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CHAPTER 2 Second-Order Linear ODEs

Major Changes

Among linear ODEs those of second order are by far the most important ones from the
viewpoint of applications, and from a theoretical standpoint they illustrate the theory of linear
ODEs of any order (except for the role of the Wronskian). For these reasons we consider
linear ODEs of third and higher order in a relatively short separate chapter, Chap. 3.

Section 2.2 combines all three cases of the roots of the characteristic equation governing
homogeneous linear ODEs with constant coefficients. (In some of the previous editions
the complex case was discussed in a separate section, which seems of no great advantage
to the student.)

Section 2.3 is a short introduction to differential operators.
Modeling begins in Sec. 2.4 with the mass–spring system, which is now derived more

simply than before and in a better logical order.
After a discussion of the Euler–Cauchy equation and its application to electric fields

between concentric spheres in Sec. 2.6, we discuss in Sec. 2.7 the existence and uniqueness
of the solution of IVPs involving the homogeneous linear ODE of second order.

This is the end of discussing homogeneous ODEs. It is followed in Sec. 2.7 by the
method of undetermined coefficients for nonhomogeneous ODEs, which is basic in
applications since it is simpler than the general method (variation of parameters, Sec. 2.10)
and covers many, if not most of the standard engineering applications.

Modeling of forced mechanical oscillations is discussed in Sec. 2.8, and electric
RLC-circuits in Sec. 2.9. Note that we have placed the RL-circuit, governed by a first-
order ODE into Sec. 1.5, which the student may perhaps wish to review. This was a request
by various users of the book, as a stepping stone that may lessen difficulties and simplify
the derivation of the model from physics.

SECTION 2.1. Homogeneous Linear ODEs of Second-Order, page 46

Purpose. To extend the basic concepts from first-order to second-order ODEs and to
present the basic properties of linear ODEs.

Comment on the Standard Form (1)
The form (1), with 1 as the coefficient of , is practical, because if one starts from

,

one usually considers the equation in an interval I in which is nowhere zero, so that
in I one can divide by and obtain an equation of the form (1). Points at which 
require a special study, which we present in Chap. 5.

Main Content, Important Concepts
Linear and nonlinear ODEs

Homogeneous linear ODEs (to be discussed in Secs. 2.1–2.6)

Superposition principle for homogeneous ODEs

General solution, basis, linear independence

Initial value problem (2), (4), particular solution

Reduction to first order (text and Probs. 3–10)

f  (x) � 0f (x)
f  (x)

f (x)ys � g(x)yr � h(x)y � r�(x)

ys
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Comment on the Three ODEs after (2)
These are for illustration, not for solution, but should a student ask, answers are that the first
will be solved by methods in Secs. 2.7 and 2.10, the second is a Bessel equation (Sec. 5.5)
and the third has the solutions with any and .

Comment on Footnote 1
In 1760, Lagrange gave the first methodical treatment of the calculus of variations. The
book mentioned in the footnote includes all major contributions of others in the field and
made him the founder of analytical mechanics.

Examples in the Text. The examples show the following.
Example 1 shows the superposition of solutions of the homogeneous linear ODE.
Examples 2 and 3 are counter-examples to the superposition for a nonhomogeneous

linear ODE and a nonlinear ODE.
Example 4 is an initial value problem, suggesting the concepts of a general solution, a

particular solution, and a basis.
Examples 5 and 6 give further illustrations of those concepts.
Example 7 shows the reduction of order of 

using a known solution , followed by the derivation of a general formula for a second
solution

.

Hence solving the ODE for finding a second solution is reduced to two integrations, and
the student should understand that this is a simpler task.

Comment on Terminology
p and q are called the coefficients of (1) and (2). The function r on the right is not called
a coefficient, to avoid the misunderstanding that r must be constant when we talk about
an ODE with constant coefficients.

SOLUTIONS TO PROBLEM SET 2.1, page 53

2.

4. . Separation of variables and integration gives

, , .

Integrating once more, we have

.y � �z dx � c1x5>2 � c2

z � cx3>2ln ƒ z ƒ � 3
2 ln ƒ x ƒ � c�

dz

z
�

3

2x
 dx

z � yr, 2xzr � 3z

ys �
dyr
dx

�
dyr
dy

 
dy

dx
�

dz

dy
 z

y2 � y1� 1

y1
2
 e��p dx dx

y1

ys � p(x)yr � q(x)y � 0

c2c1�1c1x � c2

Instructor’s Manual 27

im02.qxd  10/27/10  6:44 PM  Page 27
CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781119446842-SOLUTIONS-5/


6. The formula in the text was derived under the assumption that the ODE is in standard
form; in the present case,

.

Hence , so that . It follows from (9) in the text that

.

The integral of U is ; we need no constants of integration because we merely
want to obtain a particular solution. The answer is

.

8.

This is an obvious use of problems from Chap. 1 in setting up problems for this
section. The only difficulty may be an unpleasant additional integration.

10. , divide by z, separate variables, and integrate:

.

Take exponentials, separate again, and integrate:

.

Evaluation of the integral gives the answer .

12. . From this we have
. From the boundary conditions 

we get

.

