=
1

1 + p
.

If the guard is equally likely to name either B or C when both of them are
slated to die, then A has not gained anything (his probability of pardon is still
1

3

) but C’s chances of pardon have increased to 2

3

. In the extreme case where the
guard would never name B unless he had to (p = 0), C is now sure to be pardoned.

2.51. Since C ⇢ B we have B [ C = B and thus A [B [ C = A [B. Then

P (A [B [ C) = P (A [B) = P (A) + P (B)� P (AB).

Since A and B are independent we have P (AB) = P (A)P (B). This gives

P (A [B [ C) = P (A) + P (B)� P (A)P (B) = 1/2 + 1/4� 1/8 = 5/8.

2.52. Yes, A,B, and C are mutually independent. There are four equations to
check:

(i) P (AB) = P (A)P (B)

(ii) P (AC) = P (A)P (C)

(iii) P (BC) = P (B)P (C)

(iv) P (ABC) = P (A)P (B)P (C).

(i) comes from inclusion-exclusion:

P (AB) = P (A) + P (B)� P (A [B) = 0.06 = P (A)P (B).
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(ii) comes from P (AC) = P (C) � P (AcC) = 0.03 = P (A)P (C). (iii) is given.
Finally, (iv) comes from using inclusion-exclusion once more and the previous com-
putations:

P (ABC) = P (A [B [ C)� P (A)� P (B)� P (C)

+ P (AB) + P (AC) + P (BC)

= 0.006 = P (A)P (B)P (C).

2.53. (a) If the events are disjoint then

P (A [B) = P (A) + P (B) = 0.3 + 0.6 = 0.9.

(b) If the events are independent then

P (A [B) = P (A) + P (B)� P (AB) = P (A) + P (B)� P (A)P (B)

= 0.3 + 0.6� 0.3 · 0.6 = 0.72.

2.54. (a) It is possible. We use the fact that A = AB [ ABc and that these are
mutually exclusive:

P (A) = P (AB) + P (ABc) = P (A|B)P (B) + P (A|Bc)P (Bc)

=
1

3
P (B) +

1

3
P (Bc) =

1

3
(P (B) + P (Bc)) =

1

3
.

(b) A and B are independent. By part (a) and the given information,

P (A) = P (A|B) =
P (AB)

P (B)

from which P (AB) = P (A)P (B) and independence has been verified. (Note
that the value 1

3

was not needed for this conclusion.)

2.55. (a) Since Peter throws the first dart, in order for Mary to win Peter must
fail once more than she does.

P (Mary wins) =
1X

k=1

P (Mary wins on her kth throw)

=
1X

k=1

((1� p)(1� r))k�1(1� p)r =
(1� p)r

1� (1� p)(1� r)

=
(1� p)r

p+ r � pr
.

(b) The possible values of X are the nonnegative integers.

P (X = 0) = P (Peter wins on his first throw) = p.

For k � 1,

P (X = k) = P (Mary wins on her kth throw)

+ P (Peter wins on his (k + 1)st throw)

= ((1� p)(1� r))k�1(1� p)r + ((1� p)(1� r))kp

= ((1� p)(1� r))k�1(1� p)(p+ r � pr).
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We check that the values for k � 1 add up to 1�(the value at k = 0):

1X

k=1

((1� p)(1� r))k�1(1� p)(p+ r � pr) =
(1� p)(p+ r � pr)

1� (1� p)(1� r)
= 1� p.

This is not one of our named distributions.

(c) For k � 1,

P (X = k | Mary wins) =
P (Mary wins on her kth throw)

P (Mary wins)

=
((1� p)(1� r))k�1(1� p)r

(1�p)r

p+r�pr

= ((1� p)(1� r))k�1(p+ r � pr).

Thus given that Mary wins, X ⇠ Geom(p+ r � pr).

2.56. Suppose P (A) = 0. Then for any B, AB ⇢ A implies P (AB) = 0. We also
have P (A)P (B) = 0 · P (B) = 0. Thus P (AB) = 0 = P (A)P (B) and independence
of A and B has been verified.

