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26 CHAPTER 2. ELECTROSTATICS

Chapter 2

Electrostatics

Problem 2.1

(a)

() | F= 12

Ay 127
Ezplanation: by superposition, this is equivalent to (a), with an extra —q at 6 o’clock—since the force of all
twelve is zero, the net force is that of —g only.

(c)

1 qQ

dmeg 12

where r is the distance from center to each numeral. F points toward the missing q.

pointing toward the missing ¢. Same reason as (b). Note, however, that if you explained (b) as

(d)

a cancellation in pairs of opposite charges (1 o’clock against 7 o’clock; 2 against 8, etc.), with one unpaired ¢
doing the job, then you’ll need a different explanation for (d).

Problem 2.2
This time the “vertical” components cancel, leaving E
E = 47350 2% sinf X, or 2 /0
1 d :
q N
E= X.
dmey (L2 4 (& 2\3/2 .
=+ () . i
From far away, (z > d), the field goes like E ~ 4;60 g—gi z, which, as we shall see, is the field of a dipole. (If we

set d — 0, we get E = 0, as is appropriate; to the extent that this configuration looks like a single point charge
from far away, the net charge is zero, so E — 0.)
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Problem 2.3

1 L Ndz . 2 __ 2 2. . =z
E. = e Jo }ZQCOSH. (2 = =2"4+2"; cosfl = )

_ 1 L 1
T dwep Az fO (;2+I2)3/2d.1’

dq = Mdx L
_ 41 Az le T _ 1 % L )
| 4mep z z44x 0 dmeg z V22412
_ 1 L Ndz _: _ 1 xdr
E. = dmeq fO 2 sinf = dreq )\[ (22422)3/2

N I IR U
4dreg NE =) 07 4dreq z VZZHL2 |

1 A z L
E=— |1+ s+ -2z,
dmeg z Vz2 4+ L2 Vz2+ L2
For z = L you expect it to look like a point charge g = AL: E — ﬁ%i It checks, for with z > L the %

term — 0, and the Z term — ﬁiéﬁ.

Problem 2.4

. 2, . . .
From Ex. 2.2, with L — § and 2z — /22 + (%) (distance from center of edge to P), field of one edge is:

> 1 Aa
1= - .
Ao \/224— §\/z9 +& 2

There are 4 sides, and we want vertical components only, so multiply by 4 cosf = 4\/:2 :
z24 42
~ 4

1 4Aaz
E = 1 7.
2 2
T (24 a2y o a2
Problem 2.5
\ “Horizontal” components cancel. leaving: E = 4;60 {f % cos 9} Z.
Here, 2 2 =12 + 22, cosf = 5~ (both constants), while Jdl =2mr. So

I A27r)z

p— 2-
4meq (.1.2 4 Z2)3/2

Problem 2.6
Break it into rings of radius r, and thickness dr, and use Proh. 2.5 to express the field of each ring. Total
charge of a ring is o - 2wr - dr = X\ - 27r, so A = adr is the “line charge” of each ring.

1 (odr)2mrz

1 n r
Ering = ;i Faisk = —27moz ———dr.
£ dmeg (-:*24—22)3/2 disk = Y reo U7£ (,,2+22)3/2(7
1 1 1
Egisx = — 2702 | — — ————| 2.
BT drreq [z \/R2+z2}
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28 CHAPTER 2. ELECTROSTATICS
For R >> z the second term — 0, 50 Epjane = - —270% = 212
€0
1 1 R\ Y2 1 R? 1_ 1, 1R? R?
and E = ﬁ% = 47360 %, where Q = 7R%*0.
Problem 2.7 z
E is clearly in the z direction. From the diagram,
dq = oda = o R?sin 0 df d¢,
22 =R?+4 22— 2Rzcosd,
COS’(ﬁ _ z—]/%}cosé.
So
B - 1 /0R2sin0d9d¢(z—Rcosﬂ) [dé = 2r.
d7eg (R2 + 22 — 2Rz cos 6)3/2

T

g — Rcos 0) sin 6
2 2 (Z . I _ < 0- — a1 .
4 60( R U)/O (R2 22 2R~ cos 9)3/2 df et u = cos 9, du = blnedﬁ, {

1
- R
(27TR20')/ o 22 27;% 7 du. Integral can be done by partial fractions—or look it up.
1 2?2 —2Rzu

0=0=u=+1
O=m=>u=-1["

- 47eg
1
_ (27 R20) 1 2u—R _ 1 2nR%0 ( (2 — R) _(=2-R) .
dmeg 22 /R?2 + 22 —2Rzu] _, 4meq 22 |z — R |z + R|
: _ 1 4nR% _ _1 _ 1 q.,

For z > R (outside the sphere), £, = ;_—*3% = ;% so |E = T2 2
For z < R (inside), E, = 0, so
Problem 2.8

According to Prob. 2.7, all shells interior to the point (i.e. at smaller r) contribute as though their charge
were concentrated at the center, while all exterior shells contribute nothing. Therefore:

1 Qint a
r

4dmey 12

E(r)

b

where Qi is the total charge interior to the point. Qutside the sphere, all the charge is interior, so

1 Q.

= r.
47T€0 7"2

E

Inside the sphere, only that fraction of the total which is interior to the point counts:

4 3 3 3
37T r 1 r 1, 1 Q
int — = —, E: _— —_ = —7T.
Qine gszQ B I B T T e 15T

Problem 2.9

(a) p=eV-E = 60%2% (r2 . k;7°3) = eor%k‘(Br‘l) =
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29

(b) By Gauss’s law: Qenc = €0 $ E-da = eo(kR?)(47R?) =

By direct integration: Qenc = [pdr = fOR(5eokr2)(47r7"2dr) = 20meok fOR ridr = dreghR5.V

Problem 2.10

Think of this cube as one of 8 surrounding the charge. Each of the 24 squares which make up the surface
of this larger cube gets the same flux as every other one, so:

one
face

The latter is éq, by Gauss’s law. Therefore /

1

E-da= — E-da.
/ a 71 a

whole

large

cube

q

E-da= —0—

a 2460

face

Problem 2.11

Gaussian surface: Inside: § E-da = E(4mr?) = %anc =0=

— Gaussian surface: Outside: E(4mr?) = &(04nR?) = |E =

oR2 } (As in Prob. 2.7.)

607“2

Problem 2.12

Gaussian surface

$B-da=E-4mr? = LQenc = L57°p. So
1
E— — pri
5 P'E

(7

Since Qior = %ﬂ‘R?’p, E=-L ¢ (as in Prob. 2.8).