Hence and then . The answer is (see the figure)
.y � cosh x � cosh 1

c2 � �cosh 1c1 � 0

cosh (1 � c1) � c2 � 0 � cosh (�1 � c1) � c2

y(�1) � 0
y(1) � 0,y � cosh (x � c1) � c2z � sinh (x � c1),

zr � (1 � z2)1>2, (1 � z2)�1>2 dz � dx, arcsinh z � x � c1

(y � 1)ey � c1x � c2

dy

dx
� z �

c

y
  e�y,   yey dy � c dx,   �yey dy � cx � c2

dz

z
� �a1 �

1
y
b dy,   ln ƒ z ƒ � �y � ln ƒ y ƒ � c�

z �
dy

dx
 ,  

dz

dy
  z � a1 �

1
yb  z2 � 0

y � �ln ƒ cos (x � c1) ƒ � c2

z � tan (x � c1),arctan z � x � c1,zr � 1 � z2, dz>(1 � z2) � dx,

y2 � y1 tan x �
sin x

x

tan x

U �
x2

cos2 x
#

1

x2
�

1

cos2 x

e��p dx � x�2p � 2>x

ys �
2
x

 yr � y � 0

28 Instructor’s Manual
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14. , . Integration with respect to y gives

.

Hence and thus

.

By separation of variables,

.

By integration,

.

Hence

and thus

.

The answer is

.

16.
18.

SECTION 2.2. Homogeneous Linear ODEs with Constant Coefficients,
page 53

Purpose. To show that homogeneous linear ODEs with constant coefficients can be solved
by algebra, namely, by solving the quadratic characteristics equation (3). The roots may be:

(Case I) Real distinct roots

(Case II) A real double root (“Critical case”)

(Case III)  Complex conjugate roots

In Case III the roots are conjugate because the coefficients of the ODE, and thus of (3),
are real, a fact the student should remember.

To help poorer students, we have shifted the derivation of the real form of the solutions
in Case III to the end of the section, but the verification of these real solutions is done
immediately when they are introduced. This will also help to a better understanding.

y � 4.3x � 3.8x  ln x

y � (2.2 � 0.8x)e�0.3x

y � 1
3 (2t � c2)3>2 � c1

3y � c�1 � (2t � c2)3>2

(3y � c�)2>3 � 2t � c2

1
2(3y � c�)2>3 � t � c�

�

dy

(3y � c�)1>3
� dt

dy

dt
� z � (3y � c�)1>3

z3 � 3y � c�

z3

3
� y � c

ysyr � 1, 
dz

dy
  z2 � 1ys � 1>yr
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The student should become aware of the fact that Case III includes both undamped
(harmonic) oscillations and damped oscillations.

Also it should be emphasized that in the transition from the complex to the real form
of the solutions we use the superposition principle.

Furthermore, one should emphasize the general importance of the Euler formula (11),
which we shall use on various occasions.

Examples in the Text. The examples show the following.
Examples 1 and 2 concern Case I, the case of distinct real roots. In this case, as well

as in the other two cases, an initial value problem requires the solution of a system of two
linear equations in two unknowns, whose values are determined by the two initial
conditions. A typical solution in Case I is shown in Fig. 30.

Examples 3 and 4 concern Case II, the case of a real double root, which is the limiting
case between Cases I and III. Figure 31 shows a typical solution, having a real root at

, which is the solution of , where is a factor in the solution of
the IVP in Example 4.

Example 5 concerns Case III, in which one obtains solutions (9), representing oscillations.
These may be damped as in Fig. 32, or of increasing maximum amplitude if , or of
constant maximum amplitude if , as in Example 6, giving a harmonic oscillations.

Comment on How to Avoid Working in Complex
The average engineering student will profit from working a little with complex numbers.
However, if one has reasons for avoiding complex numbers here, one may apply the
method of eliminating the first derivative from the equation, that is, substituting y = uv
and determining v so that the equation for u does not contain . For v this gives

.    A solution is    .

With this v, the equation for u takes the form

and can be solved by remembering from calculus that and reproduce under
two differentiations, multiplied by . This gives (9), where

.

Of course, the present approach can be used to handle all three cases. In particular,
in Case II gives at once.

SOLUTIONS TO PROBLEM SET 2.2, page 59

2.
4.
6.
8.

10.
12.
14. y � (c1 � c2x)e�k2x

y � c1e�5x � c2e�4x
y � e�1.2x (c1 cos (1.4px) � c2 sin (1.4px))

y � e �x>2 (c1 cos (13x) � c2 sin (13x))

y � (c1 �  c2x)e1.6x
y � e�2x (c1 cos px �  c2 sin px)

y � c1 cos 6x � c2 sin 6x

u � c1 � c2xus � 0

v � 2b � 1
4 a2

�v2
sin vxcos vx

us � (b � 1
4 a2)u � 0

v � e�ax>22vr � av � 0

ur

a � 0
a � 0

3 � 2x3 � 2x � 0x � 1.5

(if c � 0)

30 Instructor’s Manual
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16.
18.
20.

22. A general solution is 

.

The first initial condition gives , hence . The deriva-
tive is

.

From this and the second initial condition we obtain

.

Hence . This gives the answer

.

Notice that it depends on the initial condition whether both solutions of a basis appear
in the particular solution or just one; this is worthwhile pointing out to the students.

24. A general solution is

.

The first initial condition gives

.

The derivative is

.

From this and the second initial condition we have

.

Division by e and by , respectively, gives

.