Suppose P (A) = 1. Then P (Ac) = 0 and the previous case gives the indepen-
dence of Ac and B, from which follows the independence of A and B. Alternatively,
we can prove this case by first observing that P (AB) = P (B)�P (AcB) = P (B)�
0 = P (B) and then P (A)P (B) = 1 · P (B) = P (B). Again P (AB) = P (A)P (B)
has been verified.

2.57. (a) Let E
1

be the event that the first component functions. Let E
2

be the
event that the second component functions. Let S be the event that the entire
system functions. S = E

1

\E
2

since both components must function in order for
the whole system to be operational. By the assumption that each component
acts independently, we have

P (S) = P (E
1

\ E
2

) = P (E
1

)P (E
2

).

Next we find the probabilities P (E
1

) and P (E
2

).

LetX
i

be a Bernoulli random variable taking the value 1 if the ith element of the
first component is working. The information given is that P (X

i

= 1) = 0.95,
P (X

i

= 0) = 0.05 and X
1

, . . . , X
8

are mutually independent. Similarly, let
Y
i

be a Bernoulli random variable taking the value 1 if the ith element of the
second component is working. Then P (Y

i

= 1) = 0.90, P (Y
i

= 0) = 0.1 and
Y
1

, . . . , Y
4

are mutually independent. Let X =
P

8

i=1

X
i

give the total number

of working elements in component number one and Y =
P

4

i=1

Y
i

the total
number of working elements in component number 2. Then X ⇠ Bin(8, 0.95)
and Y ⇠ Bin(4, 0.90), and X and Y are independent (by the assumption that
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the components behave independently). We have

P (E
1

) = P (X � 6) = P (X = 6) + P (X = 7) + P (X = 8)

=

✓
8

6

◆
(0.95)6(0.05)2 +

✓
8

7

◆
(0.95)7(0.05)1 +

✓
8

8

◆
(0.95)8(0.05)0

= 0.9942117,

and

P (E
2

) = P (Y � 3) = P (Y = 3) + P (Y = 4)

=

✓
4

3

◆
(0.9)3(0.1) + (0.9)4

= 0.9477.

Thus,

P (S) = P (E
1

)P (E
2

) = 0.9942117 · 0.9477 ⇡ 0.9422.

(b) We look for P (Ec

2

|Sc). We have

P (Ec

2

|Sc) =
P (Ec

2

Sc)

P (Sc)
=

P (Ec

2

)

1� P (S)
,

where we used that Ec

2

⇢ Sc. (If the first component does not work, then
the system does not work; mathematically a consequence of de Morgan’s law:
Sc = Ec

1

[ Ec

2

.) Thus,

P (Ec

2

|Sc) =
1� P (E

2

)

1� P (S)
=

1� 0.9477

1� 0.9422
⇡ 0.9048.

2.58. (a) It is enough to show that any two of them are pairwise independent since
the argument is the same for any such pair. We show that P (AB) = P (A)P (B).
Let

⌦ = {(a, b, c) : a, b, c 2 {1, 2, . . . , 365}} =) #⌦ = 3653.

We have by counting the possibilities

#AB = {all three have same birthday} = 365 · 1 · 1 =) P (AB) =
1

3652
.

Also,

#A = {Alex and Betty have the same birthday} = 365 · 1 · 365,

where we counted as follows: there are 365 ways for Alex to have a birthday,
then only once choice for Betty, and then another 365 ways for Conlin. Thus,

P (A) =
3652

3653
=

1

365
.

Similarly, P (B) = 1

365

and so,

P (AB) = P (A)P (B).

(b) The events are not independent. Note that ABC = AB and so,

P (ABC) = P (AB) =
1

3652
6= P (A)P (B)P (C) =

1

3653
.
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2.59. Define events: B = {the bus functions}, T = {the train functions}, and S =
{no storm}. The event that travel is possible is (B [ T ) \ S = BS [ TS. We
calculate the probability with inclusion-exclusion and independence:

P (BS [ TS) = P (BS) + P (TS)� P (BTS)

= P (B)P (S) + P (T )P (S)� P (B)P (T )P (S)

= 8

10

· 19

20

+ 9

10

· 19

20

� 8

10

· 9

10

· 19

20

= 931

1000

.