Problem 2.13

Gaussian surface

N TV
z_J

l

$E-da=FE 2ns-1= éQenc = é/\l. So

A
2mens

~

§| (same as Eq. 2.9).

Problem 2.14

$B-da=E-4mr? = LQenc = & [pdr = & [(kF)(7* sinf dF df d¢)

_ 1 T33-_ 4rkr* _ 7k, 4
—60k47rfordr— =T

Gaussian surface

| E =

1
47eq

wkr?t.

0

€0

© Cambridge University Press 2017.
This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part
may take place without the written permission of Cambridge University Press.


https://testbanks.ac/product/9781108420419-SOLUTIONS-5/

ICLI CK HERE TO ACCESS THE COVPLETE Sol uti ong

30 CHAPTER 2. ELECTROSTATICS

Problem 2.15
(1) Qenc = 07 SO

(ii) § Brda = E(471?) = 2Qene = & [pdr = L [ L7 sin6 dr df do
r - E
_ 4Ank fa df:47rk(r_a) E:k(T CL) . ‘ ‘

€0 €0

(i) B(4mr?) = 42k (7 g = 42k — g), 50

B=F (b_za> .
€0 T

Problem 2.16

$E-da=FE 2ns-1= %Qem = Lors?l;

€0
(i) () ) D<— Gaussian surface E— ﬁg
L

260

\ TN “+—— Gaussian surface fE-da —F.%1s-1 = éQenc — épﬂaZl;
(1) ° >
- a
E=-"s
T 7 7 2€pS
]

(iii) ( ) s ) ) $E-da=FE 2ns-1= éQenc =0;
-E =0.
/ /)

I |E|

|

|

|

|

|

a b S
Problem 2.17 On the x z plane E = 0 by symmetry. Set up a Gaussian “pillbox” with one face in this plane
and the other at y.

Gaussian pillbox

fEda =F-A= %Qenc = %Aypv

/
@ E="yg| (for |y < d).
€0

= U<
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CHAPTER 2. ELECTROSTATICS 31

Qenc = L Adp = |E= Lag | (for y > d).

Problem 2.18
From Prob. 2.12, the field inside the positive sphere is E = %r+, where r is the vector from the positive

center to the point in question. Likewise, the field of the negative sphere is —%r_. So the total field is

p
E:37€0(I'+—I',) r_ B
ry
But (see di ) —d. So|E="4d Z d
ut (see diagram) ry —r_ =d. So =354 £

Problem 2.19

1 2 1
VXE = v —pdr =
X 4dmeg X/ 2 2P ar 4’/T60/

2
V X (/Zz)] pdr (since p depends on r’, not r)

2
=0 (since VX (@2) =0, from Prob. 1.63).
Problem 2.20
Xy z
(1) VXE; =k |& & & | =k[X(0-2y)+9(0—32) +2(0 — 2)] #0,
Ty 2yz 3zx

so Eq is an impossible electrostatic field.

O N>

y
& | =k&22—22)+9(0-0)+2(2y — 2)] =0,
y? 2zy + 22 2z

g"@ w>

(2) VXEy =k

so Es is a possible electrostatic field. 5

Let’s go by the indicated path:

E-dl = (y*dx + (2zy + 22)dy + 2yz dz)k ‘l(xo, Yo, 20)
Step I y=2=0; dy = dz = 0. E-dl = ky?>dx = 0. I
Step II: x =g,y :0— yp, 2=0.der =dz=0. I "y
E-dl = k(2xy + 2%)dy = 2kxzoy dy.
[pp EBedl =2k [[° ydy = kxoyd. -

Step III: x = xg, y = Yo, 2: 0 — z9; dx = dy = 0.
E-dl = 2kyzdz = 2kypz dz.
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32 CHAPTER 2. ELECTROSTATICS

Jrrp Eedl = 2yok [ 2dz = kyozd.

(wO »Yo yZD)

V(x07y0720 = - f E.dl = k(x()y(% + y028)7 or ’ V($,y,2) = 7k(xy2 + yZQ)

Check: —-Vv= k[ 2 (xy +yz?) %+ 2 5y (zy’+yz2) 5+ 2 5= (zy+yz2 z]:k[y2 %+ (2zy+22) §+2y2 2]=E. v
Problem 2.21

Outside the sphere (r > R) : E = = %#.
V(r) =— [ Bedl.
Inside the sphere (r < R): E = ;2 -Lrf,

4meg R
So for r > R: V(r) = — [7 (&) dr= g ()] =| 2 1
Ameq T2 4meq ™ oo 47T6() r
1 =\ Js — 1 1 R?
and for r < R: V = f (477(-: F%) (471'60 RBT) dr = 47350 |:§ ~ R% ( )i|
Ja Loy
4meg 2R R?
When r > R, VV = L0 (1) f = —gL-Lf o E= -VV = L 5f. v
When 7 < R, UV = g ob 8 (3- 52 ) 8 = ok (—25) = — 5 oy s0 E= =WV = gl foriy

(In the figure, 7 is in units of R, and V(r) is in units of ¢/4reoR.)

|
|
|
|
|
|
|
I
1

Problem 2.22

E = 4736 2;“ (Prob. 2.13). In this case we cannot set the reference point at oo, since the charge itself

extends to co. Let’s set it at s = a. Then

— _ ["(-1_2X) 45 =
)= (4”60 5 ) ds = 47‘(‘602)\111 (a)
(In this form it is clear why a = co would be no good—Ilikewise the other “natural” point, a = 0.)
VV = -2 (n(5))8= —552M8=-E.v
Problem 2.23
b (r—a —a a
0) = — [LBdl = — [L(EC)dr — [} (ECS)dr — [ (0)dr = EC52 — & (n(§) +a (]~ 3))

a a a k b

€0 a

Problem 2.24
Using Eq. 2.22 and the fields from Prob. 2.16:

V() ~V(0) = — [JE-dl= — [ Edl — [V E-dl = — o [ sds — ? b 1s

a s
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CHAPTER 2. ELECTROSTATICS 33

a 2 a? b
_ 02 nslP = _pra 1491n( = )
0 2¢0 nsla 460 ( + n a

Problem 2.25

1 2q
_471'60 9 d 2’
22+ (3)

L - L
(b) V= 1 ffL \/2\263»712 = 477)\60 1H(I—|— \/Z2 +1’2)|7L

(a) |V

4meq :

A L++Vz22+12 A I L+ V22 +12 z, }L
= n = . |
drmeg —L++V22+ 12 27eg z ‘

R R
o)V 1 o 2mr dr 1 2770(\/7”2—1—22)‘ = i(\/]%2—&—22—2).