The solution of this system is . Hence the answer is

.y � e�x>2

c2 � 0, c1 � 1

c1 � 3c2e�4 � 1

c1 � c2e�4 � 1

�1
2

yr(�2) � �1
2  

c1e � 3
2 c2e�3 � �e>2

yr � �1
2  

c1e�x>2 � 3
2 c2e3x>2

y(�2) � c1e � c2e�3 � e

y � c1e�x>2 � c2e3x>2

y � e�2x�1 sin px

c1 � 0

yr(1
2) � e�1(�2c2 � c1p) �  e�1(�2e � c1p) � �2 � c1e�1p � �2

yr(x) � e�2x(�2c1 cos px � 2c2 sin px � c1p sin px � c2p cos px)

c2 � ey(1
2) � e�1(0 � c2) � 1

y(x) � e�2x(c1 cos px � c2 sin px)

ys � 6.2yr � 14.02y � 0

ys � 4p2y � 0

ys � 1.7yr � 11.18y � 0

Instructor’s Manual 31
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26. A general solution is

.

From this and the first initial condition we have

.

The derivative is

.

From this and the second initial condition we obtain

.

The solution of this system is

.

Hence the answer (the particular solution of the IVP) is

.

28. A general solution is

.

From this and the first initial condition we have

.

The derivative is

.

From this and the second initial condition we have

.

The solution of this system is . Hence the particular solution
satisfying the initial condition is

.

30. A general solution is

.y � (c1 � c2x)e5x>3

y � 0.3e�x>4 � 0.5ex>2

c1 � 0.3, c2 � �0.5

yr(0) � �1
4  

c1 � 1
2  

c2 � �0.325

yr � 1
4  

c1e�x>4 � 1
2  

c2ex>2

y(0) � c1 � c2 � �0.2

y � c1e�x>4 � c2ex>2

y � [(k � 1)ekx � (k � 1)e�kx]>(2k)

c1 �
k � 1

2k
,  c2 �

k � 1

2k

c1 � c2 � 1>k

yr � c1kekx � c2ke�kx

c1 � c2 � 1

y � c1ekx � c2e�kx

32 Instructor’s Manual
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This is a case of a double root of the characteristic equation. The first initial condition
yields . By differentiation,

.

From this and the second initial condition we obtain

.

Hence , so that the solution of the IVP is

.

32. Independent if 

34. Dependent since 

36. If one of the functions is identically zero, the set is linearly dependent because
holds with any (and ).

The intervals given in the problems are just a reminder that linear independence or
independence always refers to some interval. In the present case we could choose as
the interval the real axis, or the positive half-axis if a logarithm is involved.

38. Team Project. (a) We obtain

.

Comparison of coefficients gives .

(b) . (i) . (ii) , where
and the second term comes in by integration:

.

(d) and satisfy , by the coefficient
formulas in part (a). By the superposition principle, another solution is

.

We now let . This becomes , and by l’Hôpital’s rule (differentiation of
numerator and denominator separately with respect to m, not ) we obtain

.

The ODE becomes . The characteristic equation is

and has a double root. Since , we get , as expected.k � �a>2a � �2k

l2 � 2kl � k2 � (l � k) 2 � 0

ys � 2kyr � k2y � 0

xekx>l � xekx

x!
0>0m :  0

e(k�m)x � ekx

m

ys � (2k � m)yr � k(k � m)y � 0ekxe(k�m)x

y � �z dx � c�1e�ax � c�2

z � yr, z � ce�ax
zr � az � 0y � c1e�ax � c2e0x � c1e�ax � c2ys � ayr � 0

a � �(l1 � l2), b � l1l2

(l � l1)(l � l2) � l2 � (l1 � l2)l � l1l2 � l2 � al � b � 0

c1 � 0c2 � 0c1 f1(x) � c2
# 0 � 0

ln (x3) � 3 ln x

a � 0

y � (3.3 � 4.5x)e5x>3

c2 � 4.5

yr(0) � c2 � 5
3 c1 � c2 � 5.5 � 10

yr � [c2 � 5
3 (c1 � c2x)]e5x>3

y(0) � c1 � 3.3

Instructor’s Manual 33
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SECTION 2.3. Differential Operators. Optional, page 60

Purpose. To take a short look at the operational calculus of second-order differential
operators with constant coefficients. This parallels and confirms our discussion of ODEs
with constant coefficients.

A discussion of the case of variable coefficients would exceed the level and the area
of interest of the book, sidetrack the attention of the student, and give no substantial
additional insights that might be helpful to our further work.

SOLUTIONS TO PROBLEM SET 2.3, page 61

2. The first function gives

.

The second function gives

The third function gives

.

4. For the first function,

.

For the second function,

.

6.
8.

10.
12.
14. y is a solution, as follows from the superposition principle in Sec. 2.1 since the ODE

is homogeneous and linear. In applying l’Hopital’s rule, regard y as a function of ,
the variable that approaches the limit, whereas is fixed. Differentiation of the
numerator with respect to gives and differentiation of the denominator
gives 1. The limit of this is .

SECTION 2.4. Modeling of Free Oscillations of a Mass–Spring System,
page 62

Purpose. To present a main application of second-order constant-coefficient ODEs

resulting as models of motions of a mass m on an elastic spring of modulus under
linear damping applying Newton’s second law and Hooke’s law. These are free
motions (no driving force). Forced motions follow in Sec. 2.8.

c (� 0)
k (�0)

mys � cyr � ky � 0

xelx
xe�x � 0�

l

�

[D � (1.5 � 0.5i)I][D � (1.5 � 0.5i)I], y � e�1.5x(c1 cos 12  
x � c2 sin 12  

x)

(D � 2.4I  )2, y � (c1 � c2x)e�2.4x
(D � 13iI  )(D � 13iI  ), y �  c1 cos 13x �  c2 sin 13x

(D � 2.8I  ) (D � 1.2I  ),  y � c1e�2.8x � c2e�1.2x

(D � 6I )(e�6x � 6xe�6x � 6xe�6x) � �6e�6x � 6e�6x � 0

 � 72 � 72 cos 6x � 216x

36 cos 6x � 216x � 36 sin 6x� �36 sin x � 36 � 36 cos 6x � 36 �

(D � 6I)(6 � 6 cos 6x � 36x � 6 sin 6x)

�4 sin 4x � 4 cos 4x � 3 cos 4x � 3 sin 4x � �7 cos 4x � sin 4x

9e3x � 9e3x � 0.

