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26 CHAPTER 2. ELECTROSTATICS

Chapter 2

Electrostatics

Problem 2.1

(a) Zero.

(b) F =
1

4πε0
qQ

r2
, where r is the distance from center to each numeral. F points toward the missing q.

Explanation: by superposition, this is equivalent to (a), with an extra −q at 6 o’clock—since the force of all
twelve is zero, the net force is that of −q only.

(c) Zero.

(d)
1

4πε0
qQ

r2
, pointing toward the missing q. Same reason as (b). Note, however, that if you explained (b) as

a cancellation in pairs of opposite charges (1 o’clock against 7 o’clock; 2 against 8, etc.), with one unpaired q
doing the job, then you’ll need a different explanation for (d).

Problem 2.2

This time the “vertical” components cancel, leaving

E = 1
4πε0

2 q

r 2 sin θ x̂, or r

E =
1

4πε0
qd(

z2 +
(

d
2

)2)3/2
x̂.
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From far away, (z � d), the field goes like E ≈ 1
4πε0

qd
z3 ẑ, which, as we shall see, is the field of a dipole. (If we

set d→ 0, we get E = 0, as is appropriate; to the extent that this configuration looks like a single point charge
from far away, the net charge is zero, so E→ 0.)
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28 CHAPTER 2. ELECTROSTATICS

For R� z the second term → 0, so Eplane = 1
4πε0

2πσẑ =
σ

2ε0
ẑ.

For z � R, 1√
R2+z2 = 1

z

(
1 + R2

z2

)−1/2

≈ 1
z

(
1− 1

2
R2

z2

)
, so [ ] ≈ 1

z −
1
z + 1

2
R2

z3 = R2

2z3 ,

and E = 1
4πε0

2πR2σ
2z2 = 1

4πε0

Q
z2 , where Q = πR2σ. X

Problem 2.7
E is clearly in the z direction. From the diagram,
dq = σda = σR2 sin θ dθ dφ,
r 2 = R2 + z2 − 2Rz cos θ,
cosψ = z−R cos θr . r

So

1

Contents

!
x

" y

#
z

φ

R

z

θ

ψ

Ez =
1

4πε0

∫
σR2 sin θ dθ dφ(z − R cos θ)

(R2 + z2 − 2Rz cos θ)3/2
.

∫

dφ = 2π.

=
1

4πε0
(2πR2σ)

∫ π

0

(z − R cos θ) sin θ

(R2 + z2 − 2Rz cos θ)3/2
dθ. Let u = cos θ; du = − sin θ dθ;

{

θ = 0 ⇒ u = +1
θ = π ⇒ u = −1

}

.

=
1

4πε0
(2πR2σ)

∫ 1

−1

z − Ru

(R2 + z2 − 2Rzu)3/2
du. Integral can be done by partial fractions—or look it up.

=
1

4πε0
(2πR2σ)

[
1

z2

zu − R√
R2 + z2 − 2Rzu

]1

−1

=
1

4πε0

2πR2σ

z2

{
(z − R)

|z − R|
−

(−z − R)

|z + R|

}

.

For z > R (outside the sphere), Ez = 1
4πε0

4πR2σ
z2 = 1

4πε0
q
z2 , so E =

1

4πε0

q

z2
ẑ.

For z < R (inside), Ez = 0, so E = 0.

Problem 2.8
According to Prob. 2.7, all shells interior to the point (i.e. at smaller r) contribute as though their charge

were concentrated at the center, while all exterior shells contribute nothing. Therefore:

E(r) =
1

4πε0

Qint

r2
r̂,

where Qint is the total charge interior to the point. Outside the sphere, all the charge is interior, so

E =
1

4πε0

Q

r2
r̂.

Inside the sphere, only that fraction of the total which is interior to the point counts:
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Ez =
1

4πε0

∫
σR2 sin θ dθ dφ(z −R cos θ)
(R2 + z2 − 2Rz cos θ)3/2

.
∫
dφ = 2π.

=
1

4πε0
(2πR2σ)

∫ π

0

(z −R cos θ) sin θ
(R2 + z2 − 2Rz cos θ)3/2

dθ. Let u = cos θ; du = − sin θ dθ;
{
θ = 0⇒ u = +1
θ = π ⇒ u = −1

}
.

=
1

4πε0
(2πR2σ)

∫ 1

−1

z −Ru
(R2 + z2 − 2Rzu)3/2

du. Integral can be done by partial fractions—or look it up.

=
1

4πε0
(2πR2σ)

[
1
z2

zu−R√
R2 + z2 − 2Rzu

]1
−1

=
1

4πε0
2πR2σ

z2

{
(z −R)
|z −R|

− (−z −R)
|z +R|

}
.

For z > R (outside the sphere), Ez = 1
4πε0

4πR2σ
z2 = 1

4πε0

q
z2 , so E =

1
4πε0

q

z2
ẑ.

For z < R (inside), Ez = 0, so E = 0.

Problem 2.8
According to Prob. 2.7, all shells interior to the point (i.e. at smaller r) contribute as though their charge

were concentrated at the center, while all exterior shells contribute nothing. Therefore:

E(r) =
1

4πε0
Qint

r2
r̂,

where Qint is the total charge interior to the point. Outside the sphere, all the charge is interior, so

E =
1

4πε0
Q

r2
r̂.

Inside the sphere, only that fraction of the total which is interior to the point counts:

Qint =
4
3πr

3

4
3πR

3
Q =

r3

R3
Q, so E =

1
4πε0

r3

R3
Q

1
r2

r̂ =
1

4πε0
Q

R3
r.

Problem 2.9
(a) ρ = ε0∇·E = ε0

1
r2

∂
∂r

(
r2 · kr3

)
= ε0

1
r2 k(5r4) = 5ε0kr2.
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CHAPTER 2. ELECTROSTATICS 29

(b) By Gauss’s law: Qenc = ε0
∮

E·da = ε0(kR3)(4πR2) = 4πε0kR5.

By direct integration: Qenc =
∫
ρ dτ =

∫ R

0
(5ε0kr2)(4πr2dr) = 20πε0k

∫ R

0
r4dr = 4πε0kR5.X

Problem 2.10
Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface

of this larger cube gets the same flux as every other one, so:

2

Qint =
4
3πr3

4
3πR3

Q =
r3

R3
Q, so E =

1

4πε0

r3

R3
Q

1

r2
r̂ =

1

4πε0

Q

R3
r.

Problem 2.9

(a) ρ = ε0∇·E = ε0
1
r2

∂
∂r

(

r2 · kr3
)

= ε0
1
r2 k(5r4) = 5ε0kr2.

(b) By Gauss’s law: Qenc = ε0
∮

E·da = ε0(kR3)(4πR2) = 4πε0kR5.

By direct integration: Qenc =
∫

ρ dτ =
∫ R
0 (5ε0kr2)(4πr2dr) = 20πε0k

∫ R
0 r4dr = 4πε0kR5.!

Problem 2.10
Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface

of this larger cube gets the same flux as every other one, so:

∫

one
face

E·da =
1

24

∫

whole
large
cube

E·da.

The latter is 1
ε0

q, by Gauss’s law. Therefore

∫

one
face

E·da =
q

24ε0
.

Problem 2.11

!
r

"
Gaussian surface: Inside:

∮

E·da = E(4πr2) = 1
ε0

Qenc = 0 ⇒ E = 0.

! Gaussian surface: Outside: E(4πr2) = 1
ε0

(σ4πR2) ⇒ E =
σR2

ε0r2
r̂.
} (As in Prob. 2.7.)

Problem 2.12

#r

$
R

"
Gaussian surface

∮

E·da = E · 4πr2 = 1
ε0

Qenc = 1
ε0

4
3πr3ρ. So

E =
1

3ε0
ρrr̂.

Since Qtot = 4
3πR2ρ, E = 1

4πε0
Q
R3 r̂ (as in Prob. 2.8).

Problem 2.13

%s

︸ ︷︷ ︸

l

&

Gaussian surface ∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

λl. So

E =
λ

2πε0s
ŝ (same as Ex. 2.1).

Problem 2.14
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∫
one
face

E·da =
1
24

∫
whole
large
cube

E·da.

The latter is 1
ε0
q, by Gauss’s law. Therefore

∫
one
face

E·da =
q

24ε0
.

Problem 2.11

2

Qint =
4
3πr3

4
3πR3

Q =
r3

R3
Q, so E =

1

4πε0

r3

R3
Q

1

r2
r̂ =

1

4πε0

Q

R3
r.
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∂
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(
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)

= ε0
1
r2 k(5r4) = 5ε0kr2.

(b) By Gauss’s law: Qenc = ε0
∮

E·da = ε0(kR3)(4πR2) = 4πε0kR5.

By direct integration: Qenc =
∫

ρ dτ =
∫ R
0 (5ε0kr2)(4πr2dr) = 20πε0k

∫ R
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∫

one
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1

24

∫

whole
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E·da.

The latter is 1
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q, by Gauss’s law. Therefore

∫

one
face

E·da =
q

24ε0
.

Problem 2.11

!
r

"
Gaussian surface: Inside:

∮

E·da = E(4πr2) = 1
ε0

Qenc = 0 ⇒ E = 0.

! Gaussian surface: Outside: E(4πr2) = 1
ε0

(σ4πR2) ⇒ E =
σR2
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r̂.
} (As in Prob. 2.7.)

Problem 2.12

#r

$
R

"
Gaussian surface

∮

E·da = E · 4πr2 = 1
ε0

Qenc = 1
ε0

4
3πr3ρ. So

E =
1

3ε0
ρrr̂.

Since Qtot = 4
3πR2ρ, E = 1

4πε0
Q
R3 r̂ (as in Prob. 2.8).

Problem 2.13

%s
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l

&

Gaussian surface ∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

λl. So

E =
λ

2πε0s
ŝ (same as Ex. 2.1).

Problem 2.14
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Problem 2.12

2

Qint =
4
3πr3

4
3πR3

Q =
r3

R3
Q, so E =

1

4πε0

r3

R3
Q

1

r2
r̂ =

1

4πε0

Q

R3
r.

Problem 2.9

(a) ρ = ε0∇·E = ε0
1
r2

∂
∂r

(

r2 · kr3
)

= ε0
1
r2 k(5r4) = 5ε0kr2.

(b) By Gauss’s law: Qenc = ε0
∮

E·da = ε0(kR3)(4πR2) = 4πε0kR5.

By direct integration: Qenc =
∫

ρ dτ =
∫ R
0 (5ε0kr2)(4πr2dr) = 20πε0k

∫ R
0 r4dr = 4πε0kR5.!

Problem 2.10
Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface

of this larger cube gets the same flux as every other one, so:

∫

one
face

E·da =
1

24

∫

whole
large
cube

E·da.

The latter is 1
ε0

q, by Gauss’s law. Therefore

∫

one
face

E·da =
q

24ε0
.

Problem 2.11

!
r

"
Gaussian surface: Inside:

∮

E·da = E(4πr2) = 1
ε0

Qenc = 0 ⇒ E = 0.

! Gaussian surface: Outside: E(4πr2) = 1
ε0

(σ4πR2) ⇒ E =
σR2

ε0r2
r̂.
} (As in Prob. 2.7.)

Problem 2.12

#r

$
R

"
Gaussian surface

∮

E·da = E · 4πr2 = 1
ε0

Qenc = 1
ε0

4
3πr3ρ. So

E =
1

3ε0
ρrr̂.

Since Qtot = 4
3πR2ρ, E = 1

4πε0
Q
R3 r̂ (as in Prob. 2.8).

Problem 2.13

%s
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l

&

Gaussian surface ∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

λl. So

E =
λ

2πε0s
ŝ (same as Ex. 2.1).
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∮
E·da = E · 4πr2 = 1

ε0
Qenc = 1

ε0
4
3πr

3ρ. So

E =
1

3ε0
ρrr̂.

Since Qtot = 4
3πR

3ρ, E = 1
4πε0

Q
R3 r̂ (as in Prob. 2.8).

Problem 2.13

1

Contents

Problem 2.13

!s

︸ ︷︷ ︸

l

"

Gaussian surface ∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

λl. So

E =
λ

2πε0s
ŝ (same as Ex. 2.1).

Problem 2.14

#r $
Gaussian surface

Problem 2.15

(i) Qenc = 0, so E = 0.

(ii)
∮

E·da = E(4πr2) = 1
ε0

Qenc = 1
ε0

∫

ρ dτ = 1
ε0

∫
k
r̄2 r̄2 sin θ dr̄ dθ dφ

= 4πk
ε0

∫ r
a dr̄ = 4πk

ε0
(r − a) ∴ E =

k

ε0

(
r − a

r2

)

r̂.

(iii) E(4πr2) = 4πk
ε0

∫ b
a dr̄ = 4πk

ε0
(b − a), so

E =
k

ε0

(
b − a

r2

)

r̂.

%
r

!|E|

a b

Problem 2.16
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∮
E·da = E · 2πs · l = 1

ε0
Qenc = 1

ε0
λl. So

E =
λ

2πε0s
ŝ (same as Eq. 2.9).

Problem 2.14

1

Contents

Problem 2.13

!s

︸ ︷︷ ︸

l

"

Gaussian surface ∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

λl. So

E =
λ

2πε0s
ŝ (same as Ex. 2.1).

Problem 2.14

#r $
Gaussian surface

Problem 2.15

(i) Qenc = 0, so E = 0.

(ii)
∮

E·da = E(4πr2) = 1
ε0

Qenc = 1
ε0

∫

ρ dτ = 1
ε0

∫
k
r̄2 r̄2 sin θ dr̄ dθ dφ

= 4πk
ε0

∫ r
a dr̄ = 4πk

ε0
(r − a) ∴ E =

k

ε0

(
r − a

r2

)

r̂.

(iii) E(4πr2) = 4πk
ε0

∫ b
a dr̄ = 4πk

ε0
(b − a), so

E =
k

ε0

(
b − a

r2

)

r̂.