- dmeg Jo V12 + 22 - 4dTeg 0 2¢0
In each case, by symmetry %—Z = %—‘; =0. - E= —%—‘Z/Z.
1 1 2z 1 2qz R .
(a) E=— 2q (—) — 7 = —— 7 | (agrees with Ex. 2.1).
4meg 2 (22 n (%)2)3/2 47eg (2,2 + (%)2)3/2
A 1 1 1 1 1 1
b) E=— = 2z — = 2z 0 Z
(b) 47T€0{(L+\/22+L2)2\/22+L2 (—L+ V22 + 12222+ 12 }

(agrees with Ex. 2.2).

A z L4+ V22 L2 - L—V22+ L% 2L\ 1 .
= — 7z =| ——7
dmeg /22 + L2 (224 L%) - L? 4dmeg 20/22 + L2

o 1 1 R
7z =

g z
E=-2 -~ 9, 1 S P .
) 260{2\/32+Z2 : } 260[ \/RQ—i—zJZ

If the right-hand charge in (a) is —q, then , which, naively, suggests E = —VV = 0, in contradiction
with the answer to Prob. 2.2. The point is that we only know V' on the z axis, and from this we cannot hope

(agrees with Prob. 2.6).

to compute E, = —% or E, = —%—‘;. That was OK in part (a), because we knew from symmetry that
E, = E, = 0. But now E points in the x direction, so knowing V' on the z axis is insufficient to determine E.

Problem 2.26

N

V2h

1 o2nr 2o 1 oh
\%4 = d2 = ——(V2h) = —
(2) 47T60/0 ( 2 ) 4meg \/5([ ) 2¢

(where r = 2 /V/2)

a
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34 CHAPTER 2. ELECTROSTATICS

V2h
1 o2nr _
V(b dz here 2 =\/h2+2 2 —/2h2
(b) 47T€0/o ( 5 ) (where \/ + NG )
2o 1 V2h 72

TImovih Verariovam
h van

= 275 [\/h2+¢2—\/§h¢ +\/§ln(2\/h2+¢2—\/§h¢ +22 —\fzh)} 0
— {h+ h1(2h+2¢§h—ﬁh)—h_hm(zh—ﬁh)}
T 2V2¢ V2 V2
B h B _oh 2+V2\ _oh o (2+V2)
_2f€0f[1n(2h+fh) In(2h \/ﬁh)]_401 2ﬁ>_4€01 = )
_ ;—hln(l +VE). V() = V(b) = ;;h [1-m+v2)].

€0 €0

Problem 2.27

Cut the cylinder into slabs, as shown in the figure, and
use result of Prob. 2.25¢, with z — x and ¢ — pdx

V=25 [ (VR?+2?-z)dx - U }] J

z—L/2

—/__: -
= 23 [#VR? + 2% + R’ In(z + VR? + 22) — 2] 2 ~ 4

z—L/2

L AR
— fo{(z+§) R4 (:4L)° (- L) /R2+(2-£)*+R?In {W]—%L}-

55

(Note: — (z+ %)2 + (z —

o[t~

)2=—z2—zL—L72+z2—zL+LT:—2zL.)

2
:—VV——Z—— Z'O URQ z—|— URQ z— Z_i
\/R2 \/R2
14+ —=— 1 —5
—QL}

_|_ -2
R2+(z+ )? R2+(Z—f

s+ LRy (24 L) Ly R2+
1
VR

R2

z+§ \/R2 5
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CHAPTER 2. ELECTROSTATICS 35
2 2
_|P 2 L 2 _z 5
=126 L \/R (z+2> +\/R (z 2) 7
Problem 2.28 <

Orient axes so P is on z axis.

Vo L g Here p is constant, dr = r? sin 6 dr df d¢, ’
= Imeo J 2 4T 2 =22 4+r2 —2rzcosh. f’

Y
P r2 sin 0 dr df _r-sinfdrdfdo _ @
V= 4meg J \/224r2—2rzcosf ) f d¢ = 2m.

X
0 T 1
Jo 7t d0 = - (V2422 = 2rzcosO) | = o (Vi + 22+ 2r2 — V2 + 22 — 2r2)
2/z ,ifr <z,
_7}Z(T+Z|TZ|)_{2§T,if’r>z.}

O —nu

V=L ~27r~2{ lr2dr+flr2 } —{15+R2_z2}*L<R275)
. T 4dmeg z T e | z 3 2 T 2e¢p 3 /)
z

2
2 2 q r
But p = g, 50 V() = gyt (B = ) = sekim (3 70) 3| VO = g (3_R> ‘

Problem 2.29

V2V = 4” V2f( )dT = 4WEO Jpx’ ( )d (since p is a function of 1/, not r)
= = [p(t/)[-4r83(x — ') dT = — L () v

4meq

Problem 2.30.
(a) Ex. 2.5: Eapove = %ﬁ; Ebclow = —ﬁﬁ (i always pointing up); Eabove — Ebelow = %ﬁ v

Ex. 2.6: At each surface, F = 0 one side and E = % other side, so AE = Z. v

o’

Prob. 2.11: Equ = 2858 = 2#; By, = 0350 AE = 2§, v

o
€0

» |2

§ = 28§ (at surface).

g1

(b) O IR Outside: §B-da = E2rs)l = 2Quc = £(27R) = E =

Inside: Qene =0,s0 E=0. -. AE = %é v

() Vous = 2 = R—(‘)’ (at surface); Vin = £2 1 50 Voug = Vin. v/

€0

P 2
Wowe — R _ _ 0 (4t surface);
€0

Vin _ 0. OWVous _ OVin _ _ o
or 0 0 8(;‘u or €0
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36 CHAPTER 2. ELECTROSTATICS

Problem 2.31

(a) V 47r6027?¢:_47r60 {%q—i—\/%a—‘_%q}:ﬁ(_Q—F%)'
2
Wa=aV = | : M, @
e 47T€oa( 2+\/§>' -+
1 (P @ I
(b) Wy =0, Wy = 47{50 ( ) = Tneo (\/qga - ;) Wy = (see (a)). @) 3)

W, 1 l_gpal_| L2/, 1
o= {1 o2 G = oo CTR)

Problem 2.32
Conservation of energy (kinetic plus potential):

1 , 1 2 1 qagqs
-MAVy + -MmpBUup + — =FE.
g ATAT 9TBYB dmeg T
At release v4 =vp =0, r =a, so
1 9495
T dwey @