6x � 3 � 9x2 � 9x � �9x2 � 3x � 3

34 Instructor’s Manual
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This system should be regarded as a basic building block of more complicated systems,
a prototype of a vibrating system that shows the essential features of more sophisticated
systems as they occur in various forms and for various purposes in engineering.

The quantitative agreement between experiments of the physical system and its
mathematical model is surprising. Indeed, the student should not miss performing
experiments if there is an opportunity, as I had as a student of Prof. Blaess, the inventor
of a (now obscure) graphical method for solving ODEs.

Main Content, Important Concepts
Restoring force ky, damping force , force of inertia 

No damping, harmonic oscillations (4), natural frequency 

Overdamping, critical damping, nonoscillatory motions (7), (8)

Underdamping, damped oscillations (10)

In the text, the derivation of the model has been simplified by clarifying the role of the
force , which has no effect on the motion.

The model, like many others, is obtained from Newton’s second law.
We discuss the undamped case and the damped case separately because

the types of motion are basically different, as follows. The undamped case gives a
harmonic motion (4) for an infinite time interval (practically: for a long time). The damped
case gives a damped motion, which is either oscillatory or, if c is large enough, is
a nonoscillatory approach to zero.

Hence it is interesting that the formal distinction of Cases I–III mechanically corresponds
to quite different types of motion.

No damping means no loss of the energy corresponding to the initial
displacement and initial velocity.

Make sure that the student understands the physics behind (4*), that shows the phase shift.

Examples in the Text. The examples illustrate the following.
Example 1 discusses the undamped case .
Example 2 compares the three cases, the three types of motion, graphically shown in

Fig. 40, namely, Case I giving a rapid approach to zero, Case II looking almost the same,
also showing a rapid and monotone approach to zero, and, finally, Case III a damped
oscillation, of a frequency smaller than that of the harmonic oscillation when .

Problem Set 2.4. Problems 1–6 enhance the physical understanding and insight into the
basic properties of the undamped model.

Team Project 10 shows that the model in the text is in fact the prototype of various
physical systems governed by the same mathematical formulas.

Problems 11–19 play a role for the damped case similar to that of Probs. 1–9 for the
undamped model.

CAS Project 20 shows the “continuity” in the transitions between Cases I–III, that is
also illustrated in Fig. 47.

SOLUTIONS TO PROBLEM SET 2.4, page 69

2. and gives by Hooke’s law. Thus

[Hz].

From this we get the period [sec].1>f � 0.284

f �
v0

2p
�
2k>m

2p
�
2k>(W>g)

2p
�
210>(20>980)

2p
� 3.52

k � W>s0 � 10s0 � 2W � 20

c � 0

c � 0

(c � 0)

c � 0

c � 0
c � 0c � 0

�F0

v0>(2p)

myscyr

Instructor’s Manual 35
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4. No because the frequency depends only on , not on initial conditions.

6. By Hooke’s law, stretches spring by 8, and stretches
spring S2 by 12. Hence the unknown k of the combination of the springs stretches 
by and by . And k is such that the sum of these stretches
equals 1, because k is the force that corresponds to the stretch 1 of the combination. Thus

. Answer: 

8. , where is the volume of water displaced when the buoy
is depressed y meters from its equilibrium position, and nt is the weight of
water per cubic meter. Thus , where and the period
is ; hence

[nt] (about 620 lb).

10. Team Project. (a) By Prob. 7 the frequency is

,

so it takes about 2 sec to complete 1 cycle. Answer: It ticks about 30 times per minute.

(b) . Now because the system has its equilibrium position 1 cm
below the horizontal line. Also, , so that

,

and we get the general solution

.

The initial conditions give and . Hence 
and the answer is

[cm].

(c) [rad]

12. gives , which has at most one solution because the exponential
function is monotone.

14. Case (II) of (5) with [kg/sec], where 500 kg
is the mass per wheel.

16. since Eq. (10) and give tan ; tan is periodic with
period .

18. If an extremum is at , the next one is at , by Prob. 16. Since the
cosine and have period , the amplitude ratio is

.exp(�at0)>exp(�at1) � exp(�a(t0 � t1)) � exp(ap>v*)

2p>v*sine in (10)
t1 � t0 � p>v*t0

p>v*
(v*t � d) � �a>v*yr � 02p>v*

c � 24mk � 24 # 500 # 4500 � 3000

c1 � �c2e�2bty � 0

u(t) � 0.5235 cos 3.7t � 0.0943 sin 3.7t

y � 0.319 sin 31.3t

B � 0.319yr(0) � 31.3B � 10y(0) � A � 0

y � A cos 31.3t � B sin 31.3t

v � B
k

m
� B

W>s0

W>g
� 2g � 2980 � 31.3

m � W>g
s0 � 1W � ks0 � 8

1

2p
 B

g

L
�

1

2p
 B

9.80

1
� 0.498

W � mg � 280.7 # 9.80 � 2750.86

m � p # 0.32g>v0
2 � 0.32g>p � 280.7

2p>v0 � 2
v0

2 � p # 0.32g>mys � v0
2 

 y � 0
g � 9800

p # 0.32ymys � �p # 0.32yg

k � 4.8.
k

k1
�

k

k2
� 1,  

1

k1
�

1

k2
�

1

k

k>k2 � k>12S2k>k1 � k>8
S1

F2 � k2 � 12S1F1 � k1 � 8

k>m
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The natural logarithm is , and maxima alternate with minima. Hence
follows.