2.60. (a) P (ABc) = P (A) � P (AB) = P (A) � P (A)P (B) = P (A)
�
1 � P (B)

�
=

P (A)P (Bc).

(b) Apply first de Morgan and then inclusion-exclusion:

P (AcCc) = 1� P (A [ C) = 1� P (A)� P (C) + P (AC)

= 1� P (A)� P (C) + P (A)P (C)

=
�
1� P (A)

��
1� P (C)

�
= P (Ac)P (Cc).

(c) P (ABcC) = P (AC) � P (ABC) = P (A)P (C) � P (A)P (B)P (C) = P (A)
�
1 �

P (B)
�
P (C = P (A)P (Bc)P (C).

(d) Again first de Morgan and then inclusion-exclusion:

P (AcBcCc) = 1� P (A [B [ C)

= 1� P (A)� P (B)� P (C) + P (AB) + P (AC) + P (BC)� P (ABC)

= 1� P (A)� P (B)� P (C) + P (A)P (B) + P (A)P (C) + P (B)P (C)

� P (A)P (B)P (C)

=
�
1� P (A)

��
1� P (B)

��
1� P (C)

�

= P (Ac)P (Bc)P (Cc).

2.61. (a) Treat each draw as a trial: green is success, red is failure. By counting
favorable outcomes, the probability of success is p = 3

7

for each draw. Because we
draw with replacement the outcomes are independent. Thus the number of greens
in the 9 picks is the number of successes in 9 trials, hence a Bin(9, 3

7

) distribution.
Using the probability mass function of the binomial distribution gives

P (X � 1) = 1� P (X = 0) = 1� (1� p)9 ⇡ 0.9935,

P (X  5) =
5X

k=0

P (X = k) =
5X

k=0

✓
9

k

◆
pk(1� p)9�k ⇡ 0.8653.

(b) N is the number of trials needed for the first success, and so has geometric
distribution with parameter p = 3

7

. The probability mass function of the geometric
distribution gives

P (N  9) =
9X

k=1

P (N = k) =
9X

k=1

p(1� p)k�1 ⇡ 0.9935.
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(c) We have P (X � 1) = P (N  9). We can check this by using the geometric sum
formula to get

9X

k=1

p(1� p)k�1 = p
1� (1� p)9)

1� (1� p)
= 1� (1� p)9.

Here is another way to see this, without any algebra. Imagine that we draw balls
with replacement infinitely many times. Think of X as the number of green balls
in the first 9 draws. N is still the number of draws needed for the first green. Now
if X � 1, then we have at least one green within the first 9 draws, which means
that the first green draw happened within the first 9 draws. Thus X � 1 implies
N  9. But this works in the opposite direction as well: if N  9 then the first
green draw happened within the first 9 draws, which means that we must have at
least one green within the first 9 picks. Thus N  9 implies X � 1. This gives the
equality of event: {X � 1} = {N  9}, and hence the probabilities must agree as
well.

2.62. Regard the drawing of three marbles as one trial, with success probability p
given by

p = P (all three marbles blue) =

�
9

3

�
�
13

3

� =
7 · 8 · 9 · 10

10 · 11 · 12 · 13 =
42

143
.

X ⇠ Bin(20, 42

143

). The probability mass function is

P (X = k) =

✓
20

k

◆�
42

143

�
k

�
101

143

�
20�k

for k = 0, 1, 2, . . . , 20.

2.63. The number of heads in n coin flips has distribution Bin(n, 1/2). Thus the
probability of winning if we choose to flip n times is

f
n

= P (n flips yield exactly 2 heads) =

✓
n

2

◆
1

2n
=

n(n� 1)

2n+1

.