%
r

!|E|

a b

Problem 2.16
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∮
E·da = E · 4πr2 = 1

ε0
Qenc = 1

ε0

∫
ρ dτ = 1

ε0

∫
(kr̄)(r̄2 sin θ dr̄ dθ dφ)

= 1
ε0
k 4π

∫ r

0
r̄3dr̄ = 4πk

ε0
r4

4 = πk
ε0
r4.

∴ E =
1

4πε0
πkr2r̂.

 l
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30 CHAPTER 2. ELECTROSTATICS

Problem 2.15
(i) Qenc = 0, so E = 0.

(ii)
∮

E·da = E(4πr2) = 1
ε0
Qenc = 1

ε0

∫
ρ dτ = 1

ε0

∫
k
r̄2 r̄

2 sin θ dr̄ dθ dφ

= 4πk
ε0

∫ r

a
dr̄ = 4πk

ε0
(r − a) ∴ E =

k

ε0

(
r − a
r2

)
r̂.

(iii) E(4πr2) = 4πk
ε0

∫ b

a
dr̄ = 4πk

ε0
(b− a), so

E =
k

ε0

(
b− a
r2

)
r̂.

1

Contents

Problem 2.13

!s

︸ ︷︷ ︸

l

"

Gaussian surface ∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

λl. So

E =
λ

2πε0s
ŝ (same as Ex. 2.1).

Problem 2.14

#r $
Gaussian surface

Problem 2.15

(i) Qenc = 0, so E = 0.

(ii)
∮

E·da = E(4πr2) = 1
ε0

Qenc = 1
ε0

∫

ρ dτ = 1
ε0

∫
k
r̄2 r̄2 sin θ dr̄ dθ dφ

= 4πk
ε0

∫ r
a dr̄ = 4πk

ε0
(r − a) ∴ E =

k

ε0

(
r − a

r2

)

r̂.

(iii) E(4πr2) = 4πk
ε0

∫ b
a dr̄ = 4πk

ε0
(b − a), so

E =
k

ε0

(
b − a

r2

)

r̂.

%
r

!|E|

a b

Problem 2.16
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Problem 2.16

(i)

1

Contents

Problem 2.13

Problem 2.16

(i)

l

! Gaussian surface
∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

ρπs2l;

E =
ρs

2ε0
ŝ.

(ii)

l

! Gaussian surface"
s ∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

ρπa2l;

E =
ρa2

2ε0s
ŝ.

(iii)

l

! Gaussian surface
"

s
∮

E·da = E · 2πs · l = 1
ε0

Qenc = 0;

E = 0.

#
s

"|E|

a b
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∮
E·da = E · 2πs · l = 1

ε0
Qenc = 1

ε0
ρπs2l;

E =
ρs

2ε0
ŝ.

(ii)

1

Contents

Problem 2.13

Problem 2.16

(i)

l

! Gaussian surface
∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

ρπs2l;

E =
ρs

2ε0
ŝ.

(ii)

l

! Gaussian surface"
s ∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

ρπa2l;

E =
ρa2

2ε0s
ŝ.

(iii)

l

! Gaussian surface
"

s
∮

E·da = E · 2πs · l = 1
ε0

Qenc = 0;

E = 0.

#
s

"|E|

a b
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∮
E·da = E · 2πs · l = 1

ε0
Qenc = 1

ε0
ρπa2l;

E =
ρa2

2ε0s
ŝ.

(iii)

1

Contents

Problem 2.13

Problem 2.16

(i)

l

! Gaussian surface
∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

ρπs2l;

E =
ρs

2ε0
ŝ.

(ii)

l

! Gaussian surface"
s ∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

ρπa2l;

E =
ρa2

2ε0s
ŝ.

(iii)

l

! Gaussian surface
"

s
∮

E·da = E · 2πs · l = 1
ε0

Qenc = 0;

E = 0.

#
s

"|E|

a b
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∮
E·da = E · 2πs · l = 1

ε0
Qenc = 0;

E = 0.

1
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Problem 2.13

Problem 2.16

(i)

l

! Gaussian surface
∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

ρπs2l;

E =
ρs

2ε0
ŝ.

(ii)

l

! Gaussian surface"
s ∮

E·da = E · 2πs · l = 1
ε0

Qenc = 1
ε0

ρπa2l;

E =
ρa2

2ε0s
ŝ.

(iii)

l

! Gaussian surface
"

s
∮

E·da = E · 2πs · l = 1
ε0

Qenc = 0;

E = 0.

#
s

"|E|

a b
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Problem 2.17 On the x z plane E = 0 by symmetry. Set up a Gaussian “pillbox” with one face in this plane
and the other at y.

1

Contents

Problem 2.17

On the x z plane E = 0 by symmetry. Set up a Gaussian “pillbox” with one face in this plane and the
other at y.

y! "

#

Gaussian pillbox

Qenc = 1
ε0

Adρ ⇒ E =
ρ

ε0
d ŷ (for y > d).

!

$E

y
−d

d

ρd
ε0

Problem 2.18

From Prob. 2.12, the field inside the positive sphere is E+ = ρ
3ε0

r+, where r+ is the vector from the positive
center to the point in question. Likewise, the field of the negative sphere is − ρ

3ε0
r−. So the total field is

E =
ρ

3ε0
(r+ − r−)

But (see diagram) r+ − r− = d. So E =
ρ

3ε0
d.

% &"

+

−
r+

r−

d

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
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∫
E·da = E ·A = 1

ε0
Qenc = 1

ε0
Ayρ;

E =
ρ

ε0
y ŷ (for |y| < d).
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Qenc = 1
ε0
Adρ⇒ E =

ρ

ε0
d ŷ (for y > d).

2

Problem 2.17

On the x z plane E = 0 by symmetry. Set up a Gaussian “pillbox” with one face in this plane and the
other at y.

y! "

#

Gaussian pillbox
∫

E·da = E · A = 1
ε0

Qenc = 1
ε0

Ayρ;

E =
ρ

ε0
y ŷ (for |y| < d).

Qenc = 1
ε0

Adρ ⇒ E =
ρ

ε0
d ŷ (for y > d).

!

$E

y
−d

d

ρd
ε0

Problem 2.18
From Prob. 2.12, the field inside the positive sphere is E+ = ρ

3ε0
r+, where r+ is the vector from the positive

center to the point in question. Likewise, the field of the negative sphere is − ρ
3ε0

r−. So the total field is

E =
ρ

3ε0
(r+ − r−)

But (see diagram) r+ − r− = d. So E =
ρ

3ε0
d.

% &"

+

−
r+

r−

d

Problem 2.19

∇×E =
1

4πε0
∇×

∫
η̂̂η̂η

η2
ρ dτ =

1

4πε0

∫ [

∇×

(
η̂̂η̂η

η2

)]

ρ dτ (since ρ depends on r′, not r)

= 0 (since ∇×

(
η̂̂η̂η

η2

)

= 0, from Prob. 1.62).

Problem 2.20

(1) ∇×E1 = k

∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

xy 2yz 3zx

∣
∣
∣
∣
∣
∣

= k [x̂(0 − 2y) + ŷ(0 − 3z) + ẑ(0 − x)] #= 0,

so E1 is an impossible electrostatic field.

(2) ∇×E2 = k

∣
∣
∣
∣
∣
∣

x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

y2 2xy + z2 2yz

∣
∣
∣
∣
∣
∣

= k [x̂(2z − 2z) + ŷ(0 − 0) + ẑ(2y − 2y)] = 0,

so E2 is a possible electrostatic field.
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Problem 2.18
From Prob. 2.12, the field inside the positive sphere is E+ = ρ

3ε0
r+, where r+ is the vector from the positive

center to the point in question. Likewise, the field of the negative sphere is − ρ
3ε0

r−. So the total field is

E =
ρ

3ε0
(r+ − r−)

But (see diagram) r+ − r− = d. So E =
ρ

3ε0
d. r

r
�
�
��

���
���*

�

+

−r+

r−

d

Problem 2.19

∇×E =
1

4πε0
∇×

∫ r̂
r 2

ρ dτ =
1

4πε0

∫ [
∇×

( r̂
r 2

)]
ρ dτ (since ρ depends on r′, not r)

= 0 (since ∇×
( r̂

r 2

)
= 0, from Prob. 1.63).

Problem 2.20

(1) ∇×E1 = k

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

xy 2yz 3zx

∣∣∣∣∣∣ = k [x̂(0− 2y) + ŷ(0− 3z) + ẑ(0− x)] 6= 0,

so E1 is an impossible electrostatic field.

(2) ∇×E2 = k

∣∣∣∣∣∣
x̂ ŷ ẑ
∂
∂x

∂
∂y

∂
∂z

y2 2xy + z2 2yz

∣∣∣∣∣∣ = k [x̂(2z − 2z) + ŷ(0− 0) + ẑ(2y − 2y)] = 0,

so E2 is a possible electrostatic field.

Let’s go by the indicated path:

�
�

�
�

�=
x

- y

6
z

�
�

��=

I
-

II

6

III

r(x0, y0, z0)E·dl = (y2 dx+ (2xy + z2)dy + 2yz dz)k

Step I: y = z = 0; dy = dz = 0. E·dl = ky2 dx = 0.
Step II: x = x0, y : 0→ y0, z = 0. dx = dz = 0.

E·dl = k(2xy + z2)dy = 2kx0y dy.∫
II

E·dl = 2kx0

∫ y0

0
y dy = kx0y

2
0 .

Step III : x = x0, y = y0, z : 0→ z0; dx = dy = 0.
E·dl = 2kyz dz = 2ky0z dz.
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∫
III

E·dl = 2y0k
∫ z0

0
z dz = ky0z

2
0 .

V (x0, y0, z0) = −
(x0,y0,z0)∫

0

E·dl = −k(x0y
2
0 + y0z

2
0), or V (x, y, z) = −k(xy2 + yz2).

Check : −∇V =k[ ∂
∂x (xy2+yz2) x̂+ ∂

∂y (xy2+yz2) ŷ+ ∂
∂z (xy2+yz2) ẑ]=k[y2 x̂+(2xy+z2) ŷ+2yz ẑ]=E. X

Problem 2.21

V (r) = −
∫ r

∞E·dl.


Outside the sphere (r > R) : E = 1

4πε0

q
r2 r̂.

Inside the sphere (r < R) : E = 1
4πε0

q
R3 rr̂.

So for r > R: V (r) = −
∫ r

∞

(
1

4πε0

q
r̄2

)
dr̄ = 1

4πε0
q
(

1
r̄

)∣∣∣r
∞

=
q

4πε0
1
r
,

and for r < R: V (r) = −
∫ R

∞

(
1

4πε0

q
r̄2

)
dr̄ −

∫ r

R

(
1

4πε0

q
R3 r̄

)
dr̄ = q

4πε0

[
1
R −

1
R3

(
r2−R2

2

)]
=

q

4πε0
1

2R

(
3− r2

R2

)
.

When r > R, ∇V = q
4πε0

∂
∂r

(
1
r

)
r̂ = − q

4πε0
1
r2 r̂, so E = −∇V = q

4πε0
1
r2 r̂.X

When r < R, ∇V = q
4πε0

1
2R

∂
∂r

(
3− r2

R2

)
r̂ = q

4πε0
1

2R

(
− 2r

R2

)
r̂ = − q

4πε0
r

R3 r̂; so E = −∇V = 1
4πε0

q
R3 rr̂.X

0.5 1 1.5 2 2.5 3

0.2

0.4

0.6

0.8

1

1.2

1.4

1.6

r

V(r)

(In the figure, r is in units of R, and V (r) is in units of q/4πε0R.)

Problem 2.22

E = 1
4πε0

2λ
s ŝ (Prob. 2.13). In this case we cannot set the reference point at ∞, since the charge itself

extends to ∞. Let’s set it at s = a. Then

V (s) = −
∫ s

a

(
1

4πε0
2λ
s̄

)
ds̄ = − 1

4πε0
2λ ln

( s
a

)
.

(In this form it is clear why a =∞ would be no good—likewise the other “natural” point, a = 0.)

∇V = − 1
4πε0

2λ ∂
∂s

(
ln
(

s
a

))
ŝ = − 1

4πε0
2λ 1

s ŝ = −E.X

Problem 2.23

V (0) = −
∫ 0

∞E·dl = −
∫ b

∞
(

k
ε0

(b−a)
r2

)
dr −

∫ a

b

(
k
ε0

(r−a)
r2

)
dr −

∫ 0

a
(0)dr = k

ε0

(b−a)
b − k

ε0

(
ln
(

a
b

)
+ a

(
1
a −

1
b

))
= k

ε0

{
1− a

b − ln
(

a
b

)
− 1 + a

b

}
=

k

ε0
ln
(
b

a

)
.

Problem 2.24
Using Eq. 2.22 and the fields from Prob. 2.16:

V (b)− V (0) = −
∫ b

0
E·dl = −

∫ a

0
E·dl−

∫ b

a
E·dl = − ρ

2ε0

∫ a

0
s ds− ρa2

2ε0

∫ b

a
1
sds
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= −
(

ρ
2ε0

)
s2

2

∣∣∣a
0
− ρa2

2ε0
ln s|ba = −ρa

2

4ε0

(
1 + 2 ln

(
b

a

))
.

Problem 2.25

(a) V =
1

4πε0
2q√

z2 +
(

d
2

)2 .
(b) V = 1

4πε0

∫ L

−L
λ dx√
z2+x2 = λ

4πε0
ln(x+

√
z2 + x2)

∣∣L
−L

=
λ

4πε0
ln

[
L+
√
z2 + L2

−L+
√
z2 + L2

]
=

λ

2πε0
ln

L+
√
z2 + L2

z

)
. r

1

Contents

Problem 2.25

(a) V =
1

4πε0

2q
√

z2 +
(

d
2

)2
.