For the ODE, .

20. CAS Project. (a) The three cases appear, along with their typical solution curves,
regardless of the numeric values of , etc.

(b) The first step is to see that Case II corresponds to . Then we can choose
other values of c by experimentation. In Fig. 47 the values of c (omitted on purpose;
the student should choose!) are 0 and 0.1 for the oscillating curves, 1, 1.5, 2, 3 for
the others (from below to above).

(c) This addresses a general issue arising in various problems involving heating,
cooling, mixing, electrical vibrations, and the like. One is generally surprised how
quickly certain states are reached whereas the theoretical time is infinite.

(d) General solution , where .
The first initial condition gives . For the second initial condition we
need the derivative (we can set A = 1)

.

From this we obtain . Hence
the particular solution (with c still arbitrary, ) is

It derivative is, since the cosine terms drop out,

The tangent of the y-curve is horizontal when , for the first positive time when
, thus . Now the y-curve oscillates between 
, and is satisfied if does not exceed 0.001. Thus ,

and gives the best c satisfying . Hence

, .

The solution of this is , approximately. For this c we get by substitution
, , and the particular solution

The graph shows a positive maximum near 15, a negative minimum near 23, a positive
maximum near 30, and another negative minimum at 38.

y(t) � e�0.9103t(cos 0.4139t �  2.199 sin 0.4139t)

t2 � 7.587v* � 0.4141
c � 1.821

c2 �
(ln 1000)2

p2
 (4 – c2)c �

2 ln 1000

t2

(11)t � t2

ct � 2 ln 1000e�ct>2(11)�e�ct>2
t � t2 �p>v* � 2p>24 � c2v*t �p

yr� 0

 �
�2

24 � c2
 e�ct>2 sin v*t.

 yr(t) � e�ct>2(�sin v*t) a c2

224 � c2
�

1

2
24 � c2b

y(t) � e�ct>2 acos v*t �
c

24 � c2
 sin v*tb .

0 	 c 	 2
yr(0) � �c>2 � v*B � 0, B � c>(2v*) � c>24 � c2

yr(t) � e�ct>2 a�c

2
 cos v*t �

c

2
 B sin v*t � v* sin v*t � v*B cos v*tb

A � 1y(0) � 1
v* � 1

224 � c2y(t) � e�ct>2(A cos v*t � B sin v*t)

c � 2

k>m, y(0)

¢ � 2p # 1>(1
224 � 5 � 22) � p

¢ � 2pa>v*
ap>v*
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(e) The main difference is that Case II gives

which is negative for . The experiments with the curves are as before in this
project.

SECTION 2.5. Euler–Cauchy Equations, page 71

Purpose. Algebraic solution of the Euler–Cauchy equation, which appears in certain
applications (see our Example 4) and which we shall need again in Sec. 5.4 as the simplest
equation to which the Frobenius method applies. We have three cases; this is similar to
the situation for constant-coefficient equations, to which the Euler–Cauchy equation can
be transformed (Team Project 20(d)); however, this fact is of theoretical rather than of
practical interest.

Comment on Footnote 4
Euler worked in St. Petersburg 1727–1741 and 1766–1783 and in Berlin 1741–1766. He
investigated Euler’s constant (See. 5.6) first in 1734, used Euler’s formula (Secs. 2.2, 13.5,
13.6) beginning in 1740, introduced integrating factors (Sec. 1.4) in 1764, and studied
conformal mappings (Chap. 17) starting in 1770. His main influence on the development
of mathematics and mathematical physics resulted from his textbooks, in particular from
his famous Introductio in analysin infinitorum (1748), in which he also introduced many
of the modern notations (for trigonometric functions, etc.). Euler was the central figure
of the mathematical activity of the 18th century. His Collected Works are still incomplete,
although some seventy volumes have already been published.

Cauchy worked in Paris, except during 1830–1838, when he was in Turin and Prague.
In his two fundamental works, Cours d ’Analyse (1821) and Résumé des leçons données
à l’École royale polytechnique (vol. 1, 1823), he introduced more rigorous methods in
calculus, based on an exactly defined limit concept; this also includes his convergence
principle (Sec. 15.1). Cauchy also was the first to give existence proofs in ODEs. He
initiated complex analysis; we discuss his main contributions to this field in Secs. 13.4,
14.2–14.4, and 15.2, His famous integral theorem (Sec. 14.2) was published in 1825
and his paper on complex power series and their radius of convergence (Sec. 15.2), 
in 1831.

Examples in the Text. The examples illustrate the following.
Examples 1–3 and Fig. 48 illustrate Cases I–III, respectively. In particular, Example 3

shows the derivation of real solutions from complex ones.
Example 4 shows the occurrence of an Euler–Cauchy equation in connection with the

electric potential field between concentric spheres kept at different constant potentials. Here,
the student may wish to find a solution formula for arbitrary , and potentials v1, v2.

SOLUTIONS TO PROBLEM SET 2.5, page 73

2.
4.
6.
8.