When they are very far apart (r — oco) the potential energy is zero, so

1 2 1 2 1 qagqB
QmAUAJr 9BV = Ateg a

Meanwhile, conservation of momentum says mavq = mpug, or vg = (ma/mp)va. So

2
1 9 1 ma o 1 [mgy o 1 qagp
2771,41)14—&—27713 (mB> va=3 . (mA+mB)vA—47T€O o

B 1 qAqB <m > B 1 qAqB (mA)
r— —|; wvp= — ).
2meg (Mma +mp)a A 2meg (ma +mp)a \ mp
Problem 2.33

From Eq. 2.42, the energy of one charge is

s}

oo n

1 Lo~ 1 (=D)"g? 'S (-
W=—qV ==(2 =
2q 2( )T; 4dmeg  na dmega ;

(The factor of 2 out front counts the charges to the left as well as to the right of ¢.) The sum is —In2 (you
can get it from the Taylor expansion of In(1 + x):
1, 1,

1
ln(1+x):a:—§a:2+§a: —Ex4+-~-

with z = 1. Evidently .
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CHAPTER 2. ELECTROSTATICS 37

Problem 2.34
= 1 [pVdr. From Prob. 2.21 (or Prob. 2.28): V = 7= (R2 - %) = 47360 o (3 - E—Z)

(a) W
1 1 q (7 r? 2 o [ 12 e (5 R
== L (32 amr2dr = s - T R -
W= P ine 2R ( R2> T T 4R |73 T R25 ||, 1R 5
_ g R ¢ | L (3¢
5eg 5eg %ﬂ'RB dmeg \B R/~
(b) W =< [E?dr. Outside (r > R) E = 47360 &1 Inside (r < R) E = 4m(, HsTE.

€0 1 2 1, /R T2 2
= — —(r“4n d — ) (4rrd
! {/R r4(7” mdr) + | (R3) (dmr=dr)

2 (4mep)?
R A W SR S S N NV i
r RO\5 "~ 4meg 2 \ R 5R dmen 5 R

1 q 71
47T60 2 r 0

(c) W = %0{ ﬁs VE-.da+ fv EQdT}, where V is large enough to enclose all the charge, but otherwise
arbitrary. Let’s use a sphere of radius a > R. Here V = 471150 4,

R a 2
= {/ L 4 ) r<sinf df d¢+/ E2d7'—|—/ <47T1€ ;12) (47Tr2dr)}
0 R 0

47'('60 r 47Teo 72
a
R}

2

€0 q 4’/T ]. 2 1

_ % 774 My _Z
9 { (47ep)? a Tt neg)? (47mep)? BR + (4ep)? T ( r

1 ¢ (1 1 1 1 1 3¢2
= i + — — - — —_ ,i./
dmeg 2 dmeg b R

a B5R a+R

2
As a — oo, the contribution from the surface integral ( Trc ga> goes to zero, while the volume integral

(47r1e0 57(5% - )) picks up the slack.

Problem 2.35

1 _
) g, (g = charge on sphere of radius r).
dmeg ) T

szququ(
dq

4 3

(1277'(7'3[):(]% /

3 (¢ = total charge on sphere).

4mr? 3q 24y

_ 2
dq = 4nredrp = 4 qud R3

1 qr 3q o 1 3¢? 4
AW = a dr d
Ame <R3> <R3 > Amey RS

1 3¢? 4 1 3¢2R° 1 (3q?
= —— rdr: —_ = == ./
4mweg RS J, 4meg RS 5 4meg \ O R
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Problem 2.36

(a) W= [E*dr. E = —9% (a <1 <b), zero elsewhere.

T 4meg
2 2
_ (g ¢ (L_1
W 2(4”0) 8meo (a b))’

b /1112 2 b 1

fa (7’72) 47r7ﬂ2d7ﬂ = 831'60 fa 2

2 N —q a
Wo=gio%, Ei=go%8(r>a), Bp= =28 (r>b). So

2

(b) W1 = &=

8meg a’? Admeg T dmwey T
2 2 2
1 — 1 2 [ 1 2
E, E; = (Mm) =%, (r>b), and hence fE1~E2dT:—(4MO) @ [, ZAnridr = 4735017

2
Wit = Wi+ Wa+te [Er-Eodr = g2=® (3 +1—3) =52 (2 —4) v
Problem 2.37

Z)\
2
p
alo
q, =
X
1 ¢, 1 g . Q1QQ/ 1 9 .
E, = N DT — 2 W,;,= 0 dr df do,
! 4dmreg 2 . 2 dmeg 2 2 ! 60(4’/T60)2 TQ/ZQCOSﬁT smrar 9

where (from the figure)

(r —acosf)

2 =12+ a2 — 2racosé, cos 3 = Py

Therefore

Q1@ (r—acosf) .
W, = (47T)26027r/ 53 sin @ dr df.

It’s simplest to do the r integral first, changing variables to 2 :

22 d2 = (2r —2acos@)dr = (r—acosf)dr=2dz .

Wizqm/ (/ 12d¢>sin0d9.
8meg Jo « 2

W, = e / sinfdo — | L2
0

STepa dmega’

Asr:0— 00,2 :1a— 00, s0

The 2 integral is 1/a, so

Of course, this is precisely the interaction energy of two point charges.
Problem 2.38

(a) |or = 1 op=—L . g,=-1_
47 R? 4ma? 47b2
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CHAPTER 2. ELECTROSTATICS 39

() V(0) = — [ Bedl = — [ (s ) dr — [ (0)dr — [ (s &) — [p(@)dr = | —— (L4 L 1)

4meg b a \4meg R 47760 b R a
a 1

(¢) |op — 0| (the charge “drains off”); V/(0) = — [ (0)dr — fa (e i%)dr — fR = e (% - %) .
Problem 2.39

(@) [0e = ==L ||op = =D || gp = T T B

“ dma?’ ||7° amb?’ || "% T 4xRr2
1 qa .
(b) | Eout = —— Qo T 0 t, | where r = vector from center of large sphere.
dmeg 12
(c) | E, = L 4 t,, E,= L@f'b where r, (rp) is the vector from center of cavity a (b).
dmegr2 Y dregri

(d)

(e) or changes (but not o, or 03); Eoutside changes (but not E, or E;); force on ¢, and g, still zero.
Problem 2.40

(a) For example, if it is very close to the wall, it will induce charge of the opposite sign on the wall,
and it will be attracted.

b) Typically it will be attractive, but see footnote 12 for an extraordinary counterexample.