(b) V = 1
4πε0

∫ L
−L

λ dx√
z2+x2

= λ
4πε0

ln(x +
√

z2 + x2)
∣
∣
L

−L

=
λ

4πε0
ln

[

L +
√

z2 + L2

−L +
√

z2 + L2

]

= λ
2πε0

ln
(

L+
√

z2+L2

z

)

.

x

z

(c) V = 1
4πε0

∫ R
0

σ 2πr dr√
r2+z2

= 1
4πε0

2πσ (
√

r2 + z2)
∣
∣
R

0
=

σ

2ε0

(√

R2 + z2 − z
)

.

In each case, by symmetry ∂V
∂y = ∂V

∂x = 0. ∴ E = −∂V
∂z ẑ.

(a) E = − 1
4πε0

2q
(

− 1
2

)
2z

“

z2+( d
2 )

2
”3/2 ẑ =

1

4πε0

2qz
(

z2 +
(

d
2

)2)3/2
ẑ (agrees with Prob. 2.2a).

(b) E = − λ
4πε0

{
1

(L+
√

z2+L2)
1
2

1√
z2+L2

2z − 1
(−L+

√
z2+L2)

1
2

1√
z2+L2

2z
}

ẑ

= − λ
4πε0

z√
z2+L2

{
−L+

√
z2+L2−L−

√
z2+L2

(z2+L2)−L2

}

ẑ =
2Lλ

4πε0

1

z
√

z2 + L2
ẑ (agrees with Ex. 2.1).

(c) E = − σ
2ε0

{
1
2

1√
R2+z2

2z − 1
}

ẑ =
σ

2ε0

[

1 −
z√

R2 + z2

]

ẑ (agrees with Prob. 2.6).

If the right-hand charge in (a) is −q, then V = 0 , which, naively, suggests E = −∇V = 0, in contradiction
with the answer to Prob. 2.2b. The point is that we only know V on the z axis, and from this we cannot
hope to compute Ex = −∂V

∂x or Ey = −∂V
∂y . That was OK in part (a), because we knew from symmetry that

Ex = Ey = 0. But now E points in the x direction, so knowing V on the z axis is insufficient to determine E.
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(c) V =
1

4πε0

∫ R

0

σ 2πr dr√
r2 + z2

=
1

4πε0
2πσ (

√
r2 + z2)

∣∣∣R
0

=
σ

2ε0

(√
R2 + z2 − z

)
.

In each case, by symmetry ∂V
∂y = ∂V

∂x = 0. ∴ E = −∂V
∂z ẑ.

(a) E = − 1
4πε0

2q
(
−1

2

)
2z(

z2 +
(

d
2

)2)3/2
ẑ =

1
4πε0

2qz(
z2 +

(
d
2

)2)3/2
ẑ (agrees with Ex. 2.1).

(b) E = − λ

4πε0

{
1

(L+
√
z2 + L2)

1
2

1√
z2 + L2

2z − 1
(−L+

√
z2 + L2)

1
2

1√
z2 + L2

2z
}

ẑ

= − λ

4πε0
z√

z2 + L2

{
−L+

√
z2 + L2 − L−

√
z2 + L2

(z2 + L2)− L2

}
ẑ =

2Lλ
4πε0

1
z
√
z2 + L2

ẑ (agrees with Ex. 2.2).

(c) E = − σ

2ε0

{
1
2

1√
R2 + z2

2z − 1
}

ẑ =
σ

2ε0

[
1− z√

R2 + z2

]
ẑ (agrees with Prob. 2.6).

If the right-hand charge in (a) is −q, then V = 0 , which, naively, suggests E = −∇V = 0, in contradiction
with the answer to Prob. 2.2. The point is that we only know V on the z axis, and from this we cannot hope
to compute Ex = −∂V

∂x or Ey = −∂V
∂y . That was OK in part (a), because we knew from symmetry that

Ex = Ey = 0. But now E points in the x direction, so knowing V on the z axis is insufficient to determine E.

Problem 2.26

2

!

"

a

b
h

h
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r

r̄

V (a) =
1

4πε0

∫ √
2h

0

(
σ2πr
r

)
dr =

2πσ
4πε0

1√
2
(
√

2h) =
σh

2ε0
(where r = r /

√
2)
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V (b) =
1

4πε0

∫ √
2h

0

(
σ2πr
r̄

)
dr (where r̄ =

√
h2 + r 2 −

√
2hr )

=
2πσ
4πε0

1√
2

∫ √
2h

0

r√
h2 + r 2 −

√
2hr

dr

=
σ

2
√

2ε0

[√
h2 + r 2 −

√
2hr +

h√
2

ln(2
√
h2 + r 2 −

√
2hr + 2r −

√
2h)
]∣∣∣∣∣
√

2h

0

=
σ

2
√

2ε0

[
h+

h√
2

ln(2h+ 2
√

2h−
√

2h)− h− h√
2

ln(2h−
√

2h)
]

=
σ

2
√

2ε0

h√
2

[
ln(2h+

√
2h)− ln(2h−

√
2h)
]

=
σh

4ε0
ln

2 +
√

2
2−
√

2

)
=
σh

4ε0
ln

(2 +
√

2)2

2

)

=
σh

2ε0
ln(1 +

√
2). ∴ V (a)− V (b) =

σh

2ε0

[
1− ln(1 +

√
2)
]
.

Problem 2.27

3

Problem 2.27

︷ ︸︸ ︷
z−L

2

︸ ︷︷ ︸

x

︷ ︸︸ ︷
L

dx
! "

Cut the cylinder into slabs, as shown in the figure, and
use result of Prob. 2.25c, with z → x and σ → ρ dx:

V = ρ
2ε0

z+L/2∫

z−L/2

(√
R2 + x2 − x

)

dx

= ρ
2ε0

1
2

[

x
√

R2 + x2 + R2 ln(x +
√

R2 + x2) − x2
]∣
∣
z+L/2

z−L/2

= ρ
4ε0

8

<

:

(z+ L
2 )

q

R2+(z+ L
2 )2−(z−L

2 )
q

R2+(z−L
2 )2

+R2 ln

2

4

z+ L
2

+

r

R2+(z+ L
2 )2

z−
L
2

+

r

R2+(z−
L
2 )2

3

5−2zL

9

=

;

.

(Note: −
(

z + L
2

)2
+

(

z − L
2

)2
= −z2 − zL − L2

4 + z2 − zL + L2

4 = −2zL.)

E = −∇V = −ẑ
∂V

∂z
= −

ẑρ

4ε0

{√

R2 +

(

z +
L

2

)2

+

(

z + L
2

)2

√

R2 +
(

z + L
2

)2
−

√

R2 +

(

z −
L

2

)2

−
(

z − L
2

)2

√

R2 +
(

z − L
2

)2

+ R2

[ 1 +
z+ L

2
q

R2+(z+ L
2 )2

z + L
2 +

√

R2 +
(

z + L
2

)2
−

1 +
z−L

2
q

R2+(z−L
2 )2

z − L
2 +

√

R2 +
(

z − L
2

)2

︸ ︷︷ ︸

1
√

R2 +
(

z + L
2

)2
−

1
√

R2 +
(

z − L
2

)2

]

− 2L

}

E = −
ẑρ

4ε0






2

√

R2 +

(

z +
L

2

)2

− 2

√

R2 +

(

z −
L

2

)2

− 2L







=
ρ

2ε0



L −

√

R2 +

(

z +
L

2

)2

+

√

R2 +

(

z −
L

2

)2


 ẑ.

Problem 2.28

Orient axes so P is on z axis.

#x

! y

$
z

φ

r

P

z
θ

V = 1
4πε0

∫ ρ
η dτ.

{

Here ρ is constant, dτ = r2 sin θ dr dθ dφ,
η =

√
z2 + r2 − 2rz cos θ.

V = ρ
4πε0

∫ r2 sin θ dr dθ dφ√
z2+r2−2rz cos θ

;
∫ 2π
0 dφ = 2π.

∫ π
0

sin θ√
z2+r2−2rz cos θ

dθ = 1
rz

(√
r2 + z2 − 2rz cos θ

)∣
∣
π

0
= 1

rz

(√
r2 + z2 + 2rz −

√
r2 + z2 − 2rz

)

= 1
rz (r + z − |r − z|) =

{

2/z , if r < z,
2/r , if r > z.

}
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Cut the cylinder into slabs, as shown in the figure, and
use result of Prob. 2.25c, with z → x and σ → ρ dx:

V = ρ
2ε0

z+L/2∫
z−L/2

(√
R2 + x2 − x

)
dx

= ρ
2ε0

1
2

[
x
√
R2 + x2 +R2 ln(x+

√
R2 + x2)− x2

]∣∣z+L/2

z−L/2

= ρ
4ε0

8<:(z+ L
2 )

q
R2+(z+ L

2 )2−(z−L
2 )

q
R2+(z−L

2 )2
+R2 ln

24 z+ L
2 +

r
R2+(z+ L

2 )2

z−L
2 +

r
R2+(z−L

2 )2

35−2zL

9=;.

(Note: −
(
z + L

2

)2
+
(
z − L

2

)2
= −z2 − zL− L2

4 + z2 − zL+ L2

4 = −2zL.)

E = −∇V = −ẑ
∂V

∂z
= − ẑρ

4ε0

{√
R2 +

(
z +

L

2

)2

+

(
z + L

2

)2√
R2 +

(
z + L

2

)2−
√
R2 +

(
z − L

2

)2

−
(
z − L

2

)2√
R2 +

(
z − L

2

)2
+ R2

[ 1 + z+ L
2q

R2+(z+ L
2 )2

z + L
2 +

√
R2 +

(
z + L

2

)2 −
1 + z−L

2q
R2+(z−L

2 )2

z − L
2 +

√
R2 +

(
z − L

2

)2︸ ︷︷ ︸
1√

R2 +
(
z + L

2

)2 − 1√
R2 +

(
z − L

2

)2

]
− 2L

}

E = − ẑρ
4ε0

2

√
R2 +

(
z +

L

2

)2

− 2

√
R2 +

(
z − L

2

)2

− 2L


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=
ρ

2ε0

L−
√
R2 +

(
z +

L

2

)2

+

√
R2 +

(
z − L

2

)2
 ẑ.

Problem 2.28
Orient axes so P is on z axis.

1

Hello

!
x

" y

#
z

φ

r

P

z
θ

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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V = 1
4πε0

∫
ρr dτ.

{
Here ρ is constant, dτ = r2 sin θ dr dθ dφ, r

r =
√
z2 + r2 − 2rz cos θ.

V = ρ
4πε0

∫
r2 sin θ dr dθ dφ√
z2+r2−2rz cos θ

;
∫ 2π

0
dφ = 2π.

∫ π

0
sin θ√

z2+r2−2rz cos θ
dθ = 1

rz

(√
r2 + z2 − 2rz cos θ

)∣∣π
0

= 1
rz

(√
r2 + z2 + 2rz −

√
r2 + z2 − 2rz

)
= 1

rz (r + z − |r − z|) =
{

2/z , if r < z,
2/r , if r > z.

}

∴ V = ρ
4πε0
· 2π · 2

{
z∫
0

1
z r

2dr +
R∫
z

1
r r

2dr

}
= ρ

ε0

{
1
z

z3

3 + R2−z2

2

}
= ρ

2ε0

(
R2 − z2

3

)
.

But ρ = q
4
3 πR3 , so V (z) = 1

2ε0

3q
4πR3

(
R2 − z2

3

)
= q

8πε0R

(
3− z2

R2

)
; V (r) =

q

8πε0R

(
3− r2

R2

)
. X

Problem 2.29

∇2V = 1
4πε0
∇2
∫(

ρ
r

)
dτ = 1

4πε0

∫
ρ(r′)

(
∇2 1r

)
dτ (since ρ is a function of r′, not r)

= 1
4πε0

∫
ρ(r′)[−4πδ3(r− r′)] dτ = − 1

ε0
ρ(r). X

Problem 2.30.

(a) Ex. 2.5: Eabove = σ
2ε0

n̂; Ebelow = − σ
2ε0

n̂ (n̂ always pointing up); Eabove −Ebelow = σ
ε0

n̂. X

Ex. 2.6: At each surface, E = 0 one side and E = σ
ε0

other side, so ∆E = σ
ε0
. X

Prob. 2.11: Eout = σR2

ε0r2 r̂ = σ
ε0

r̂ ; Ein = 0 ; so ∆E = σ
ε0

r̂. X

(b) Outside:
∮
E·da = E(2πs)l = 1

ε0
Qenc = σ

ε0
(2πR)l⇒ E = σ

ε0
R
s ŝ = σ

ε0
ŝ (at surface).

Inside: Qenc = 0, so E = 0. ∴ ∆E = σ
ε0

ŝ. X

1

Contents

Problem 2.30.

(a) Ex. 2.4: Eabove = σ
2ε0

n̂; Ebelow = − σ
2ε0

n̂ (n̂ always pointing up); Eabove − Ebelow = σ
ε0

n̂. !

Ex. 2.5: At each surface, E = 0 one side and E = σ
ε0

other side, so ∆E = σ
ε0

. !

Prob. 2.11: Eout = σR2

ε0r2 r̂ = σ
ε0

r̂ ; Ein = 0 ; so ∆E = σ
ε0

r̂. !

(b) Outside:
∮

E·da = E(2πs)l = 1
ε0

Qenc = 1
ε0

(2πR)l ⇒ E = σ
ε0

R
s ŝ = σ

ε0
ŝ (at surface).

Inside: Qenc = 0, so E = 0. ∴ ∆E = σ
ε0

ŝ. !

!
s !R

︸ ︷︷ ︸

l

(c) Vout = R2σ
ε0r = Rσ

ε0
(at surface); Vin = Rσ

ε0
; so Vout = Vin. !

∂Vout

∂r = −R2σ
ε0r2 = − σ

ε0
(at surface); ∂Vin

∂r = 0 ; so ∂Vout

∂r − ∂Vin

∂r = − σ
ε0

. !