10. y � x(c1 cos (2 ln x) � c2 sin (2 ln x))

y � (c1 � c2 ln x)x2

y � c1x0.5 � c2x�0.2

y � c1 � c2>x

y � c1x5 � c2x�4

r2r1

t � 1

y � (1 � t)e�t

38 Instructor’s Manual

im02.qxd  10/27/10  6:45 PM  Page 38
CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781119446842-SOLUTIONS-5/


12.

14. is a general solution, and from the initial condi-
tions we obtain the answer

because and

so that 

16. A general solution is 

,

so that . The derivative is

,

so that , hence . This gives the answer

.

18. The auxiliary equation is

has the double root . Hence a general solution is

.

By the first initial condition, . Differentiation gives

.

The second initial condition thus gives

.yr(1) � c2 � c1
# 1

3 � 0

yr(x) �
c2

x
 x1>3 � (c1 � c2 ln x) # 1

3 x�2>3

y(1) � c1 � 1

y(x) � (c1 � c2 ln x)˛x1>3

1
3

� 0

� 9 (m � 1
3)2

 � 9 (m2 � 2
3 m � 1

9)

 9 (m (m � 1) � 1
3 m � 1

9)

y � (�p � 4p ln x)x2

c2 � 4pyr(1) � c2 � 2c1 � c2 � 2p � 2p

yr(x) �
c2

x
 x2 � (c1 � c2 ln x) # 2x

 y(1) � c1 � �p

y(x) � (c1 � c2 ln x)x2

c2 � 5
6.

 � c1
# 0 �  c2

# 3 � 2.5,

 yr(x) � c1(�sin (3 ln x) #
3
x � c2 cos (3 ln x) #

3
x

y(1) � c1 cos 0 � c2 sin 0 � c1 � 0

y � 5
6 sin (3 ln x)

y � c1 cos (3 ln x) � c2 sin (3 ln x)

y � 1.2x2 � 0.8x3
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Hence . This yields the answer (the solution of the initial value problem)

.

20. Team Project. (a) The student should realize that the present steps are the same as
in the general derivation of the method in Sec. 2.1. An advantage of such specific
derivations may be that the student gets a somewhat better understanding of the
method and feels more comfortable with it. Of course, once a general formula is
available, there is no objection to applying it to specific cases, but often a direct
derivation may be simpler. In that respect the present situation resembles, for instance,
that of the integral solution formula for first-order linear ODEs in Sec. 1.5.
(b) The Euler–Cauchy equation to start from is

where , the exponent of the one solution we first have in the critical
case. For the ODE becomes

.

Here , and , so that this is the
Euler–Cauchy equation in the critical case. Now the ODE is homogeneous and linear;
hence another solution is

.

L’Hôpital’s rule, applied to Y as a function of s (not x, because the limit process is
with respect to s, not x), gives

.

This is the expected result.
(c) This is less work than perhaps expected, an exercise in the technique of
differentiation (also necessary in other cases). We have ln x, and with

we get

.

Since is a solution, in the substitution into the ODE the ln-terms drop
out. Two terms from and one from remain and give

because .
(d) , where the dot denotes the derivative with
respect to t. By another differentiation,

.ys � (y
#
>x)r � y

# #
>x2 � y

#
>(�x2)

t � ln x, dt>dx � 1>x, yr � y
#
tr � y

#
>x

2m � 1 � a

x2(mxm�2 � (m � 1)xm�2) � axm � xm(2m � 1 � a) � 0

yrys
xm � x (1�a)>2

 ys � m(m � 1)xm�2 ln ƒ x ƒ � mxm�2 � (m � 1)xm�2

 yr � mxm�1 ln ƒ x ƒ � xm�1

(ln x)r � 1>x
y � xm

(xm�s ln ƒ x ƒ )>1 :  xm ln ƒ x ƒ   as s :  0

Y � (xm�s � xm)>s

m2 � (1 � a) 2>41 � 2m � 1 � (1 � a) � a

x2ys � (1 � 2m)xyr � m2y � 0

s : 0
m � (1 � a)>2

x2ys � (1 � 2m � s)xyr � m(m � s)y � 0

y � (1 � 1
3 ln x) x1>3

c2 � �1
3
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Substitution of and into (1) gives the constant-coefficient ODE

.

The corresponding characteristic equation has the roots

.

With these , solutions are .
(e) .

SECTION 2.6. Existence and Uniqueness of Solutions. Wronskian, page 74

Purpose. To explain the theory of existence of solutions of ODEs with variable
coefficients in standard form (that is, with as the first term, not, say, 

(1)

and of their uniqueness if initial conditions

(2)

are imposed. Of course, no such theory was needed in the last sections on ODEs for which
we were able to write all solutions explicitly.

Main Content. The theorems show the following.

Theorem 1 shows that the continuity of the coefficients suffices for the existence and
uniqueness of a solution of the initial values problem (1), (2).

Theorem 2 gives a criterion for linear dependence and independence involving the
Wronskian. Simple basic applications are shown in Examples 1 and 2.

Theorem 3 on the existence of a general solution follows from Theorems 1 and 2 by
the trick of using two special initial value problems; this idea is worth remembering.

For Theorem 4 see below.

Comment on Wronskian
For , where linear independence and dependence can be seen immediately, the
Wronskian serves primarily as a tool in our proofs; the practical value of the independence
criterion will appear for higher n in Chap. 3.

Comment on General Solution
Theorem 4 shows that linear ODEs (actually, of any order) have no singular solutions.
This also justifies the term “general solution,” on which we commented earlier. We did
not pay much attention to singular solutions, which sometimes occur in geometry as
envelopes of one-parameter families of straight lines or curves.