Problem 2.41
Between the plates, E' = 0; outside the plates E = o/eg = Q/egA. So

p=p2_% Q _|_@
2 2 3 A? 2e9 A2’
Problem 2.42
ZA
Inside, E = 0; outside, E = %f‘; SO
471'60 T E
1.1 Q 4 Q 0
Euve = 2dreg RZ T Jo = 0(Eaye)z; 0= InR2"
F. = [fda= [(+%)3 (e ) cos§ R? sin 0 d6 do
/2 1 7'(/2 1 2 Q2
= 260(47TR) 27Tf sinf cos df = Tcg(%) (28111 9) = ﬁ(%) = 327TR260.

Problem 2.43
Say the charge on the inner cylinder is @, for a length L. The field is given by Gauss’s law:

fE-da =F -2ns-L= éQenc = 1 Q = E= m . Potential difference between the cylinders is
b b
Q 1 Q b
V() —V(ia)=— E-dl = — —ds = — In{—-).
( ) (Cl) /a 27T6(]L a S 5 27T6(]L . a

As set up here, a is at the higher potential, so V =V (a) — V(b) = % In (g)
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40 CHAPTER 2. ELECTROSTATICS

C: Q _ 2mwegL
\4

()

Problem 2.44

, SO capacitance per unit length is

(a) W = (force) x (distance) = (pressure) x (area) X (distance) = 6§OE2AG.

(b) W = (energy per unit volume)x (decrease in volume) = (60%2> (Ae€). Same as (a), confirming that the
energy lost is equal to the work done.

Problem 2.45

From Prob. 2.4, the field at height z above the center of a square loop (side a) is
1 4 az . g7
Z.

E:
O ) R g .
da

Here A — 05" (see figure), and we integrate over a from 0 to a:

1 ¢ d 2
E:—Qaz/ ada .Letu:a—,soada=2du.
dmeo 0 (24 2) /2244 1
274 (52/4
1 4 /“ / du oz |2 tan—1 V2u + 22
= oz = — |—tan _—
47T60 0 (u—|—22)\/2u—|—z2 ey | 2 z 0

TEQ z

_ 2 {tanl (V B ) —tanl(l)};

2 2
B2 [ant i 2 7] ol C it (),
Teo 2z 4 Teo 4z+/2% + (a?/2)
a — oo (infinite plane): E = f—;’o [tan™!(c0) — Z| = 73—:0 (Z-12)= 5oV

z>> a (point charge): Let f(z) =tan~'+/1+z — Z, and expand as a Taylor series:

f(@) = f(0) +zf(0) + %lﬂf"(o) T

Here f(0) = tan='(1) —

_1
_Z’SO

ENE]

2=0; f'(2) = i v = s o /(0)

Thus(since%zx«l%E%Q—”(iﬁ): L oa® _ 1 g
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Problem 2.46

B B 1 0 [ 5,3k 1 0 (. 2ksinfcosfsin¢ 1 0 [ksinfcos¢
p_EOV.E_EO{rQ&“ (r r)+rsin980<sma r >+rsin96¢< r

1 2ksin ¢(2sinf cos® f — sin®f) 1 (—ksinfsin¢)
=€ |53k + — -
r2 rsinf r rsiné r
kEO

k
> [3+2sin¢(2 cos? 0 — sin® 0) — sin¢] = % [3+sin¢(4cos® — 2+ 2cos® 6 — 1)]
T

3]'{}60

k
[1+ sin (2 cos? 0 — 1] = 3kéo (1 + sin ¢ cos 20).
r2

Problem 2.47
From Prob. 2.12, the field inside a uniformly charged sphere is: E = 47T€ R3 r. So the force per unit volume

isf=pE = (%) (ﬁ)r = %(43%3)21', and the force in the z direction on dr is:
3

2
dF, = f,dr = % <4£{3> 7 cos O(r? sin 0 dr df do).

The total force on the “northern” hemisphere is:

2 3
F, = /fzdr— (47TR3> / dr/ cos 6sin 0 df d<;$

3/ Q R\ (sin?0[" o) = | 2
_60(47TR3> (4) 2 |, @) =\ Greo

Problem 2.48

1 o 1 o oR
V;:en er — — —da = — da = — 2 —
¢ 4eq //L “ 4meg R @ 4meq R( R 2¢g R
1 o da = 2w R?sin 0 df
Viole = —— | —da , with ’
pol 47760//L A {/L2:R2+R2—2R20089=2R2(1—0089). R

1 o(27R?) /”/ 2 sinfdo oR /2
=——— 2v/1
dren RV2  Jo V1 —cosf Q\feo ( oo )

ocR oR ocR
=—(1-0)=——. -'-Voc*V;:cncr* \671
(1-0 =7 rote = Vienter =| 5= (V2= 1).

Problem 2.49
First let’s determine the electric field inside and outside the sphere, using Gauss’s law:

mkrt  (r <R),

€o ]{E-da = €047’ E = Qene = /p dr = /(/ﬁ)f2 sin 0 dr df dp = 47rk/0 Fdr = {ka‘* r>R).

So E = ﬁrzf (r<R); E= feerf‘ (r > R).
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Method I:

R 2\ 2 oo 4 2
€0 9 €0 kr 9 €0 kR 9
=— | F Eq. 2.45) = — — ) 4 d — 4 d
%% 5 / dr (Eq ) 5 /0 (460) mredr 4 5 /R <4eor2 mredr

2 R o'} 2 7 0 2 7
4 (R /rﬁdr+RS/ 1d _ TR g (L _ T (R g
2 \4eg 0 R 8o | 7 )R 8ep \ 7

Method II:

1
W = 5/,OVCZT (Eq. 2.43).
, ij4 r er k 1
F —— [ Bdl=— g Kt vl R
orr <R, V(r) /DO d /DO (4607’2> - /R (460) T i {R ( T)
_ Kk R34 f R;)’ _k R — ﬁ .
460 3 3 3€o 4
2 R

1 - (R dmr?ar = 270 / Ror — 118 gy
2 3¢ 3¢ Jo 4
2

7rk:2 RRﬁfﬁRﬁ _ TK*RT (6 _ kR
N 360 4 4 7 a 2'360 7 N 760 '

Problem 2.50

—Ar _ —Ar _ —Ar T

or T 72

p=e&V-E=eA{e1+A)V-(5)+ 5.V (e7(1+Ar))}. But V- (%) = 478%(r) (Eq. 1.99), and

e (14 Ar)d%(r) = 63(r) (Eq. 1.88). Meanwhile,
V(14 ) =2 (e7M(1+Ar)) = {-Ae ™ (L4 M) + e A} = (=A%),