Problem 2.31

(a) V = 1
4πε0

∑ qi

rij
= 1

4πε0

{
−q
a + q√

2a
+ −q

a

}

= q
4πε0a

(

−2 + 1√
2

)

.

∴ W4 = qV =
q2

4πε0a

(

−2 +
1
√

2

)

.

(2)
+

(3)
−

(4)
+

(1)
−

(b) W1 = 0, W2 = 1
4πε0

(
−q2

a

)

; W3 = 1
4πε0

(
q2

√
2 a

− q2

a

)

; W4 = (see (a)).

Wtot = 1
4πε0

q2

a

{

−1 + 1√
2
− 1 − 2 + 1√

2

}

=
1

4πε0

2q2

a

(

−2 +
1
√

2

)

.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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(c) Vout = R2σ
ε0r = Rσ

ε0
(at surface); Vin = Rσ

ε0
; so Vout = Vin. X

∂Vout
∂r = −R2σ

ε0r2 = − σ
ε0

(at surface); ∂Vin
∂r = 0 ; so ∂Vout

∂r −
∂Vin
∂r = − σ

ε0
. X
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Problem 2.31

(a) V = 1
4πε0

∑ qi

rij
= 1

4πε0

{
−q
a + q√

2a
+ −q

a

}
= q

4πε0a

(
−2 + 1√

2

)
.

∴ W4 = qV =
q2

4πε0a

(
−2 +

1√
2

)
.

r
(2)

+ r
(3)

−

r(4)

+
r(1)

−

(b) W1 = 0, W2 = 1
4πε0

(
−q2

a

)
; W3 = 1

4πε0

(
q2
√

2 a
− q2

a

)
; W4 = (see (a)).

Wtot = 1
4πε0

q2

a

{
−1 + 1√

2
− 1− 2 + 1√

2

}
=

1
4πε0

2q2

a

(
−2 +

1√
2

)
.

Problem 2.32
Conservation of energy (kinetic plus potential):

1
2
mAv

2
A +

1
2
mBv

2
B +

1
4πε0

qAqB
r

= E.

At release vA = vB = 0, r = a, so

E =
1

4πε0
qAqB
a

.

When they are very far apart (r →∞) the potential energy is zero, so

1
2
mAv

2
A +

1
2
mBv

2
B =

1
4πε0

qAqB
a

.

Meanwhile, conservation of momentum says mAvA = mBvB , or vB = (mA/mB)vA. So

1
2
mAv

2
A +

1
2
mB

(
mA

mB

)2

v2
A =

1
2

(
mA

mB

)
(mA +mB)v2

A =
1

4πε0
qAqB
a

.

vA =

√
1

2πε0
qAqB

(mA +mB)a

(
mB

mA

)
; vB =

√
1

2πε0
qAqB

(mA +mB)a

(
mA

mB

)
.

Problem 2.33
From Eq. 2.42, the energy of one charge is

W =
1
2
qV =

1
2
(2)

∞∑
n=1

1
4πε0

(−1)nq2

na
=

q2

4πε0a

∞∑
1

(−1)n

n
.

(The factor of 2 out front counts the charges to the left as well as to the right of q.) The sum is − ln 2 (you
can get it from the Taylor expansion of ln(1 + x):

ln(1 + x) = x− 1
2
x2 +

1
3
x3 − 1

4
x4 + · · ·

with x = 1. Evidently α = ln 2 .
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Problem 2.34

(a) W = 1
2

∫
ρV dτ . From Prob. 2.21 (or Prob. 2.28): V = ρ

2ε0

(
R2 − r2

3

)
= 1

4πε0

q
2R

(
3− r2

R2

)
W =

1
2
ρ

1
4πε0

q

2R

∫ R

0

(
3− r2

R2

)
4πr2dr =

qρ

4ε0R

[
3
r3

3
− 1
R2

r5

5

]∣∣∣∣R
0

=
qρ

4ε0R

(
R3 − R3

5

)
=

qρ

5ε0
R2 =

qR2

5ε0
q

4
3πR

3
=

1
4πε0

(
3
5
q2

R

)
.

(b) W = ε0
2

∫
E2dτ . Outside (r > R) E = 1

4πε0

q
r2 r̂ ; Inside (r < R) E = 1

4πε0

q
R3 rr̂.

∴ W =
ε0
2

1
(4πε0)2

q2

{∫ ∞

R

1
r4

(r24π dr) +
∫ R

0

( r

R3

)2

(4πr2dr)

}

=
1

4πε0
q2

2

{(
−1
r

)∣∣∣∣∞
R

+
1
R6

(
r5

5

)∣∣∣∣R
0

}
=

1
4πε0

q2

2

(
1
R

+
1

5R

)
=

1
4πε0

3
5
q2

R
.X

(c) W = ε0
2

{ ∮
S VE·da +

∫
V E

2dτ
}
, where V is large enough to enclose all the charge, but otherwise

arbitrary. Let’s use a sphere of radius a > R. Here V = 1
4πε0

q
r .

W =
ε0
2

{ ∫
r=a

(
1

4πε0
q

r

)(
1

4πε0
q

r2

)
r2 sin θ dθ dφ+

∫ R

0

E2dτ +
∫ a

R

(
1

4πε0
q

r2

)2

(4πr2dr)

}

=
ε0
2

{
q2

(4πε0)2
1
a
4π +

q2

(4πε0)2
4π
5R

+
1

(4πε0)2
4πq2

(
−1
r

)∣∣∣∣a
R

}
=

1
4πε0

q2

2

{
1
a

+
1

5R
− 1
a

+
1
R

}
=

1
4πε0

3
5
q2

R
.X

As a → ∞, the contribution from the surface integral
(

1
4πε0

q2

2a

)
goes to zero, while the volume integral(

1
4πε0

q2

2a ( 6a
5R − 1)

)
picks up the slack.

Problem 2.35

2

Problem 2.32

(a) W = 1
2

∫

ρV dτ . From Prob. 2.21 (or Prob. 2.28): V = ρ
2ε0

(

R2 − r2

3

)

= 1
4πε0

q
2R

(

3 − r2

R2

)

W =
1

2
ρ

1

4πε0

q

2R

∫ R

0

(

3 −
r2

R2

)

4πr2dr =
qρ

4ε0R

[

3
r3

3
−

1

R2

r5

5

]∣
∣
∣
∣

R

0

=
qρ

4ε0R

(

R3 −
R3

5

)

=
qρ

5ε0
R2 =

qR2

5ε0

q
4
3πR3

=
1

4πε0

(
3

5

q2

R

)

.

(b) W = ε0
2

∫

E2dτ . Outside (r > R) E = 1
4πε0

q
r2 r̂ ; Inside (r < R) E = 1

4πε0
q

R3 rr̂.

∴ W =
ε0
2

1

(4πε0)2
q2

{
∫ ∞

R

1

r4
(r24π dr) +

∫ R

0

( r

R3

)2
(4πr2dr)

}

=
1

4πε0

q2

2

{(

−
1

r

)∣
∣
∣
∣

∞

R

+
1

R6

(
r5

5

)∣
∣
∣
∣

R

0

}

=
1

4πε0

q2

2

(
1

R
+

1

5R

)

=
1

4πε0

3

5

q2

R
."

(c) W = ε0
2

{ ∮

S V E·da +
∫

V E2dτ
}

, where V is large enough to enclose all the charge, but otherwise
arbitrary. Let’s use a sphere of radius a > R. Here V = 1

4πε0
q
r .

W =
ε0
2

{
∫

r=a

(
1

4πε0

q

r

) (
1

4πε0

q

r2

)

r2 sin θ dθ dφ +

∫ R

0
E2dτ +

∫ a

R

(
1

4πε0

q

r2

)2

(4πr2dr)

}

=
ε0
2

{
q2

(4πε0)2
1

a
4π +

q2

(4πε0)2
4π

5R
+

1

(4πε0)2
4πq2

(

−
1

r

)∣
∣
∣
∣

a

R

}

=
1

4πε0

q2

2

{
1

a
+

1

5R
−

1

a
+

1

R

}

=
1

4πε0

3

5

q2

R
."

As a → ∞, the contribution from the surface integral
(

1
4πε0

q2

2a

)

goes to zero, while the volume integral
(

1
4πε0

q2

2a ( 6a
5R − 1)

)

picks up the slack.

Problem 2.33

q̄

!
r

"
dq̄

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
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dW = dq̄ V = dq̄

(
1

4πε0

)
q̄

r
, (q̄ = charge on sphere of radius r).

q̄ =
4
3
πr3ρ = q

r3

R3
(q = total charge on sphere).

dq̄ = 4πr2dr ρ =
4πr2
4
3πR

3
q dr =

3q
R3

r2dr.

dW =
1

4πε0

(
qr3

R3

)
1
r

(
3q
R3

r2dr

)
=

1
4πε0

3q2

R6
r4dr

W =
1

4πε0
3q2

R6

∫ R

0

r4dr =
1

4πε0
3q2

R6

R5

5
=

1
4πε0

(
3
5
q2

R

)
.X
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Problem 2.36

(a) W = ε0
2

∫
E2 dτ. E = 1

4πε0

q
r2 (a < r < b), zero elsewhere.

W = ε0
2

(
q

4πε0

)2 ∫ b

a

(
1
r2

)2 4πr2dr = q2

8πε0

∫ b

a
1
r2 =

q2

8πε0

(
1
a
− 1
b

)
.

(b) W1 = 1
8πε0

q2

a , W2 = 1
8πε0

q2

b , E1 = 1
4πε0

q
r2 r̂ (r > a), E2 = 1

4πε0

−q
r2 r̂ (r > b). So

E1 ·E2 =
(

1
4πε0

)2 −q2

r4 , (r > b), and hence
∫

E1 ·E2 dτ = −
(

1
4πε0

)2

q2
∫∞

b
1
r4 4πr2dr = − q2

4πε0b .

Wtot = W1 +W2 + ε0
∫

E1 ·E2 dτ = 1
8πε0

q2
(

1
a + 1

b −
2
b

)
= q2

8πε0

(
1
a −

1
b

)
.X

Problem 2.37

r

a

x

y

z

b

q

q2

q1

r

E1 =
1

4πε0
q1
r2

r̂; E2 =
1

4πε0
q2
r 2

r̂ ; Wi = ε0
q1q2

(4πε0)2

∫
1

r2 r 2
cosβ r2 sin θ dr dθ dφ,

where (from the figure)

r =
√
r2 + a2 − 2ra cos θ, cosβ =

(r − a cos θ)
r .

Therefore

Wi =
q1q2

(4π)2ε0
2π
∫

(r − a cos θ)
r 3

sin θ dr dθ.

It’s simplest to do the r integral first, changing variables to r :

2r dr = (2r − 2a cos θ) dr ⇒ (r − a cos θ) dr = r dr .

As r : 0→∞, r : a→∞, so

Wi =
q1q2
8πε0

∫ π

0

(∫ ∞

a

1
r 2

dr
)

sin θ dθ.

The r integral is 1/a, so

Wi =
q1q2

8πε0a

∫ π

0

sin θ dθ =
q1q2

4πε0a
.

Of course, this is precisely the interaction energy of two point charges.
Problem 2.38

(a) σR =
q

4πR2
; σa =

−q
4πa2

; σb =
q

4πb2
.
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(b) V (0) = −
∫ 0

∞E·dl = −
∫ b

∞
(

1
4πε0

q
r2

)
dr −

∫ a

b
(0)dr −

∫ R

a

(
1

4πε0

q
r2

)
dr −

∫ 0

R
(0)dr =

1
4πε0

(q
b

+
q

R
− q

a

)
.

(c) σb → 0 (the charge “drains off”); V (0) = −
∫ a

∞(0)dr −
∫ R

a

(
1

4πε0

q
r2

)
dr −

∫ 0

R
(0)dr =

1
4πε0

( q
R
− q

a

)
.

Problem 2.39

(a) σa = − qa
4πa2

; σb = − qb
4πb2

; σR =
qa + qb
4πR2

.

(b) Eout =
1

4πε0
qa + qb
r2

r̂, where r = vector from center of large sphere.

(c) Ea =
1

4πε0
qa
r2a

r̂a, Eb =
1

4πε0
qb
r2b

r̂b, where ra (rb) is the vector from center of cavity a (b).

(d) Zero.

(e) σR changes (but not σa or σb); Eoutside changes (but not Ea or Eb); force on qa and qb still zero.

Problem 2.40
(a) No. For example, if it is very close to the wall, it will induce charge of the opposite sign on the wall,

and it will be attracted.
(b) No. Typically it will be attractive, but see footnote 12 for an extraordinary counterexample.

Problem 2.41
Between the plates, E = 0; outside the plates E = σ/ε0 = Q/ε0A. So

P =
ε0
2
E2 =

ε0
2

Q2

ε20A
2

=
Q2

2ε0A2
.

Problem 2.42

Inside, E = 0; outside, E = 1
4πε0

Q
r2 r̂; so

3

Problem 2.34

(a) W = ε0
2

∫

E2 dτ. E = 1
4πε0

q
r2 (a < r < b), zero elsewhere.

W = ε0
2

(
q

4πε0

)2 ∫ b
a

(
1
r2

)2
4πr2dr = q2

8πε0

∫ b
a

1
r2 =

q2

8πε0

(
1

a
−

1

b

)

.

(b) W1 = 1
8πε0

q2

a , W2 = 1
8πε0

q2

b , E1 = 1
4πε0

q
r2 r̂ (r > a), E2 = 1

4πε0
−q
r2 r̂ (r > b). So

E1 · E2 =
(

1
4πε0

)2 −q2

r4 , (r > b), and hence
∫

E1 · E2 dτ = −
(

1
4πε0

)2
q2

∫ ∞
b

1
r4 4πr2dr = − q2

4πε0b .

Wtot = W1 + W2 + ε0
∫

E1 ·E2 dτ = 1
8πε0

q2
(

1
a + 1

b − 2
b

)

= q2

8πε0

(
1
a − 1

b

)

.!