We want to find the n which maximizes f
n

. Let us compare f
n

and f
n+1

. We have

f
n

< f
n+1

() n(n� 1)

2n+1

<
(n+ 1)n

2n+2

() 2(n� 1) < n+ 1 () n < 3.

Similarly, f
n

> f
n+1

if and only if n > 3, and f
3

= f
4

. Thus

f
2

< f
3

= f
4

> f
5

> f
6

> . . . .

This means that the maximum happens at n = 3 and n = 4, and the probability
of winning at those values is f

3

= f
4

= 3·2
2

4 = 3

8

.

2.64. Let X be the number of correct answers. X is the number of successes in 20
independent trials with success probability p+ 1

2

r.

P (X � 19) = P (X = 19) + P (X = 20) = 20
�
p+ 1

2

r
�
19

�
q + 1

2

r
�
+
�
p+ 1

2

r
�
20

.

2.65. Let A be the event that at least one die lands on a 4 and B be the event
that all three dice land on di↵erent numbers. Our sample space is the set of all
triples (a

1

, a
2

, a
3

) with 1  a
i

 6. All outcomes are equally likely and there are

216 outcomes. We need P (A|B) = P (AB)

P (B)

. There are 6 · 5 · 4 = 120 elements in B.
To count the elements of AB, we first consider AcB. This is the set of triples where
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the three numbers are distinct and none of them is a 4. So #AcB = 5 · 4 · 3 = 60.
Then #AB = #B �#AcB = 120� 60 = 60 and

P (A|B) =
P (AB)

P (B)
=

60

216

120

216

=
1

2
.

2.66. Let

f
n

= P (n die rolls give exactly two sixes) =

✓
n

2

◆�
1

6

�
2

�
5

6

�
n�2

=
n(n� 1)5n�2

2 · 6n .

Next,

f
n

< f
n+1

() n(n� 1)5n�2

2 · 6n <
(n+ 1)n5n�1

2 · 6n+1

() 6(n� 1) < 5(n+ 1)

() n < 11.

By reversing the inequalities we get the equivalence

f
n

> f
n+1

() n > 11.

By complementing the two equivalences, we get

f
n

= f
n+1

() f
n

� f
n+1

and f
n

 f
n+1

() n � 11 and n  11 () n = 11.

Putting all these facts together we conclude that the probability of two sixes is
maximized by n = 11 and n = 12 and for these two values of n, that probability is

11 · 10 · 59

2 · 611 ⇡ 0.2961.

2.67. Since {X = n+ k} ⇢ {X > n} for k � 1, we have

P (X = n+ k|X > n) =
P (X = n+ k,X > n)

P (X > n)
=

P (X = n+ k)

P (X > n)
=

(1� p)n+k�1p

P (X > n)
.

Evaluate the denominator:

P (X > n) =
1X

k=n+1

P (X = k) =
1X

k=n+1

(1� p)k�1p

= p(1� p)n
1X

k=0

(1� p)k = p(1� p)n · 1

1� (1� p)
= (1� p)n.

Thus,

P (X = n+ k|X > n) =
(1� p)n+k�1p

P (X > n)
=

(1� p)n+k�1p

(1� p)n

= (1� p)k�1p = P (X = k).

2.68. For k � 1, the assumed memoryless property gives

P (X = k) = P (X = k + 1 |X > 1) =
P (X = k + 1)

P (X > 1)
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which we convert into P (X = k + 1) = P (X > 1)P (X = k). Now let m � 2, and
apply this repeatedy to k = m� 1,m� 2, . . . , 2:

P (X = m) = P (X > 1)P (X = m� 1) = P (X > 1)2P (X = m� 2)

= · · · = P (X > 1)m�1P (X = 1).

Set p = P (X = 1). Then it follows that P (X = m) = (1 � p)m�1p for all m � 1
(m = 1 by definition of p, m � 2 by the calculation above). In other words, X ⇠
Geom(p).

2.69. We assume that the successive flips of a given coin are independent. This
gives us the conditional independence:

P (A
1

A
2

|F ) = P (A
1

|F )P (A
2

|F ), P (A
1

A
2

|M) = P (A
1

|M)P (A
2

|M),

and P (A
1

A
2

|H) = P (A
1

|H)P (A
2

|H).