- 2 22
So L.V (e (14 Ar)) = —2-e™*, and | p = €A |:47T(53(I‘) - e_’\r] .

r T

—Ar 00
Q= dr = egAL An [ 82(r) dr — N2 C  Anr2dr = coA | 41 — N24x re dr ) .
p . ;

But fOOO T6_>\Td7" — %, SO Q = 47T€0A (1 - ié) =

Problem 2.51 R
1 7 1
_ / 9 da= / / sds do.
4meq 2 dmeo Jo Jo \/R2 + 52 —2Rscos¢

1 s
:20'R/ / U do | du
dmey Jo 0 /1+u2—2ucose

Let u = s/R. Then
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CHAPTER 2. ELECTROSTATICS 43

The (double) integral is a pure number; Mathematica says it is 2. So

v
TEN
Problem 2.52
(a) Potential of +\ is V; = — 27?‘60 In (%5), where s, is distance from A4 (Prob. 2.22).
Potential of =X is V_ = —|—27f‘60 In (%’), where s_ is distance from \_.
.. Total |V = A In (S_> .
27eq S+ .
Now s = /(y—a)?2 4+ 22, and s_ = /(y + a)? + 22, so (@9, 2)
S_
Vra? 2 A (y+a)* +2°
V(xyz)z’\oln< > ln{ . s
e me (y—a)>+22 4re —a)? + 22 +
v 0 (y ) % a
)\ A 4

(b) Equipotentials are given by % = e(4m€0Vo/A) = | = constant. That is:
y? +2ay +a?+ 22 =k(y? —2ay+a®>+2%) = y?(k—1)+22(k— 1) +a?(k — 1) — 2ay(k+1) =0, or
y? + 22 4+ a® — 2ay (%) = 0. The equation for a circle, with center at (yo,0) and radius R, is

(y —v0)? + 2% = R% or y?* + 22 + (v} — R?) — 2yyo = 0.

Evidently the equipotentials are circles, with yg = a (%) and
2 2 2
k k2 42k4+1—k2+2k—1 4k
A=y -R’=R=y2—d’=a? (kﬂ) — a? = a2! = )zaQ(k_l)g,or

R= ‘2,;’7‘/1%' ; or, in terms of Vj:

647760V0/)\ +1 eZﬂeng/)\ _|_e*27F60V0/>\ " 27T€0V0
=a =a = |aco .
Yo 647T€0V0/>\ -1 6271'60‘/0/)\ _ e—QTrEoVo/A )\

e2meoVo/A 2 a L 2mep Vo
a =a = = | acCscC. _— | .
e47r60V0//\ —1 (eQTreoVO/A _ 6—27T€DV0/)\) sinh (27T€)E)V0) A

R=2

z

R
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44 CHAPTER 2. ELECTROSTATICS
Problem 2.53
d*v 1
217 _ - _—
(a) VEV = — £ (Eq. 2.24), so In2 60p.
2qV
(b) gV = smov? — |v = e
¢)dg=Apdx ; 94 = ap = | Apv = I | (constant). (Note: p, hence also I, is negative.
P dt Pat P
2
2 I I m a-v —-1/2 I m
d) Gr=—wr=—24 = —aa\/ v = Tz =BV 2|, where 8= —Lp /3.

(Note: I is negative, so [3 is positive; ¢ is positive.)

(e) Multiply by V'

av .
dx

! 1 ,
v gy gy - ﬂ/V*I/z dV = V2 = 28V"/% 4 constant.
dx dx 2
But V(0) = V’(0) = 0 (cathode is at potential zero, and field at cathode is zero), so the constant is zero, and

V2 =4pV1/? = ZV

T

2/BVYE = vYAY = 24/B da;
4
/V_1/4 dV = 2\/B/dx = §V3/4 = 24/ x + constant.
But V(0) = 0, so this constant is also zero.

811%m
32€2 A%q

3

2

9

V3/4:g\/5x, so V(x) = ( 1

2/3 1/3
ﬁ) .T4/3 — ( ) 1‘4/3.

V.

T

JB)MB:&/?’, or V(z) = (

V(@) =V <d>4/3

Without space-charge, V' would increase linearly: V(z) = Vj (%)

Interms of Vj (instead of I): (see graph).

Vo

d*v

p:—eO@ =

NEN S

(f) V(d)

0=

_ 4\/§€gA\/a

V32

1 9vmaz "0

1 4 1 _
533 3"

€oVo

4eoVy

2/3 _
9(d2z)2/3"

Vo (3)”

811%m
32e2A2%¢q

) g g

3253A2q
81md*

81md*
32e2A2¢q

= KVOS/27 where

12 . ]2 —
o 46014

/2q
K= —+4/—.
9d2 V m

3.
Vo's

without

with

Problem 2.54

/

1
T e

2
A) 6_/; /AdT.

pr

E 2

(a)

(1+
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CHAPTER 2. ELECTROSTATICS 45

(b) The field of a point charge at the origin is radial and symmetric, so VXE = 0, and hence this is
also true (by superposition) for any collection of charges.

" 1 "1
=— | Edl=——— 1 —r/A
() v /oo d 47T60q/ r2 ( + )\) dr

1 1 - q SR 1 [~1
_ 1 ) r//\d _ / . r/)\d 7/ - r/)\d )
47T€0q/,, r2( Jr)\ " 47'['60{ ” 2° TJF)\ ” ¢ "

Now [Le "/ Adr = —ef:/k -1 [ iy P exactly right to kill the last term. Therefore

—r /X | —r/A
_q e _|_4a e
V(T)_élﬂeo{ r T} dreg 1T
1 R R
(d) j{E-daf— <1+ > —R/A < > e RN
S drteq BZ W = A
—r/A R —r/A
_q e 9 _q N I r
Vdr = dr =L dr =L s
/v 4%/ =) ’”e{um(x )}
—/\2‘1{6R/A (1+R)+1}.
€0 A
?{Eda+1/vmzi I DRSS BRI D 72 I G
S )\2 €0 A A €0

(e) Does the result in (d) hold for a nonspherical surface? Suppose we \‘\
make a “dent” in the sphere—pushing a patch (area R?sin@df d¢) )
from radius R out to radius S (area S?sin 6 df de).

¢ [1 SN —s/ae2 _ b RN\ _rixip2
A]{Ed {52 <1+)\>e (§sin0df ) — o5 (145 ) e (B sing o do)

4eg

_— 1 1 > *
; [( + )\)e ( + 3 e sin 6 df d¢

—r/A S
Ai/VdT:iL/e r2sin9drd9d¢:iism9d9d¢/ re="/ A dr
A2 A2 47eg R

A2 4meq r
= —47:_160 sin @ df d¢ (e_r/A (1 * %)) ‘IS%

_ 4 § —S/A E —R/M| o
= " Ires {<1+)\>e <1+)\ e sin 6 df de.