Problem 2.35

(a) σR =
q

4πR2
; σa =

−q

4πa2
; σb =

q

4πb2
.

(b) V (0) = −
∫ 0
∞ E·dl = −

∫ b
∞

(
1

4πε0
q
r2

)

dr −
∫ a

b (0)dr −
∫ R

a

(
1

4πε0
q
r2

)

dr −
∫ 0

R(0)dr =
1

4πε0

(q

b
+

q

R
−

q

a

)

.

(c) σb → 0 (the charge “drains off”); V (0) = −
∫ a
∞(0)dr −

∫ R
a

(
1

4πε0
q
r2

)

dr −
∫ 0

R(0)dr =
1

4πε0

( q

R
−

q

a

)

.

Problem 2.36

(a) σa = −
qa

4πa2
; σb = −

qb

4πb2
; σR =

qa + qb

4πR2
.

(b) Eout =
1

4πε0

qa + qb

r2
r̂, where r = vector from center of large sphere.

(c) Ea =
1

4πε0

qa

r2
a

r̂a, Eb =
1

4πε0

qb

r2
b

r̂b, where ra (rb) is the vector from center of cavity a (b).

(d) Zero.

(e) σR changes (but not σa or σb); Eoutside changes (but not Ea or Eb); force on qa and qb still zero.

Problem 2.37

Between the plates, E = 0; outside the plates E = σ/ε0 = Q/ε0A. So

P =
ε0
2

E2 =
ε0
2

Q2

ε20A
2

=
Q2

2ε0A2
.

Problem 2.38

Inside, E = 0; outside, E = 1
4πε0

Q
r2 r̂; so

!z

"E
θ

Eave = 1
2

1
4πε0

Q
R2 r̂; fz = σ(Eave)z ; σ = Q

4πR2 .

Fz =
∫

fzda =
∫( Q

4πR2

)
1
2

(
1

4πε0
Q
R2

)

cos θ R2 sin θ dθ dφ

= 1
2ε0

( Q
4πR

)2
2π

∫ π/2
0 sin θ cos θ dθ = 1

πε0

( Q
4R

)2 (
1
2 sin2 θ

)∣
∣
π/2

0
= 1

2πε0

( Q
4R

)2
=

Q2

32πR2ε0
.
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Eave = 1
2

1
4πε0

Q
R2 r̂; fz = σ(Eave)z; σ = Q

4πR2 .

Fz =
∫
fzda =

∫(
Q

4πR2

)
1
2

(
1

4πε0

Q
R2

)
cos θ R2 sin θ dθ dφ

= 1
2ε0

(
Q

4πR

)22π ∫ π/2

0
sin θ cos θ dθ = 1

πε0

(
Q
4R

)2 ( 1
2 sin2 θ

)∣∣π/2

0
= 1

2πε0

(
Q
4R

)2 =
Q2

32πR2ε0
.

Problem 2.43
Say the charge on the inner cylinder is Q, for a length L. The field is given by Gauss’s law:∫
E·da = E · 2πs · L = 1

ε0
Qenc = 1

ε0
Q⇒ E = Q

2πε0L
1
s ŝ. Potential difference between the cylinders is

V (b)− V (a) = −
∫ b

a

E·dl = − Q

2πε0L

∫ b

a

1
s
ds = − Q

2πε0L
ln
(
b

a

)
.

As set up here, a is at the higher potential, so V = V (a)− V (b) = Q
2πε0L ln

(
b
a

)
.
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C = Q
V = 2πε0L

ln( b
a ) , so capacitance per unit length is

2πε0
ln
(

b
a

) .
Problem 2.44

(a) W = (force)×(distance) = (pressure)×(area)×(distance) =
ε0
2
E2Aε.

(b) W = (energy per unit volume)×(decrease in volume) =
(
ε0

E2

2

)
(Aε). Same as (a), confirming that the

energy lost is equal to the work done.
Problem 2.45

4

Problem 2.39

Say the charge on the inner cylinder is Q, for a length L. The field is given by Gauss’s law:
∫

E·da = E · 2πs · L = 1
ε0

Qenc = 1
ε0

Q ⇒ E = Q
2πε0L

1
s ŝ. Potential difference between the cylinders is

V (b) − V (a) = −
∫ b

a
E·dl = −

Q

2πε0L

∫ b

a

1

s
ds = −

Q

2πε0L
ln

(
b

a

)

.

As set up here, a is at the higher potential, so V = V (a) − V (b) = Q
2πε0L ln

(
b
a

)

.

C = Q
V = 2πε0L

ln( b
a )

, so capacitance per unit length is
2πε0
ln

(
b
a

) .

Problem 2.40

(a) W = (force)×(distance) = (pressure)×(area)×(distance) =
ε0
2

E2Aε.

(b) W = (energy per unit volume)×(decrease in volume) =
(

ε0 E2

2

)

(Aε). Same as (a), confirming that the

energy lost is equal to the work done.

Problem 2.41

! " da
2

" !a

" !a+da

! " da
2

From Prob. 2.4, the field at height z above the center of a square loop (side a) is

E =
1

4πε0

4λaz
(

z2 + a2

4

)
√

z2 + a2

2

ẑ.

Here λ → σ da
2 (see figure), and we integrate over a from 0 to ā:

E =
1

4πε0
2σz

∫ ā

0

a da
(

z2 + a2

4

)
√

z2 + a2

2

. Let u =
a2

4
, so a da = 2 du.

=
1

4πε0
4σz

∫ ā2/4

0

du

(u + z2)
√

2u + z2
=

σz

πε0

[

2

z
tan−1

(√
2u + z2

z

)]ā2/4

0

=
2σ

πε0

{

tan−1

(
√

ā2

2 + z2

z

)

− tan−1(1)

}

;

E =
2σ

πε0

[

tan−1

√

1 +
a2

2z2
−

π

4

]

ẑ.

a → ∞ (infinite plane): E = 2σ
πε0

[

tan−1(∞) − π
4

]

= 2σ
πε0

(
π
2 − π

4

)

= σ
2ε0

. !

z ' a (point charge): Let f(x) = tan−1
√

1 + x − π
4 , and expand as a Taylor series:

f(x) = f(0) + xf ′(0) +
1

2
x2f ′′(0) + · · ·

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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From Prob. 2.4, the field at height z above the center of a square loop (side a) is

E =
1

4πε0
4λaz(

z2 + a2

4

)√
z2 + a2

2

ẑ.

Here λ→ σ da
2 (see figure), and we integrate over a from 0 to ā:

E =
1

4πε0
2σz

∫ ā

0

a da(
z2 + a2

4

)√
z2 + a2

2

. Let u =
a2

4
, so a da = 2 du.

=
1

4πε0
4σz

∫ ā2/4

0

du

(u+ z2)
√

2u+ z2
=

σz

πε0

[
2
z

tan−1

(√
2u+ z2

z

)]ā2/4

0

=
2σ
πε0

{
tan−1

(√
ā2

2 + z2

z

)
− tan−1(1)

}
;

E =
2σ
πε0

[
tan−1

√
1 +

a2

2z2
− π

4

]
ẑ =

σ

πε0
tan−1

(
a2

4z
√
z2 + (a2/2)

)
ẑ.

a→∞ (infinite plane): E = 2σ
πε0

[
tan−1(∞)− π

4

]
= 2σ

πε0

(
π
2 −

π
4

)
= σ

2ε0
. X

z � a (point charge): Let f(x) = tan−1
√

1 + x− π
4 , and expand as a Taylor series:

f(x) = f(0) + xf ′(0) +
1
2
x2f ′′(0) + · · ·

Here f(0) = tan−1(1)− π
4 = π

4 −
π
4 = 0; f ′(x) = 1

1+(1+x)
1
2

1√
1+x

= 1
2(2+x)

√
1+x

, so f ′(0) = 1
4 , so

f(x) =
1
4
x+ ( )x2 + ( )x3 + · · ·

Thus (since a2

2z2 = x� 1), E ≈ 2σ
πε0

(
1
4

a2

2z2

)
= 1

4πε0
σa2

z2 = 1
4πε0

q
z2 . X
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Problem 2.46

ρ = ε0∇·E = ε0

{
1
r2

∂

∂r

(
r2

3k
r

)
+

1
r sin θ

∂

∂θ

(
sin θ

2k sin θ cos θ sinφ
r

)
+

1
r sin θ

∂

∂φ

(
k sin θ cosφ

r

)}
= ε0

[
1
r2

3k +
1

r sin θ
2k sinφ(2 sin θ cos2 θ − sin3 θ)

r
+

1
r sin θ

(−k sin θ sinφ)
r

]
=
kε0
r2
[
3 + 2 sinφ(2 cos2 θ − sin2 θ)− sinφ

]
=
kε0
r2
[
3 + sinφ(4 cos2 θ − 2 + 2 cos2 θ − 1)

]
=

3kε0
r2

[
1 + sinφ(2 cos2 θ − 1)

]
=

3kε0
r2

(1 + sinφ cos 2θ).

Problem 2.47
From Prob. 2.12, the field inside a uniformly charged sphere is: E = 1

4πε0

Q
R3 r. So the force per unit volume

is f = ρE =
(

Q
4
3 πR3

)(
Q

4πε0R3

)
r = 3

ε0

(
Q

4πR3

)2
r, and the force in the z direction on dτ is:

dFz = fz dτ =
3
ε0

(
Q

4πR3

)2

r cos θ(r2 sin θ dr dθ dφ).

The total force on the “northern” hemisphere is:

Fz =
∫
fz dτ =

3
ε0

(
Q

4πR3

)2 ∫ R

0

r3dr

∫ π/2

0

cos θ sin θ dθ
∫ 2π

0

dφ

=
3
ε0

(
Q

4πR3

)2(
R4

4

)(
sin2 θ

2

∣∣∣∣π/2

0

)
(2π) =

3Q2

64πε0R2
.

Problem 2.48

5

Here f(0) = tan−1(1) − π
4 = π

4 − π
4 = 0; f ′(x) = 1

1+(1+x)
1
2

1√
1+x

= 1
2(2+x)

√
1+x

, so f ′(0) = 1
4 , so

f(x) =
1

4
x + ( )x2 + ( )x3 + · · ·

Thus (since a2

2z2 = x " 1), E ≈ 2σ
πε0

(
1
4

a2

2z2

)

= 1
4πε0

σa2

z2 = 1
4πε0

q
z2 . !

Problem 2.42

ρ = ε0∇·E = ε0

{
1

r2

∂

∂r

(

r2 A

r

)

+
1

r sin θ

∂

∂φ

(
B sin θ cosφ

r

)}

= ε0

[
1

r2
A +

1

r sin θ

B sin θ

r
(− sinφ)

]

=
ε0
r2

(A − B sin φ).

Problem 2.43

From Prob. 2.12, the field inside a uniformly charged sphere is: E = 1
4πε0

Q
R3 r. So the force per unit volume

is f = ρE =
( Q

4
3
πR3

)( Q
4πε0R3

)

r = 3
ε0

( Q
4πR3

)2
r, and the force in the z direction on dτ is:

dFz = fz dτ =
3

ε0

(
Q

4πR3

)2

r cos θ(r2 sin θ dr dθ dφ).

The total force on the “northern” hemisphere is:

Fz =

∫

fz dτ =
3

ε0

(
Q

4πR3

)2 ∫ R

0
r3dr

∫ π/2

0
cos θ sin θ dθ

∫ 2π

0
dφ

=
3

ε0

(
Q

4πR3

)2 (
R4

4

)
(

sin2 θ

2

∣
∣
∣
∣

π/2

0

)

(2π) =
3Q2

64πε0R2
.

Problem 2.44

R

R
θ

Vcenter =
1

4πε0

∫
σ

η
da =

1

4πε0

σ

R

∫

da =
1

4πε0

σ

R
(2πR2) =

σR

2ε0

Vpole =
1

4πε0

∫
σ

η
da , with

{

da = 2πR2 sin θ dθ,

η2 = R2 + R2 − 2R2 cos θ = 2R2(1 − cos θ).

=
1

4πε0

σ(2πR2)

R
√

2

∫ π/2

0

sin θ dθ
√

1 − cos θ
=

σR

2
√

2ε0
(2
√

1 − cos θ)
∣
∣
∣

π/2

0

=
σR
√

2ε0
(1 − 0) =

σR
√

2ε0
. ∴ Vpole − Vcenter =

σR

2ε0
(
√

2 − 1).

Problem 2.45

First let’s determine the electric field inside and outside the sphere, using Gauss’s law:

ε0

∮

E·da = ε04πr2E = Qenc =

∫

ρ dτ =

∫

(kr̄)r̄2 sin θ dr̄ dθ dφ = 4πk

∫ r

0
r̄3dr̄ =

{

πkr4 (r < R),

πkR4 (r > R).

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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Vcenter =
1

4πε0

∫
σ

r da =
1

4πε0
σ

R

∫
da =

1
4πε0

σ

R
(2πR2) =

σR

2ε0
r

Vpole =
1

4πε0

∫
σ

r da , with

{
da = 2πR2 sin θ dθ,
r 2 = R2 +R2 − 2R2 cos θ = 2R2(1− cos θ).

=
1

4πε0
σ(2πR2)
R
√

2

∫ π/2

0

sin θ dθ√
1− cos θ

=
σR

2
√

2ε0
(2
√

1− cos θ)
∣∣∣π/2

0

=
σR√
2ε0

(1− 0) =
σR√
2ε0

. ∴ Vpole − Vcenter =
σR

2ε0
(
√

2− 1).

Problem 2.49
First let’s determine the electric field inside and outside the sphere, using Gauss’s law:

ε0

∮
E·da = ε04πr2E = Qenc =

∫
ρ dτ =

∫
(kr̄)r̄2 sin θ dr̄ dθ dφ = 4πk

∫ r

0

r̄3dr̄ =

{
πkr4 (r < R),
πkR4 (r > R).