Altogether, this provides a general theory that is useful in practice.

SOLUTIONS TO PROBLEM SET 2.6 page 79

2.

4. W � � x 1>x

1 �1>x2 � � � 

2
x

W � � e4x e�1.5x

4e4x �1.5e�1.5x � � e2.5x � 1 1

4 �1.5
 � � �5.5e2.5x

n � 2

y(x0) � K0,  yr(x0) � K1

ys � p(x)yr � q(x)y � 0

f (x)ys)ys

telt � (ln ƒ x ƒ )el  
ln ƒ  x ƒ � (ln ƒ x ƒ )(eln ƒ  x ƒ)l � xl ln ƒ x ƒ

elt � (et)l � (eln ƒ  x ƒ)l � xll

l � 1
2 (1 � a) � 21

4(1 � a)2 � b

y
# #

� y
#

� ay
#

� by � y
# #

� (a � 1)y
#

� by � 0

ysyr
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6. We use the abbreviations . Then

.

8. Equation saves much work and avoids sources of errors. We obtain

,

Multiplication by gives .

10. . For the Wronskian we obtain from 

.

From the initial conditions we obtain the particular solution

.

12. . The Wronskian is

.

The solution of the initial value problem is

.

14. . By ,

The characteristics equation is 

.

This gives the ODE 

.

From the initial conditions we obtain the particular solution

16. Team Project. (a) . Expressing cosh and sinh
in terms of exponential functions [see (17) in App. 3.1], we have

;1
2(c1

* � c2
*)e�x1

2(c1
* � c2

*)ex �

c1ex � c2e�x � c1
* cosh x � c2

* sinh x

y � e�kx(cos px � sin px).

ys � 2kyr � 1k2 � p22y � 0

(l � k)2 � p2 � 0

 � �pe�2kx.

 W � �(y2>y1)ry 1
2 � �(tan px)re�2kx cos2 px

(6*)y1 � e�kx cos px, y2 � e�kx sin px

y � (4 � 2 ln x)x2

W � � x2 x2 ln x

2x 2x ln x � x
 � � x3

x2ys � 3xyr � 4y � 0

y � 2xm1 � 4xm2

W � �axm1

xm2
br x2m2 � �(m1 � m2)xm1�m2�1

(6*)x2ys � (m1 � m2 � 1)xyr � m1m2y � 0

W � x2k�1y 1
2 � x2k cos2 (ln x)

a  

y2

y1
 br � (tan (ln x))r �

1
cos2 (ln x)

#
1
x

(6*)

W � � e�xc e�xs

e�x(�c � v s) e�x(�s � v c)
 � � e�2x � c s

�c � v s �s � v c
 � � ve�2x

c � cos vx, s � sin vx
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hence , . The student should become aware that for
second-order ODEs there are several possibilities for choosing a basis and making up
a general solution. For this reason we say “a general solution,” whereas for first-order
ODEs we said “the general solution.”

(b) If two solutions are 0 at the same point , their Wronskian is 0 at , so that
these solutions are linearly dependent by Theorem 2.

(c) The derivatives would be 0 at that point. Hence so would be their Wronskian W,
implying linear dependence.

(d) is constant in the case of linear dependence; hence the derivative of this
quotient is 0, whereas in the case of linear independence this is not the case. This
makes it likely that such a formula should exist.

(e) The first two derivatives of and are continuous at (the only x at which
something could happen). Hence these functions qualify as solutions of a second-
order ODE. and are linearly dependent for as well as for because,
in each of these two intervals, one of the functions is identically 0. On 
they are linearly independent because gives when , and

when . The Wronskian is

The Euler–Cauchy equation satisfied by these functions has the auxiliary equation

.

Hence the ODE is

Indeed, if , and for . Similarly
for . Now comes the point. In the present case the standard form, as we use it in
all our present theorems, is

and shows that is not continuous at 0, as required in Theorem 2. Thus there is
no contradiction.

This illustrates why the continuity assumption for the two coefficients is quite
important.
(f) According to the hint given in the enunciation, the first step is to write the ODE
(1) for and then again for . That is,

ys2 � pyr2  �  qy2 � 0

ys1 � pyr1  �  qy1 � 0

y2y1

p(x)

ys �
2
x

 yr � 0

y2

 x 	 00 � 0x � 0xys1 � 2yr1 � x # 6x � 2 # 3x2 � 0

xys � 2yr � 0.

(m � 3)m � m(m � 1) � 2m � 0

W � y1 
yr2  �  y2 

yr1 � e 0 # 3x2 � x3 # 0

 x3 # 0 � 0 # 3x2 
f � 0  if e x 	 0

x   �   0
.

x 	 0c2 � 0
x � 0c1 � 0 c1y1 � c2y2 � 0

�1 	 x 	 1
x 	 0x � 0y2y1

x � 0y2y1

y2>y1

x0x0

c2 � 1
2(c1

* � c2
*)c1 � 1

2(c1
* � c2

*)
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where p and q are variable. The hint then suggests eliminating q from these two ODEs.
Multiply the first equation by , the second by , and add:

where the expression for results from the fact that appears twice and drops
out. Now solve this by separating variables or as a homogeneous linear ODE.

In Prob. 6 we have , hence by integration from 0 to x, where
.

SECTION 2.7. Nonhomogeneous ODEs, page 79

Purpose. We show that for getting a general solution y of a nonhomogeneous linear
ODE we must find a general solution of the corresponding homogeneous ODE
and then—this is our new task—any particular solution of the nonhomogeneous
ODE,

.