The solution comes by the law of total probability:

P (A
1

A
2

) = P (A
1

A
2

|F )P (F ) + P (A
1

A
2

|M)P (M) + P (A
1

A
2

|H)P (H)

= P (A
1

|F )P (A
2

|F )P (F ) + P (A
1

|B)P (A
2

|B)P (B)

= 1

2

· 1

2

· 90

100

+ 3

5

· 3

5

· 9

100

+ 9

10

· 9

10

· 1

100

= 2655

10,000

.

Now 2655

10,000

6= ( 513

1000

)2 which says that P (A
1

A
2

) 6= P (A
1

)P (A
2

). In other words,
A

1

and A
2

are not independent without the conditioning on the type of coin. The
intuitive reason is that the first flip gives us information about the coin we hold,
and thereby alters our expectations about the second flip.

2.70. The relevant probabilities: P (A) = P (B) = 2p(1� p) and

P (AB) = P{(T, H, T), (H, T, H)} = p2(1� p) + p(1� p)2 = p(1� p).

Thus A and B are independent if and only if
�
2p(1� p)

�
2

= p(1� p) () 4p2(1� p)2 � p(1� p) = 0

() p(1� p)
�
4p(1� p)� 1) = 0

() p = 0 or 1� p = 0 or 4p(1� p)� 1 = 0 () p 2 {0, 1

2

, 1}.

Note that cancelling p(1�p) from the very first equation misses the solutions p = 0
and p = 1.

2.71. Let F = {coin is fair}, B = {coin is biased} and A
k

= {kth flip is tails}.
We assume that conditionally on F , the events A

k

are independent, and similarly
conditionally on B. Let D

n

= A
1

\A
2

\ · · · \A
n

= {the first n flips are all tails}.

(a)

P (B|D
n

) =
P (D

n

|B)P (B)

P (D
n

|B)P (B) + P (D
n

|F )P (F )
=

( 3
5

)n 1

10

( 3
5

)n 1

10

+ ( 1
2

)n 9

10

=
( 3
5

)n

( 3
5

)n + 9( 1
2

)n
.

In particular, P (B|D
1

) = 2

17

and P (B|D
2

) = 4

29

.
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(b)
( 3
5

)24

( 3
5

)24 + 9( 1
2

)24
⇡ 0.898

while
( 3
5

)25

( 3
5

)25 + 9( 1
2

)25
⇡ 0.914,

so 25 flips are needed.

(c)

P (A
n+1

|D
n

) =
P (D

n+1

)

P (D
n

)
=

P (D
n+1

|B)P (B) + P (D
n+1

|F )P (F )

P (D
n

|B)P (B) + P (D
n

|F )P (F )

=
( 3
5

)n+1

1

10

+ ( 1
2

)n+1

9

10

( 3
5

)n 1

10

+ ( 1
2

)n 9

10

.

(d) Intuitively speaking, an unending sequence of tails would push the probability
of a biased coin to 1, and hence the probability of the next tails is 3/5. For a
rigorous calculation we take the limit of the previous answer:

lim
n!1

P (A
n+1

|D
n

) = lim
n!1

( 3
5

)n+1

1

10

+ ( 1
2

)n+1

9

10

( 3
5

)n 1

10

+ ( 1
2

)n 9

10

= lim
n!1

3

5

+ 9

2

( 5
6

)n+1

1 + 9( 5
6

)n
=

3

5
.

2.72. The sample space for n trials is the same, regardless of the probabilities,
namely the space of ordered n-tuples of zeros and ones:

⌦ = {! = (s
1

, . . . , s
n

) : each s
i

equals 0 or 1}.
By independence, the probability of a sample point ! = (s

1

, . . . , s
n

) is obtained by
multiplying together a factor p

i

for each s
i

= 1 and 1� p
i

for each s
i

= 0. We can
express this in a single formula as follows:

P{(s
1

, . . . , s
n

)} =
nY

i=1

�
psi
i

(1� p
i

)1�s

i

�
.