So E = k
4ε0
r2 r̂ (r < R); E = kR4

4ε0r2 r̂ (r > R).
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Method I :

W =
ε0
2

∫
E2dτ (Eq. 2.45) =

ε0
2

∫ R

0

(
kr2

4ε0

)2

4πr2dr +
ε0
2

∫ ∞

R

(
kR4

4ε0r2

)2

4πr2dr

= 4π
ε0
2

(
k

4ε0

)2
{∫ R

0

r6dr +R8

∫ ∞

R

1
r2
dr

}
=
πk2

8ε0

{
R7

7
+R8

(
−1
r

)∣∣∣∣∞
R

}
=
πk2

8ε0

(
R7

7
+R7

)

=
πk2R7

7ε0
.

Method II :

W =
1
2

∫
ρV dτ (Eq. 2.43).

For r < R, V (r) = −
∫ r

∞
E·dl = −

∫ R

∞

(
kR4

4ε0r2

)
dr −

∫ r

R

(
kr2

4ε0

)
dr = − k

4ε0

{
R4

(
−1
r

)∣∣∣∣R
∞

+
r3

3

∣∣∣∣r
R

}

= − k

4ε0

(
−R3 +

r3

3
− R3

3

)
=

k

3ε0

(
R3 − r3

4

)
.

∴ W =
1
2

∫ R

0

(kr)
[
k

3ε0

(
R3 − r3

4

)]
4πr2dr =

2πk2

3ε0

∫ R

0

(
R3r3 − 1

4
r6
)
dr

=
2πk2

3ε0

{
R3R

4

4
− 1

4
R7

7

}
=
πk2R7

2 · 3ε0

(
6
7

)
=
πk2R7

7ε0
. X

Problem 2.50

E = −∇V = −A ∂

∂r

(
e−λr

r

)
r̂ = −A

{
r(−λ)e−λr − e−λr

r2

}
r̂ = Ae−λr(1 + λr)

r̂
r2
.

ρ = ε0∇·E = ε0A
{
e−λr(1 + λr)∇·

(
r̂
r2

)
+ r̂

r2 ·∇
(
e−λr(1 + λr)

)}
. But ∇·

(
r̂
r2

)
= 4πδ3(r) (Eq. 1.99), and

e−λr(1 + λr)δ3(r) = δ3(r) (Eq. 1.88). Meanwhile,
∇
(
e−λr(1 + λr)

)
= r̂ ∂

∂r

(
e−λr(1 + λr)

)
= r̂

{
−λe−λr(1 + λr) + e−λrλ

}
= r̂(−λ2re−λr).

So r̂
r2 ·∇

(
e−λr(1 + λr)

)
= −λ2

r e
−λr, and ρ = ε0A

[
4πδ3(r)− λ2

r
e−λr

]
.

Q =
∫
ρ dτ = ε0A

{
4π
∫
δ3(r) dτ − λ2

∫
e−λr

r
4πr2dr

}
= ε0A

(
4π − λ24π

∫ ∞

0

re−λrdr

)
.

But
∫∞
0
re−λrdr = 1

λ2 , so Q = 4πε0A
(
1− λ2

λ2

)
= zero.

Problem 2.51

V =
1

4πε0

∫
σ

r da =
σ

4πε0

∫ R

0

∫ 2π

0

1√
R2 + s2 − 2Rs cosφ

s ds dφ.

Let u ≡ s/R. Then

V =
2σR
4πε0

∫ 1

0

(∫ π

0

u√
1 + u2 − 2u cosφ

dφ

)
du.
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The (double) integral is a pure number; Mathematica says it is 2. So

V =
σR

πε0
.

Problem 2.52

(a) Potential of +λ is V+ = − λ
2πε0

ln
( s+

a

)
, where s+ is distance from λ+ (Prob. 2.22).

Potential of −λ is V− = + λ
2πε0

ln
( s−

a

)
, where s− is distance from λ−.

∴ Total V =
λ

2πε0
ln
(
s−
s+

)
.

Now s+ =
√

(y − a)2 + z2, and s− =
√

(y + a)2 + z2, so

V (x, y, z) = λ
2πε0

ln
(√

(y+a)2+z2
√

(y−a)2+z2

)
=

λ

4πε0
ln
[
(y + a)2 + z2

(y − a)2 + z2

]
.

7

∴ Total V =
λ

2πε0
ln

(
s−
s+

)

.

Now s+ =
√

(y − a)2 + z2, and s− =
√

(y + a)2 + z2, so

V (x, y, z) = λ
2πε0

ln

(√
(y+a)2+z2

√
(y−a)2+z2

)

=
λ

4πε0
ln

[
(y + a)2 + z2

(y − a)2 + z2

]

.

!
y

"
z

−λ λ

(x, y, z)

a a

s−

s+

(b) Equipotentials are given by (y+a)2+z2

(y−a)2+z2 = e(4πε0V0/λ) = k = constant. That is:

y2 + 2ay + a2 + z2 = k(y2 − 2ay + a2 + z2) ⇒ y2(k − 1) + z2(k − 1) + a2(k − 1) − 2ay(k + 1) = 0, or

y2 + z2 + a2 − 2ay
(

k+1
k−1

)

= 0. The equation for a circle, with center at (y0, 0) and radius R, is

(y − y0)2 + z2 = R2, or y2 + z2 + (y2
0 − R2) − 2yy0 = 0.

Evidently the equipotentials are circles, with y0 = a
(

k+1
k−1

)

and

a2 = y2
0 − R2 ⇒ R2 = y2

0 − a2 = a2
(

k+1
k−1

)2
− a2 = a2 (k2+2k+1−k2+2k−1)

(k−1)2 = a2 4k
(k−1)2 , or

R = 2a
√

k
|k−1| ; or, in terms of V0:

y0 = a
e4πε0V0/λ + 1

e4πε0V0/λ − 1
= a

e2πε0V0/λ + e−2πε0V0/λ

e2πε0V0/λ − e−2πε0V0/λ
= a coth

(
2πε0V0

λ

)

.

R = 2a
e2πε0V0/λ

e4πε0V0/λ − 1
= a

2

(e2πε0V0/λ − e−2πε0V0/λ)
=

a

sinh
(

2πε0V0

λ

) = a csch

(
2πε0V0

λ

)

.

!
y

"
z

λ−λ y0

!
R

Problem 2.48

(a) ∇2V = − ρ
ε0

(Eq. 2.24), so
d2V

dx2
= −

1

ε0
ρ.

(b) qV = 1
2mv2 → v =

√

2qV

m
.

(c) dq = Aρ dx ; dq
dt = aρdx

dt = Aρv = I (constant). (Note: ρ, hence also I, is negative.)
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(b) Equipotentials are given by (y+a)2+z2

(y−a)2+z2 = e(4πε0V0/λ) = k = constant. That is:
y2 + 2ay + a2 + z2 = k(y2 − 2ay + a2 + z2)⇒ y2(k − 1) + z2(k − 1) + a2(k − 1)− 2ay(k + 1) = 0, or
y2 + z2 + a2 − 2ay

(
k+1
k−1

)
= 0. The equation for a circle, with center at (y0, 0) and radius R, is

(y − y0)2 + z2 = R2, or y2 + z2 + (y2
0 −R2)− 2yy0 = 0.

Evidently the equipotentials are circles, with y0 = a
(

k+1
k−1

)
and

a2 = y2
0 −R2 ⇒ R2 = y2

0 − a2 = a2
(

k+1
k−1

)2

− a2 = a2 (k2+2k+1−k2+2k−1)
(k−1)2 = a2 4k

(k−1)2 , or

R = 2a
√

k
|k−1| ; or, in terms of V0:

y0 = a
e4πε0V0/λ + 1
e4πε0V0/λ − 1

= a
e2πε0V0/λ + e−2πε0V0/λ

e2πε0V0/λ − e−2πε0V0/λ
= a coth

(
2πε0V0

λ

)
.

R = 2a
e2πε0V0/λ

e4πε0V0/λ − 1
= a

2
(e2πε0V0/λ − e−2πε0V0/λ)

=
a

sinh
(

2πε0V0
λ

) = a csch
(

2πε0V0

λ

)
.

7

∴ Total V =
λ

2πε0
ln

(
s−
s+

)

.

Now s+ =
√

(y − a)2 + z2, and s− =
√

(y + a)2 + z2, so

V (x, y, z) = λ
2πε0

ln

(√
(y+a)2+z2

√
(y−a)2+z2

)

=
λ

4πε0
ln

[
(y + a)2 + z2

(y − a)2 + z2

]

.

!
y

"
z

−λ λ

(x, y, z)

a a

s−

s+

(b) Equipotentials are given by (y+a)2+z2

(y−a)2+z2 = e(4πε0V0/λ) = k = constant. That is:

y2 + 2ay + a2 + z2 = k(y2 − 2ay + a2 + z2) ⇒ y2(k − 1) + z2(k − 1) + a2(k − 1) − 2ay(k + 1) = 0, or

y2 + z2 + a2 − 2ay
(

k+1
k−1

)

= 0. The equation for a circle, with center at (y0, 0) and radius R, is

(y − y0)2 + z2 = R2, or y2 + z2 + (y2
0 − R2) − 2yy0 = 0.

Evidently the equipotentials are circles, with y0 = a
(

k+1
k−1

)

and

a2 = y2
0 − R2 ⇒ R2 = y2

0 − a2 = a2
(

k+1
k−1

)2
− a2 = a2 (k2+2k+1−k2+2k−1)

(k−1)2 = a2 4k
(k−1)2 , or

R = 2a
√

k
|k−1| ; or, in terms of V0:

y0 = a
e4πε0V0/λ + 1

e4πε0V0/λ − 1
= a

e2πε0V0/λ + e−2πε0V0/λ

e2πε0V0/λ − e−2πε0V0/λ
= a coth

(
2πε0V0

λ

)

.

R = 2a
e2πε0V0/λ

e4πε0V0/λ − 1
= a

2

(e2πε0V0/λ − e−2πε0V0/λ)
=

a

sinh
(

2πε0V0

λ

) = a csch

(
2πε0V0

λ

)

.

!
y

"
z

λ−λ y0

!
R

Problem 2.48

(a) ∇2V = − ρ
ε0

(Eq. 2.24), so
d2V

dx2
= −

1

ε0
ρ.

(b) qV = 1
2mv2 → v =

√

2qV

m
.

(c) dq = Aρ dx ; dq
dt = aρdx

dt = Aρv = I (constant). (Note: ρ, hence also I, is negative.)
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Problem 2.53

(a) ∇2V = − ρ
ε0

(Eq. 2.24), so
d2V

dx2
= − 1

ε0
ρ.

(b) qV = 1
2mv

2 → v =

√
2qV
m

.

(c) dq = Aρdx ; dq
dt = aρdx

dt = Aρv = I (constant). (Note: ρ, hence also I, is negative.)

(d) d2V
dx2 = − 1

ε0
ρ = − 1

ε0
I

Av = − I
ε0A

√
m

2qV ⇒
d2V

dx2
= βV −1/2 , where β = − I

ε0A

√
m
2q .

(Note: I is negative, so β is positive; q is positive.)

(e) Multiply by V ′ = dV
dx :

V ′
dV ′

dx
= βV −1/2 dV

dx
⇒
∫
V ′ dV ′ = β

∫
V −1/2 dV ⇒ 1

2
V
′2 = 2βV 1/2 + constant.

But V (0) = V ′(0) = 0 (cathode is at potential zero, and field at cathode is zero), so the constant is zero, and

V
′2 = 4βV 1/2 ⇒ dV

dx
= 2
√
β V 1/4 ⇒ V −1/4dV = 2

√
β dx;∫

V −1/4 dV = 2
√
β

∫
dx⇒ 4

3
V 3/4 = 2

√
β x+ constant.

But V (0) = 0, so this constant is also zero.

V 3/4 =
3
2

√
β x, so V (x) =

(
3
2

√
β

)4/3

x4/3, or V (x) =
(

9
4
β

)2/3

x4/3 =
(

81I2m

32ε20A2q

)1/3

x4/3.

Interms of V0 (instead of I): V (x) = V0

(x
d

)4/3

(see graph).

Without space-charge, V would increase linearly: V (x) = V0

(
x
d

)
.

ρ = −ε0
d2V

dx2
= −ε0V0

1
d4/3

4
3
· 1
3
x−2/3 = − 4ε0V0

9(d2x)2/3
.

v =

√
2q
m

√
V =

√
2qV0/m

(x
d

)2/3

.

8

(d) d2V
dx2 = − 1

ε0
ρ = − 1

ε0
I

Av = − I
ε0A

√
m

2qV ⇒
d2V

dx2
= βV −1/2 , where β = − I

ε0A

√
m
2q .

(Note: I is negative, so β is positive; q is positive.)

(e) Multiply by V ′ = dV
dx :

V ′ dV ′

dx
= βV −1/2 dV

dx
⇒

∫

V ′ dV ′ = β

∫

V −1/2 dV ⇒
1

2
V

′2 = 2βV 1/2 + constant.

But V (0) = V ′(0) = 0 (cathode is at potential zero, and field at cathode is zero), so the constant is zero, and

V
′2 = 4βV 1/2 ⇒

dV

dx
= 2

√

β V 1/4 ⇒ V −1/4dV = 2
√

β dx;
∫

V −1/4 dV = 2
√

β

∫

dx ⇒
4

3
V 3/4 = 2

√

β x + constant.

But V (0) = 0, so this constant is also zero.

V 3/4 =
3

2

√

β x, so V (x) =

(
3

2

√

β

)4/3

x4/3, or V (x) =

(
9

4
β

)2/3

x4/3 =

(
81I2m

32ε20A
2q

)1/3

x4/3.

Interms of V0 (instead of I): V (x) = V0

(x

d

)4/3
(see graph).

Without space-charge, V would increase linearly: V (x) = V0

(
x
d

)

.