So the change in A2 f V dr exactly compensates for the change in fE -da, and we get —q for the total using
the dented sphere, just as we did with the perfect sphere. Any closed surface can be built up by successive
distortions of the sphere, so the result holds for all shapes. By superposition, if there are many charges inside,
the total is éQenC. Charges outside do not contribute (in the argument above we found that ®

for this volume §E-da + % JV dr = 0—and, again, the sum is not changed by distortions of the surface, as
long as ¢ remains outside). So the new “Gauss’s Law” holds for any charge configuration.

epti to
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46 CHAPTER 2. ELECTROSTATICS
. . 1 1 L .
(f) In differential form, “Gauss’s law” reads: | V-E + FV = —p, | or, putting it all in terms of E:
€0
1 1 . . . . . 2 1 1
V.-E — — [ E-:dl = —p. Since E = —VV| this also yields “Poisson’s equation”: —V=V + =V = —p.
A2 €0 A2 €0

(g) Refer to ”Gauss’s law” in differential form (f). Since E is zero, inside a conductor (otherwise charge would
move, and in such a direction as to cancel the field), V' is constant (inside), and hence p is uniform, throughout
the volume. Any “extra” charge must reside on the surface. (The fraction at the surface depends on A, and
on the shape of the conductor.)

Problem 2.55

p=eV-E=¢e(ax) = (constant everywhere).

The same charge density would be compatible (as far as Gauss’s law is concerned) with E = ayy, for
instance, or E = (§)r, etc. The point is that Gauss’s law (and VXE = 0) by themselves do not determine
the field—like any differential equations, they must be supplemented by appropriate boundary conditions.
Ordinarily, these are so “obvious” that we impose them almost subconsciously (“E must go to zero far from
the source charges”)—or we appeal to symmetry to resolve the ambiguity (“the field must be the same—in
magnitude—on both sides of an infinite plane of surface charge”). But in this case there are no natural
boundary conditions, and no persuasive symmetry conditions, to fix the answer. The question “What is the
electric field produced by a uniform charge density filling all of space?” is simply ill-posed: it does not give

us sufficient information to determine the answer. (Incidentally, it won’t help to appeal to Coulomb’s law

(E = 1 fp 2 dr) —the integral is hopelessly indefinite, in this case.)

4meq L 2
Problem 2.56

Compare Newton’s law of universal gravitation to Coulomb’s law:

1
F— q1492 i
4deg 12

Fo_gmme .,

b

2

Evidently ﬁ — G and ¢ — m. The gravitational energy of a sphere (translating Prob. 2.34) is therefore

3 M?
Wgrav = ng
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CHAPTER 2. ELECTROSTATICS 47

Now, G = 6.67 x 107'' N m?/kg?, and for the sun M = 1.99 x 10*° kg, R = 6.96 x 10® m, so the sun’s
gravitational energy is W = 2.28 x 10*! J. At the current rate this energy would be dissipated in a time

2.28 x 104
_ % _ % — 5.90 x 10"s = [ 1.87 x 107 years.

Problem 2.57

First eliminate z, using the formula for the ellipsoid:

(0,9) = 12 :
T b A Ta) + AR + 1 @) 5

Now (for parts (a) and (b)) set ¢ — 0, “squashing” the ellipsoid down to an ellipse in the = y plane:

Q 1
2mab /1= (/@) — (9]0

o(z,y) =

(I multiplied by 2 to count both surfaces.)

1
(a) For the circular disk, set a = b= R and let r = /a2 +y2. |o(r) = ZfRW
A 1

(b) For the ribbon, let /20 = A, and then take the limit b — oo: |o(z) = —

(c) Let b= ¢, r = \/y? + 22, making an ellipsoid of revolution:

2,2
1

£+L:1’ with o = @ .

a? drac? | /22 Ja* + 12/cA

The charge on a ring of width dx is

dq = o2nrds, where ds = v/ dx? + dr? = dx+/1 + (dr/dx)?.

2xdr  2rd d ? o ’
Now 224% , 2M9 _ g T——w,sods:dx\/ﬁzdﬁc\/m'Thus
o2 2 a2r atr? r

i

_dg _ Q 1 CQW_ Q )
Mz) = T _2ﬂr4wa02\/mr x?fat +r2/ct = 5" (Constant!)
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48 CHAPTER 2. ELECTROSTATICS

a(r)
o(r)

ab——-—-—-— ==

—
»
~
—
o
=3

Problem 2.58

(O "a)

Y

(%’_ 3%)

(a) One such point is on the x axis (see diagram) at x = r. Here the field is

q 1 cos 6 2cos b 1
E:v = -2 = 0, = .
47eg [(a +7)2 b2 ] or b2 (a+r)2
Now,
2
_(@/2)=r 5 (a 2 V3 _ (2 2
COSG—T, b —(§—T> + @ = (a® —ar+r?).
Therefore

2[(a/2) —r] 1

(a2 —ar +72)32  (a+1)%

To simplify, let

(1—(21252))3/2:(1+1u>2’ or (1-2u*(1+u)’=(1-u+u)’
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Multiplying out each side:
1 —6u? — 4u® 4+ 9u* + 12u® + 4u8 = 1 — 3u + 6u? — Tu® + 6u* — 3u® + ub,

or
3u — 12u® 4 3u® + 3u* + 15u® + 3u® = 0.

u = 0 is a solution (of course—the center of the triangle); factoring out 3u we are left with a quintic equation:
1 —du+u? 4+ u? + 5u* +u® = 0.

According to Mathematica, this has two complex roots, and one negative root. The two remaining solutions are
u = 0.284718 and v = 0.626691. The latter is outside the triangle, and clearly spurious. So ’r = 0.284718 a.
(The other two places where E = 0 are at the symmetrically located points, of course.)

YA

><V

(b) For the square:

q cosfy cosf_ cosf;  cosf_
E, = 2 -2 =0 = = ,
4reg ( b2 b ) b2 b2
where ) )
(a/V2)£r < a > < a > 2 2
cosfy =~ =" 2 = () +(—==xr) =a>+=V2ar+r%
. b V2 V2
Thus

(@/V2)+r  _  (a/V2)—r

(a2 +v2ar +712)3/2 (a2 —\2ar +r2)3/2

To simplify, let w = /27 /a; then

1+w 1—w
2+ 2w+w?)P? ~ (2-2w+w?)E2 O (1+w)?(2 = 2w +w?)? = (1 - w)*(2+ 2w + w?)’.