2.73. Let X be the number of blond customers at the pancake place. The popula-
tion of the town is 500, and 100 of them are blond. We may assume that the visitors
are chosen randomly from the population, which means that we take a sample of
size 14 without replacement from the population. X denotes the number of blonds
among this sample. This is exactly the setup for the hypergeometric distribution
and X ⇠ Hypergeom(500, 100, 14). (Because the total population size is N = 500,
the number of blonds is N

A

= 100 and we take a sample of n = 14.) We can now
use the probability mass function of the hypergeometric distribution to answer the
two questions.
(a)

P (exactly 10 blonds) = P (X = 10) =

�
100

10

��
400

4

�
�
500

14

� ⇡ 0.00003122.

(b)

P (at most 2 blonds) = P (X  2) =
2X

k=0

P (X = k) =
2X

k=0

�
100

k

��
400

14�k

�
�
500

14

�

⇡ 0.4458.
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2.74. Define events: D = {Steve is a drug user}, A
1

= {Steve fails the first drug test}
and A

2

= {Steve fails the second drug test}. Assume that Steve is no more or less
likely to be a drug user than a random person from the company, so P (D) =
0.01. The data about the reliability of the tests tells us that P (A

i

|D) = 0.99
and P (A

i

|Dc) = 0.02 for i = 1, 2, and conditional independence P (A
1

A
2

|D) =
P (A

1

|D)P (A
2

|D) and also the same under conditioning on Dc.

(a)

P (D|A
1

) =
P (A

1

|D)P (D)

P (A
1

|D)P (D) + P (A
1

|Dc)P (Dc)
=

99

100

· 1

100

99

100

· 1

100

+ 2

100

· 99

100

=
1

3

(b)

P (A
2

|A
1

) =
P (A

1

A
2

)

P (A
1

)
=

P (A
1

A
2

|D)P (D) + P (A
1

A
2

|Dc)P (Dc)

P (A
1

|D)P (D) + P (A
1

|Dc)P (Dc)

=

�
99

100

�
2 · 1

100

+
�

2

100

�
2 · 99

100

99

100

· 1

100

+ 2

100

· 99

100

=
103

300
⇡ 0.3433.

(c)

P (D|A
1

A
2

) =
P (A

1

A
2

|D)P (D)

P (A
1

A
2

|D)P (D) + P (A
1

A
2

|Dc)P (Dc)

=

�
99

100

�
2 · 1

100�
99

100

�
2 · 1

100

+
�

2

100

�
2 · 99

100

=
99

103
⇡ 0.9612.

2.75. We introduce the following events:

A = {the store gets its phones from factory II},
B

i

= {the ith phone is defective}, i = 1, 2.

Then Ac is the event that the phone is from factory I. We know that

P (A) = 0.4 =
2

5
, P (Ac) = 0.6 =

3

5
, P (B

i

|A) = 0.2 =
1

5
, P (B

i

|Ac) = 0.1 =
1

10
.

We need to compute P (A|B
1

B
2

). By Bayes’ theorem,

P (A|B
1

B
2

) =
P (B

1

B
2

|A) · P (A)

P (B
1

B
2

|A)P (A) + P (B
1

B
2

|Ac)P (Ac)
.

Wemay assume that conditionally on A the events B
1

and B
2

are independent. This
means that given that the store gets its phones from factory II, the defectiveness of
the phones stocked there are independent. We may also assume that conditionally
on Ac the events B

1

and B
2

are independent. Then

P (B
1

B
2

|A) = P (B
1

|A)P (B
2

|A) = ( 1
5

)2, P (B
1

B
2

|Ac) = P (B
1

|Ac)P (B
2

|Ac) = ( 1

10

)2

and

P (A|B
1

B
2

) =
( 1
5

)2 · 2

5

( 1
5

)2 · 2

5

+ ( 1

10

)2 · 3

5

=
8

11
⇡ 0.7273.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781108415859-SOLUTIONS-5/