ρ = −ε0
d2V

dx2
= −ε0V0

1

d4/3

4

3
·
1

3
x−2/3 = −

4ε0V0

9(d2x)2/3
.

v =

√

2q

m

√
V =

√

2qV0/m
(x

d

)2/3
.

!
x

"V

V0

d

without

with

(f) V (d) = V0 =
(

81I2m
32ε20A2q

)1/3
d4/3 ⇒ V 3

0 = 81md4

32ε20A2q
I2 ; I2 = 32ε20A2q

81md4 V 3
0 ;

I =
4
√

2 ε0A
√

q
9
√

m d2 V 3/2
0 = KV 3/2

0 , where K =
4ε0A

9d2

√

2q

m
.

Problem 2.49

(a) E =
1

4πε0

∫
ρη̂̂η̂η

η2

(

1 +
η

λ

)

e−η/λdτ.

(b) Yes. The field of a point charge at the origin is radial and symmetric, so ∇×E = 0, and hence this is also
true (by superposition) for any collection of charges.

(c) V = −
∫ r

∞
E·dl = −

1

4πε0
q

∫ r

∞

1

r2

(

1 +
r

λ

)

e−r/λdr

=
1

4πε0
q

∫ ∞

r

1

r2

(

1 +
r

λ

)

e−r/λdr =
q

4πε0

{∫ ∞

r

1

r2
e−r/λdr +

1

λ

∫ ∞

r

1

r
e−r/λdr

}

.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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(f) V (d) = V0 =
(

81I2m
32ε20A2q

)1/3

d4/3 ⇒ V 3
0 = 81md4

32ε20A2q
I2 ; I2 = 32ε20A2q

81md4 V
3
0 ;

I = 4
√

2 ε0A
√

q

9
√

m d2 V
3/2
0 = KV

3/2
0 , where K =

4ε0A
9d2

√
2q
m
.

Problem 2.54

(a) E =
1

4πε0

∫
ρ r̂
r 2

(
1 +

r
λ

)
e−r /λdτ.
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(b) Yes. The field of a point charge at the origin is radial and symmetric, so ∇×E = 0, and hence this is
also true (by superposition) for any collection of charges.

(c) V = −
∫ r

∞
E·dl = − 1

4πε0
q

∫ r

∞

1
r2

(
1 +

r

λ

)
e−r/λdr

=
1

4πε0
q

∫ ∞

r

1
r2

(
1 +

r

λ

)
e−r/λdr =

q

4πε0

{∫ ∞

r

1
r2
e−r/λdr +

1
λ

∫ ∞

r

1
r
e−r/λdr

}
.

Now
∫

1
r2 e

−r/λdr = − e−r/λ

r − 1
λ

∫
e−r/λ

r dr ←− exactly right to kill the last term. Therefore

V (r) =
q

4πε0

{
−e

−r/λ

r

∣∣∣∣∞
r

}
=

q

4πε0
e−r/λ

r
.

(d)
∮
S
E·da =

1
4πε0�

q
1
R2�

(
1 +

R

λ

)
e−R/λ 4π� R2� =

q

ε0

(
1 +

R

λ

)
e−R/λ.∫

V
V dτ =

q

4πε0�

∫ R

0

e−r/λ

r
r2 4π� dr =

q

ε0

∫ R

0

re−r/λdr =
q

ε0

[
e−r/λ

(1/λ)2
(
− r
λ
− 1
)]R

0

= λ2 q

ε0

{
−e−R/λ

(
1 +

R

λ

)
+ 1
}
.

∴
∮
S
E·da +

1
λ2

∫
V
V dτ =

q

ε0

{(
1 +

R

λ

)
e−R/λ −

(
1 +

R

λ

)
e−R/λ + 1

}
=

q

ε0
. qed

(e) Does the result in (d) hold for a nonspherical surface? Suppose we
make a “dent” in the sphere—pushing a patch (area R2 sin θ dθ dφ)
from radius R out to radius S (area S2 sin θ dθ dφ).

9

Now
∫

1
r2 e−r/λdr = − e−r/λ

r − 1
λ

∫
e−r/λ

r dr ←− exactly right to kill the last term. Therefore

V (r) =
q

4πε0

{

−
e−r/λ

r

∣
∣
∣
∣

∞

r

}

=
q

4πε0

e−r/λ

r
.

(d)
∮

S
E·da =

1

4πε0!
q

1

R2!

(

1 +
R

λ

)

e−R/λ 4π! R2! =
q

ε0

(

1 +
R

λ

)

e−R/λ.

∫

V
V dτ =

q

4πε0!

∫ R

0

e−r/λ

r
r2 4π! dr =

q

ε0

∫ R

0
re−r/λdr =

q

ε0

[
e−r/λ

(1/λ)2

(

−
r

λ
− 1

)]R

0

= λ2 q

ε0

{

−e−R/λ

(

1 +
R

λ

)

+ 1

}

.

∴

∮

S
E·da +

1

λ2

∫

V
V dτ =

q

ε0

{(

1 +
R

λ

)

e−R/λ −
(

1 +
R

λ

)

e−R/λ + 1

}

=
q

ε0
. qed

(e) Does the result in (d) hold for a nonspherical surface? Suppose we
make a “dent” in the sphere—pushing a patch (area R2 sin θ dθ dφ)
from radius R out to radius S (area S2 sin θ dθ dφ). q

R
S

∆

∮

E·da =
q

4πε0

{
1

S2

(

1 +
S

λ

)

e−S/λ(S2 sin θ dθ dφ) −
1

R2

(

1 +
R

λ

)

e−R/λ(R2 sin θ dθ dφ)

}

=
q

4πε0

[(

1 +
S

λ

)

e−S/λ −
(

1 +
R

λ

)

e−R/λ

]

sin θ dθ dφ.

∆
1

λ2

∫

V dτ =
1

λ2

q

4πε0

∫
e−r/λ

r
r2 sin θ dr dθ dφ =

1

λ2

q

4πε0
sin θ dθ dφ

∫ S

R
re−r/λdr

= −
q

4πε0
sin θ dθ dφ

(

e−r/λ
(

1 +
r

λ

))∣
∣
∣

S

R

= −
q

4πε0

[(

1 +
S

λ

)

e−S/λ −
(

1 +
R

λ

)

e−R/λ

]

sin θ dθ dφ.

So the change in 1
λ2

∫

V dτ exactly compensates for the change in
∮

E·da, and we get 1
ε0

q for the total using
the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,

the total is 1
ε0

Qenc. Charges outside do not contribute (in the argument above we found that for this

volume
∮

E·da + 1
λ2

∫

V dτ = 0—and, again, the sum is not changed by distortions of the surface, as long as q
remains outside. So the new “Gauss’s Law” holds for any charge configuration.

(f) In differential form, “Gauss’s law” reads: ∇·E +
1

λ2
V =

1

ε0
ρ, or, putting it all in terms of E:

∇·E−
1

λ2

∫

E·dl =
1

ε0
ρ. Since E = −∇V , this also yields “Poisson’s equation”: −∇2V +

1

λ2
V =

1

ε0
ρ.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
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∆
∮

E·da =
q

4πε0

{
1
S2

(
1 +

S

λ

)
e−S/λ(S2 sin θ dθ dφ)− 1

R2

(
1 +

R

λ

)
e−R/λ(R2 sin θ dθ dφ)

}
=

q

4πε0

[(
1 +

S

λ

)
e−S/λ −

(
1 +

R

λ

)
e−R/λ

]
sin θ dθ dφ.

∆
1
λ2

∫
V dτ =

1
λ2

q

4πε0

∫
e−r/λ

r
r2 sin θ dr dθ dφ =

1
λ2

q

4πε0
sin θ dθ dφ

∫ S

R

re−r/λdr

= − q

4πε0
sin θ dθ dφ

(
e−r/λ

(
1 +

r

λ

))∣∣∣S
R

= − q

4πε0

[(
1 +

S

λ

)
e−S/λ −

(
1 +

R

λ

)
e−R/λ

]
sin θ dθ dφ.

So the change in 1
λ2

∫
V dτ exactly compensates for the change in

∮
E·da, and we get 1

ε0
q for the total using

the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,
the total is 1

ε0
Qenc. Charges outside do not contribute (in the argument above we found that

9

Now
∫

1
r2 e−r/λdr = − e−r/λ

r − 1
λ

∫
e−r/λ

r dr ←− exactly right to kill the last term. Therefore

V (r) =
q

4πε0

{

−
e−r/λ

r

∣
∣
∣
∣

∞

r

}

=
q

4πε0

e−r/λ

r
.

(d)
∮

S
E·da =

1

4πε0!
q

1

R2!

(

1 +
R

λ

)

e−R/λ 4π! R2! =
q

ε0

(

1 +
R

λ

)

e−R/λ.

∫

V
V dτ =

q

4πε0!

∫ R

0

e−r/λ

r
r2 4π! dr =

q

ε0

∫ R

0
re−r/λdr =

q

ε0

[
e−r/λ

(1/λ)2

(

−
r

λ
− 1

)]R

0

= λ2 q

ε0

{

−e−R/λ

(

1 +
R

λ

)

+ 1

}

.

∴

∮

S
E·da +

1

λ2

∫

V
V dτ =

q

ε0

{(

1 +
R

λ

)

e−R/λ −
(

1 +
R

λ

)

e−R/λ + 1

}

=
q

ε0
. qed

(e) Does the result in (d) hold for a nonspherical surface? Suppose we
make a “dent” in the sphere—pushing a patch (area R2 sin θ dθ dφ)
from radius R out to radius S (area S2 sin θ dθ dφ). q

R
S

∆

∮

E·da =
q

4πε0

{
1

S2

(

1 +
S

λ

)

e−S/λ(S2 sin θ dθ dφ) −
1

R2

(

1 +
R

λ

)

e−R/λ(R2 sin θ dθ dφ)

}

=
q

4πε0

[(

1 +
S

λ

)

e−S/λ −
(

1 +
R

λ

)

e−R/λ

]

sin θ dθ dφ.

∆
1

λ2

∫

V dτ =
1

λ2

q

4πε0

∫
e−r/λ

r
r2 sin θ dr dθ dφ =

1

λ2

q

4πε0
sin θ dθ dφ

∫ S

R
re−r/λdr

= −
q

4πε0
sin θ dθ dφ

(

e−r/λ
(

1 +
r

λ

))∣
∣
∣

S

R

= −
q

4πε0

[(

1 +
S

λ

)

e−S/λ −
(

1 +
R

λ

)

e−R/λ

]

sin θ dθ dφ.

So the change in 1
λ2

∫

V dτ exactly compensates for the change in
∮

E·da, and we get 1
ε0

q for the total using
the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,

the total is 1
ε0

Qenc. Charges outside do not contribute (in the argument above we found that for this

volume
∮

E·da + 1
λ2

∫

V dτ = 0—and, again, the sum is not changed by distortions of the surface, as long as q
remains outside. So the new “Gauss’s Law” holds for any charge configuration.

(f) In differential form, “Gauss’s law” reads: ∇·E +
1

λ2
V =

1

ε0
ρ, or, putting it all in terms of E:

∇·E−
1

λ2

∫

E·dl =
1

ε0
ρ. Since E = −∇V , this also yields “Poisson’s equation”: −∇2V +

1

λ2
V =

1

ε0
ρ.

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.

for this volume
∮
E·da + 1

λ2

∫
V dτ = 0—and, again, the sum is not changed by distortions of the surface, as

long as q remains outside). So the new “Gauss’s Law” holds for any charge configuration.

epti to 
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46 CHAPTER 2. ELECTROSTATICS

(f) In differential form, “Gauss’s law” reads: ∇·E +
1
λ2
V =

1
ε0
ρ, or, putting it all in terms of E:

∇·E− 1
λ2

∫
E·dl =

1
ε0
ρ. Since E = −∇V , this also yields “Poisson’s equation”: −∇2V +

1
λ2
V =

1
ε0
ρ.

2

∆
1

λ2

∫

V dτ =
1

λ2

q

4πε0

∫

e−r/λ

r
r2 sin θ dr dθ dφ =

1

λ2

q

4πε0
sin θ dθ dφ

∫ S

R
re−r/λdr

= −
q

4πε0
sin θ dθ dφ

(

e−r/λ
(

1 +
r

λ

))∣

∣

∣

S

R

= −
q

4πε0

[(

1 +
S

λ

)

e−S/λ −
(

1 +
R

λ

)

e−R/λ

]

sin θ dθ dφ.

So the change in 1
λ2

∫

V dτ exactly compensates for the change in
∮

E·da, and we get 1
ε0

q for the total using
the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,

the total is 1
ε0

Qenc. Charges outside do not contribute (in the argument above we found that for this

volume
∮

E·da + 1
λ2

∫

V dτ = 0—and, again, the sum is not changed by distortions of the surface, as long as q
remains outside. So the new “Gauss’s Law” holds for any charge configuration.

(f) In differential form, “Gauss’s law” reads: ∇·E +
1

λ2
V =

1

ε0
ρ, or, putting it all in terms of E:

∇·E−
1

λ2

∫

E·dl =
1

ε0
ρ. Since E = −∇V , this also yields “Poisson’s equation”: −∇2V +

1

λ2
V =

1

ε0
ρ.

V E

ρ

!

"
#

$

%

&
E=−∇V

V =−
R

E·dl

(∇
2 −

1
λ
2
)V

=
−

ρ
ε 0

V
=

1
4
π

ε 0
R

ρ e
−

/
λ dτ

∇
·E

−
1λ
2

R

E
·d

l=
ρε

0 ;∇
×

E
=
0

E
=

14
π

ε
0 R

ρ
2 (1+

λ )e
−

/
λ

dτ

Problem 2.50

ρ = ε0∇·E = ε0
∂
∂x(ax) = ε0a (constant everywhere).