Multiplying out the left side:

8 — 8w — 4w? + 16w — 10w* — 2w’ 4+ Tw® — 4w” 4+ w® = (same thing with w — —w).
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50 CHAPTER 2. ELECTROSTATICS

The even powers cancel, leaving
8w — 16w> + 2uw® +4w” =0, or 4 —8v+v?+20° =0,

where v = w?. According to Mathematica, this cubic equation has one negative root, one root that is spurious
(the point lies outside the square), and v = 0.598279, which yields

r= /5 a=[0505864]

YA
(-a cos(2m/5), a sin(27/5))

(a cos(m/5), a sin(wt/5))

For the pentagon:

E, q ( 1 +2(30$0_2cos¢> o,

= dreo (a+r)? b2 c?
where o /5 .
cosH:aCOS( 7;/ )—f—r’ COS¢:acos(7rc/ )—r;

b = [acos(2n/5) + r]° + [asin(27/5)]> = a® + % + 2ar cos(21/5),
= Jacos(n/5) — r]*> + [asin(x/5)]* = a® + 1% — 2ar cos(n /5).
1 5 r 4+ acos(27/5) 5 r — acos(m/5)
(a+1)? [a® + 72 4 2ar 005(271/5)]3/2 [a? + 72 — 2ar cos(m/5)]

3/2

Mathematica gives the solution ’ r = 0.688917 a. ‘

For an n-sided regular polygon there are evidently n such points, lying on the radial spokes that bisect
the sides; their distance from the center appears to grow monotonically with n: r(3) = 0.285, r(4) = 0.547,
r(5) = 0.689, .... As n — oo they fill out a circle that (in the limit) coincides with the ring of charge itself.

Problem 2.59 The theorem is false. For example, suppose the conductor is a neutral sphere and the external
field is due to a nearby positive point charge q. A negative charge will be induced on the near side of the sphere
(and a positive charge on the far side), so the force will be attractive (toward ¢). If we now reverse the sign of
q, the induced charges will also reverse, but the force will still be attractive.

If the external field is uniform, then the net force on the induced charges is zero, and the total force on the
conductor is QE., which does switch signs if E. is reversed. So the “theorem” is valid in this very special case.

© Cambridge University Press 2017.
This publication is in copyright. Subject to statutory exception and to the provisions of relevant collective licensing agreements, no reproduction of any part
may take place without the written permission of Cambridge University Press.


https://testbanks.ac/product/9781108420419-SOLUTIONS-5/

ICLI CK HERE TO ACCESS THE COVPLETE Sol uti ongl
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Problem 2.60 The initial configuration consists of a point charge ¢ at the center, —q induced on the inner
surface, and +¢ on the outer surface. What is the energy of this configuration? Imagine assembling it piece-by-
piece. First bring in ¢ and place it at the origin—this takes no work. Now bring in —¢ and spread it over the
surface at a—using the method in Prob. 2.35, this takes work —q?/(8mepa). Finally, bring in +¢ and spread it
over the surface at b—this costs ¢?/(8megb). Thus the energy of the initial configuration is

2
__ 9 (I 1
Wi= 87r60<a b>'

The final configuration is a neutral shell and a distant point charge—the energy is zero. Thus the work
necessary to go from the initial to the final state is

2 /11
W=W;—W, =| 2 <>

Problem 2.61

YA

Suppose the n point charges are evenly spaced around the circle, with the jth particle at angle j(27/n).
According to Eq. 2.42, the energy of the configuration is

1
Wn - niqva

where V' is the potential due to the (n — 1) other charges, at charge # n (on the x axis).

n—1 .
1 1 Jm
V= S 2 =2Rsn (L
47r60qj:1/1/j7 ! Sm(n)

(see the figure). So
2

n—1 2
@ n 1 q
Wy, = = = Q.
dregR 4 ; sin(jm/n)  4megR
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52 CHAPTER 2. ELECTROSTATICS
Mathematica says
9
10 1
Qo = — ) = = 38.6245
4 = sin(j7/10)
11 & 1
Q1 = — ————— = |48.5757
11 4 j:1 Sin(jﬂ'/ll)
12 & 1
Qo = — —— =159.8074
12 4 ; sin(jr/12)

If (n — 1) charges are on the circle (energy ,,_1¢?/4megR), and the nth is at the center, the total energy is

q2

dmegR’

Wn - [Qn—l + (’I’L - 1)]

For

n=11: Q10+ 10 = 38.6245 + 10 =| 48.6245 | > Qq,
n=12: Q1 4+ 11 =48.5757 + 11 = | 59.5757 | < Q12

Thus a lower energy is achieved for 11 charges if they are all at the rim, but for 12 it is better to put one at
the center.
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Chapter 3

Potential

Problem 3.1
The argument is exactly the same as in Sect. 3.1.4, except that since z < R, v22+ R2 —22zR = (R — 2),

1 1
ﬁqeoﬁ [(z+R)—(R—2)] = e % If there is more than one charge

QCHC
dmeg R

instead of (z — R). Hence Ve =

inside the sphere, the average potential due to interior charges is , and the average due to exterior

charges is Veenter, 80 Vave = Veenter + 42:3% v

Problem 3.2

A stable equilibrium is a point of local minimum in the potential energy. Here the potential energy is V.
But we know that Laplace’s equation allows no local minima for V. What looks like a minimum, in the figure,
must in fact be a saddle point, and the box “leaks” through the center of each face.

Problem 3.3
Laplace’s equation in spherical coordinates, for V' dependent only on r, reads:

1d av av av
ViV =5 — (r2> =0 = r’—— = ¢ (constant) 2 % S lyv="C4k
dr dr r

r2 dr dr r2

Example: potential of a uniformly charged sphere.

1d /[ dv av av
In cylindrical coordinates: V2V = = — (sds) =0= soo=¢ = s © o [V=chs + k.

sds

Ezample: potential of a long wire.

Problem 3.4
Refer to Fig. 3.3, letting @ be the angle between 2 and the z axis. Obviously, E,y. points in the —2
direction, so
1 1 q 1
ave — Eda = -2 b — da.
4T R? ?{ T TR dne | 22

By the law of cosines,

24 52 _R2
R2=221+722-922 zcosa = cosa:H—,
2L z
2 2 2
+2°—R z— Rcost
22=R24+22—2Rzcosf = = - .
T 2o 22 222 3 (R2? + 22 — 2Rz cos 6)3/2
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