The same charge density would be compatible (as far as Gauss’s law is concerned) with E = ayŷ, for
instance, or E = (a

3
)r, etc. The point is that Gauss’s law (and ∇×E = 0) by themselves do not determine

the field—like any differential equations, they must be supplemented by appropriate boundary conditions.
Ordinarily, these are so “obvious” that we impose them almost subconsciously (“E must go to zero far from
the source charges”)—or we appeal to symmetry to resolve the ambiguity (“the field must be the same—in
magnitude—on both sides of an infinite plane of surface charge”). But in this case there are no natural
boundary conditions, and no persuasive symmetry conditions, to fix the answer. The question “What is the
electric field produced by a uniform charge density filling all of space?” is simply ill-posed : it does not give

c©2005 Pearson Education, Inc., Upper Saddle River, NJ. All rights reserved. This material is
protected under all copyright laws as they currently exist. No portion of this material may be
reproduced, in any form or by any means, without permission in writing from the publisher.

r

r
r

r

r

r̂

(g) Refer to ”Gauss’s law” in differential form (f). Since E is zero, inside a conductor (otherwise charge would
move, and in such a direction as to cancel the field), V is constant (inside), and hence ρ is uniform, throughout
the volume. Any “extra” charge must reside on the surface. (The fraction at the surface depends on λ, and
on the shape of the conductor.)

Problem 2.55

ρ = ε0∇·E = ε0
∂
∂x (ax) = ε0a (constant everywhere).

The same charge density would be compatible (as far as Gauss’s law is concerned) with E = ayŷ, for
instance, or E = (a

3 )r, etc. The point is that Gauss’s law (and ∇×E = 0) by themselves do not determine
the field—like any differential equations, they must be supplemented by appropriate boundary conditions.
Ordinarily, these are so “obvious” that we impose them almost subconsciously (“E must go to zero far from
the source charges”)—or we appeal to symmetry to resolve the ambiguity (“the field must be the same—in
magnitude—on both sides of an infinite plane of surface charge”). But in this case there are no natural
boundary conditions, and no persuasive symmetry conditions, to fix the answer. The question “What is the
electric field produced by a uniform charge density filling all of space?” is simply ill-posed : it does not give
us sufficient information to determine the answer. (Incidentally, it won’t help to appeal to Coulomb’s law(
E = 1

4πε0

∫
ρ r̂

r 2 dτ
)
—the integral is hopelessly indefinite, in this case.)

Problem 2.56

Compare Newton’s law of universal gravitation to Coulomb’s law:

F = −Gm1m2

r2
r̂; F =

1
4πε0

q1q2
r2

r̂.

Evidently 1
4πε0

→ G and q → m. The gravitational energy of a sphere (translating Prob. 2.34) is therefore

Wgrav =
3
5
G
M2

R
.
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CHAPTER 2. ELECTROSTATICS 47

Now, G = 6.67 × 10−11 N m2/kg2, and for the sun M = 1.99 × 1030 kg, R = 6.96 × 108 m, so the sun’s
gravitational energy is W = 2.28× 1041 J. At the current rate this energy would be dissipated in a time

t =
W

P
=

2.28× 1041

3.86× 1026
= 5.90× 1014 s = 1.87× 107 years.

Problem 2.57

First eliminate z, using the formula for the ellipsoid:

σ(x, y) =
Q

4πab
1√

c2(x2/a4) + c2(y2/b4) + 1− (x2/a2)− (y2/b2)
.

Now (for parts (a) and (b)) set c→ 0, “squashing” the ellipsoid down to an ellipse in the x y plane:

σ(x, y) =
Q

2πab
1√

1− (x/a)2 − (y/b)2
.

(I multiplied by 2 to count both surfaces.)

(a) For the circular disk, set a = b = R and let r ≡
√
x2 + y2. σ(r) =

Q

2πR
1√

R2 − r2
.

(b) For the ribbon, let Q/2b ≡ Λ, and then take the limit b→∞: σ(x) =
Λ
2π

1√
a2 − x2

.

(c) Let b = c, r ≡
√
y2 + z2, making an ellipsoid of revolution:

x2

a2
+
r2

c2
= 1, with σ =

Q

4πac2
1√

x2/a4 + r2/c4
.

The charge on a ring of width dx is

dq = σ2πr ds, where ds =
√
dx2 + dr2 = dx

√
1 + (dr/dx)2.

Now
2x dx
a2

+
2r dr
c2

= 0⇒ dr

dx
= −c

2x

a2r
, so ds = dx

√
1 +

c4x2

a4r2
= dx

c2

r

√
x2/a4 + r2/c4. Thus

λ(x) =
dq

dx
= 2πr

Q

4πac2
1√

x2/a4 + r2/c4
c2

r

√
x2/a4 + r2/c4 =

Q

2a
. (Constant!)
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48 CHAPTER 2. ELECTROSTATICS

Problem 2.58

b

x

y

r q(0,-a)

(  ,      )a_
2

a_
2

(  ,-    )a_
2

a_
2÷3

÷3

(a) One such point is on the x axis (see diagram) at x = r. Here the field is

Ex =
q

4πε0

[
1

(a+ r)2
− 2

cos θ
b2

]
= 0, or

2 cos θ
b2

=
1

(a+ r)2
.

Now,

cos θ =
(a/2)− r

b
; b2 =

(a
2
− r
)2

+

(√
3

2
a

)2

= (a2 − ar + r2).

Therefore
2[(a/2)− r]

(a2 − ar + r2)3/2
=

1
(a+ r)2

. To simplify, let
r

a
≡ u :

(1− 2u)
(1− u+ u2)3/2

=
1

(1 + u)2
, or (1− 2u)2(1 + u)4 = (1− u+ u2)3.
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CHAPTER 2. ELECTROSTATICS 49

Multiplying out each side:

1− 6u2 − 4u3 + 9u4 + 12u5 + 4u6 = 1− 3u+ 6u2 − 7u3 + 6u4 − 3u5 + u6,

or
3u− 12u2 + 3u3 + 3u4 + 15u5 + 3u6 = 0.

u = 0 is a solution (of course—the center of the triangle); factoring out 3u we are left with a quintic equation:

1− 4u+ u2 + u3 + 5u4 + u5 = 0.

According to Mathematica, this has two complex roots, and one negative root. The two remaining solutions are
u = 0.284718 and u = 0.626691. The latter is outside the triangle, and clearly spurious. So r = 0.284718 a.
(The other two places where E = 0 are at the symmetrically located points, of course.)

b

x

y

r
q+ _q

+ _b

(       )a_
÷2

a_
÷2

,

(b) For the square:

Ex =
q

4πε0

(
2
cos θ+
b2+

− 2
cos θ−
b2−

)
= 0 ⇒ cos θ+

b2+
=

cos θ−
b2−

,

where

cos θ± =
(a/
√

2)± r
b±

; b2± =
(
a√
2

)2

+
(
a√
2
± r
)2

= a2 ±
√

2 ar + r2.

Thus
(a/
√

2) + r

(a2 +
√

2 ar + r2)3/2
=

(a/
√

2)− r
(a2 −

√
2 ar + r2)3/2

.

To simplify, let w ≡
√

2 r/a; then

1 + w

(2 + 2w + w2)3/2
=

1− w
(2− 2w + w2)3/2

, or (1 + w)2(2− 2w + w2)3 = (1− w)2(2 + 2w + w2)3.

Multiplying out the left side:

8− 8w − 4w2 + 16w3 − 10w4 − 2w5 + 7w6 − 4w7 + w8 = (same thing with w → −w).
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50 CHAPTER 2. ELECTROSTATICS

The even powers cancel, leaving

8w − 16w3 + 2w5 + 4w7 = 0, or 4− 8v + v2 + 2v3 = 0,

where v ≡ w2. According to Mathematica, this cubic equation has one negative root, one root that is spurious
(the point lies outside the square), and v = 0.598279, which yields

r =
√
v

2
a = 0.546936 a .

b

x

y

r
q

c
f

a

(a cos(p/5), a sin(p/5))

(-a cos(2p/5), a sin(2p/5))

For the pentagon:

Ex =
q

4πε0

(
1

(a+ r)2
+ 2

cos θ
b2
− 2

cosφ
c2

)
= 0,

where

cos θ =
a cos(2π/5) + r

b
, cosφ =

a cos(π/5)− r
c

;

b2 = [a cos(2π/5) + r]2 + [a sin(2π/5)]2 = a2 + r2 + 2ar cos(2π/5),

c2 = [a cos(π/5)− r]2 + [a sin(π/5)]2 = a2 + r2 − 2ar cos(π/5).

1
(a+ r)2

+ 2
r + a cos(2π/5)

[a2 + r2 + 2ar cos(2π/5)]3/2
+ 2

r − a cos(π/5)

[a2 + r2 − 2ar cos(π/5)]3/2
= 0.

Mathematica gives the solution r = 0.688917 a.
For an n-sided regular polygon there are evidently n such points, lying on the radial spokes that bisect

the sides; their distance from the center appears to grow monotonically with n: r(3) = 0.285, r(4) = 0.547,
r(5) = 0.689, . . . . As n→∞ they fill out a circle that (in the limit) coincides with the ring of charge itself.

Problem 2.59 The theorem is false. For example, suppose the conductor is a neutral sphere and the external
field is due to a nearby positive point charge q. A negative charge will be induced on the near side of the sphere
(and a positive charge on the far side), so the force will be attractive (toward q). If we now reverse the sign of
q, the induced charges will also reverse, but the force will still be attractive.

If the external field is uniform, then the net force on the induced charges is zero, and the total force on the
conductor is QEe, which does switch signs if Ee is reversed. So the “theorem” is valid in this very special case.
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CHAPTER 2. ELECTROSTATICS 51

Problem 2.60 The initial configuration consists of a point charge q at the center, −q induced on the inner
surface, and +q on the outer surface. What is the energy of this configuration? Imagine assembling it piece-by-
piece. First bring in q and place it at the origin—this takes no work. Now bring in −q and spread it over the
surface at a—using the method in Prob. 2.35, this takes work −q2/(8πε0a). Finally, bring in +q and spread it
over the surface at b—this costs q2/(8πε0b). Thus the energy of the initial configuration is

Wi = − q2

8πε0

(
1
a
− 1
b

)
.

The final configuration is a neutral shell and a distant point charge—the energy is zero. Thus the work
necessary to go from the initial to the final state is

W = Wf −Wi =
q2

8πε0

(
1
a
− 1
b

)
.

Problem 2.61

rj

R x

y

(2pj/n)

R

Suppose the n point charges are evenly spaced around the circle, with the jth particle at angle j(2π/n).
According to Eq. 2.42, the energy of the configuration is

Wn = n
1
2
qV,

where V is the potential due to the (n− 1) other charges, at charge # n (on the x axis).

V =
1

4πε0
q

n−1∑
j=1

1
r j

, r j = 2R sin
(
jπ

n

)

(see the figure). So

Wn =
q2

4πε0R
n

4

n−1∑
j=1

1
sin(jπ/n)

=
q2

4πε0R
Ωn.

© Cambridge University Press 2017.  
This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part 

may take place without the written permission of Cambridge University Press.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781108420419-SOLUTIONS-5/


52 CHAPTER 2. ELECTROSTATICS

Mathematica says

Ω10 =
10
4

9∑
j=1

1
sin(jπ/10)

= 38.6245

Ω11 =
11
4

10∑
j=1

1
sin(jπ/11)

= 48.5757

Ω12 =
12
4

11∑
j=1

1
sin(jπ/12)

= 59.8074

If (n− 1) charges are on the circle (energy Ωn−1q
2/4πε0R), and the nth is at the center, the total energy is

Wn = [Ωn−1 + (n− 1)]
q2

4πε0R
.

For

n = 11 : Ω10 + 10 = 38.6245 + 10 = 48.6245 > Ω11

n = 12 : Ω11 + 11 = 48.5757 + 11 = 59.5757 < Ω12

Thus a lower energy is achieved for 11 charges if they are all at the rim, but for 12 it is better to put one at
the center.
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CHAPTER 3. POTENTIAL 53

Chapter 3

Potential

Problem 3.1
The argument is exactly the same as in Sect. 3.1.4, except that since z < R,

√
z2 +R2 − 2zR = (R − z),

instead of (z − R). Hence Vave =
q

4πε0
1

2zR
[(z +R)− (R− z)] =

1
4πε0

q

R
. If there is more than one charge

inside the sphere, the average potential due to interior charges is
1

4πε0
Qenc

R
, and the average due to exterior

charges is Vcenter, so Vave = Vcenter + Qenc
4πε0R . X

Problem 3.2
A stable equilibrium is a point of local minimum in the potential energy. Here the potential energy is qV .

But we know that Laplace’s equation allows no local minima for V . What looks like a minimum, in the figure,
must in fact be a saddle point, and the box “leaks” through the center of each face.
Problem 3.3

Laplace’s equation in spherical coordinates, for V dependent only on r, reads:

∇2V =
1
r2

d

dr

(
r2
dV

dr

)
= 0⇒ r2

dV

dr
= c (constant) ⇒ dV

dr
=

c

r2
⇒ V = − c

r
+ k.

Example: potential of a uniformly charged sphere.

In cylindrical coordinates: ∇2V =
1
s

d

ds

(
s
dV

ds

)
= 0⇒ s

dV

ds
= c⇒ dV

ds
=
c

s
⇒ V = c ln s+ k.

Example: potential of a long wire.
Problem 3.4

Refer to Fig. 3.3, letting α be the angle between r and the z axis. Obviously, Eave points in the −ẑ
direction, so

Eave =
1

4πR2

∮
E da = −ẑ

1
4πR2

q

4πε0

∫
1

r 2
cosαda.

By the law of cosines,

R2 = z2 + r 2 − 2r z cosα ⇒ cosα =
z2 + r 2 −R2

2r z
,

r 2 = R2 + z2 − 2Rz cos θ ⇒ cosα
r 2

=
z2 + r 2 −R2

2z r 3
=

z −R cos θ
(R2 + z2 − 2Rz cos θ)3/2

.
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