Main Content, Important Concepts
General solution, particular solution

Continuity of p, q, r suffices for existence and uniqueness.

A general solution exists and includes all solutions.

Comment on Methods for Particular Solutions
The method of undetermined coefficients is simpler than that of variation of parameters
(Sec. 2.10), as is mentioned in the text, and it is sufficient for many applications, of which
Secs. 2.8 and 2.9 show standard examples.

Comment on General Solution
Theorem 2 shows that the situation with respect to general solutions is practically the
same for homogeneous and nonhomogeneous linear ODEs.

Comment on Table 2.1
It is clear that the table could be extended by the inclusion of products of polynomials
times cosine or sine and other cases of limited practical value. Also, in the last pair
of lines gives the previous two lines, which are listed separately because of their practical
importance.

General Comments on Text. Determination of Constants. For a good understanding,
it is important to realize that a general solution of a nonhomogeneous linear ODE contains
two kinds of constants, namely,

(I) the constants in Table 2.1, which depend on the right side of the ODE, but not on
the initial conditions, and must be determined first,

(II) the two arbitrary constants in a general solution of the homogeneous ODE (and
thus in a general solution of the given ODE) and must be determined after
the constants in have been determined, and are to be determined by using the initial
conditions. Examples 1–3 illustrate this important fact, which, for weaker students,
sometimes causes difficulties in understanding.

1I2
y � yh � yp

yh

a � 0

y � yh � yp

yp

yh

c � y1(0)yr2(0) � y2(0)yr1(0) � 1 # v �  0 # (�1) � v
W � ce�2xp � 2

yr1yr2Wr

(y1ys2 � ys1y2) �  p(y1yr2 �  yr1y2) � Wr � pW � 0

y1�y2
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Examples in the Text. Examples 1–3 are very similar, illustrating Rules (a), (b), (c). In
particular, the student should realize that Example 3 on the sum rule is not more difficult
than the other two examples. The only additional idea in the case, say, on the
right, is to split into a sum, , whose coefficients, according to Table 2.1,
can be determined for and separately. Hence we have to determine two sets of
constants from two systems of algebraic equations, each of which is not larger than it would
be had we only or only on the right side of the given ODE.

Problem Set 2.7
This problem set begins with the determination of general solutions of nonhomogeneous
linear ODEs, Probs. 1–6 with a single term on the right, Probs. 7–9 with a sum of two
terms each, and Prob. 10 showing a simple extension of the method of undetermined
coefficients beyond functions r shown in Table 2.1.

Problems 11–18 concern IVPs for nonhomogeneous linear ODEs with one term on the
right (Probs. 11–14 and 17) and with two terms on the right (Probs. 15, 16, and 18).

CAS Project 19 should make the student aware that, depending on the initial conditions
and on the kind of the homogeneous ODE, the solution may approach as:

, or may contain an increasing , or may be of the form with absent. 
Team Project 20 is an invitation to explore more general functions on the right, and to

what Euler–Cauchy equation the present method can be extended.

SOLUTIONS TO PROBLEM SET 2.7, page 84

2. . This is a typical solution
of a forced oscillation problem in the overdamped case. The general solution of the
homogeneous ODE dies out, practically after some short time (theoretically never),
and the transient solution goes over into a harmonic oscillation whose frequency is
equal to that of the driving force (or electromotive force).

Note that the input (the driving force) is a cosine, whereas the output (the response)
is a cosine and sine; this means a phase shift. It is due to the presence of a -term,
mechanically a linear damping force, as we shall see in the next section.

4. . Observe that the ODE has no -term,  

so we have no phase shift, and the output is a pure cosine term, just like the input. Compare 
this with Prob. 2.

6. A general solution of the homogeneous ODE is

.

We see that the function on the right side of the ODE is a solution of the homogeneous
ODE. Hence we have to apply the Modification Rule, starting from

.

Substitution gives ; . Hence the answer is

.y � yh � yp � e�x>2ac1 cos px � c2 sin px �
x

2p
 cos pxb

M � 0K � �1>(2p)

yp � xe�x>2(K cos px � M sin px)

yh � e�x>2(c1 cos px � c2 sin px)

yry � c1e3x � c2e�3x �
2

1 � (p>3)2
 cos px

yr

y � c1e�3.2x � c2e�1.8x � 0.00999 cos x � 0.0105 sin x

yhy � ypƒ yh ƒx :  

ypy � yh � yp

yp2yp1

yp2yp1

yp � yp1 � yp2yp

r � r1 � r2
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Note that the output involves cosine, whereas the input involves sine; and, although
we have a -term, the output is a single term. Compare this with Probs. 2 and 4,
which differ from the present situation.

8. . An important point is that the
Modification Rule applies to the second term on the right. Hence the best way seems
to split additively, , where

, .

In Prob. 9 the situation is similar.

10. is not listed in the table because it is of minor practical importance. However,
by looking at its derivatives, we see that

should be general enough. Indeed, by substitution and collecting cosine and sine terms
separately we obtain

(1)

(2) .

In (1) we must have ; hence and then . In (2) we must have
; hence , so that and from (2), finally, ,

hence . Answer:

.

12. The Modification Rule is needed. The answer is 

14. The characteristic equation of the homogeneous ODE has a double root . The
function on the right is such that the Modification Rule does not apply. A general
solution of the nonhomogeneous ODE is

.

From this and the initial conditions we obtain the answer

.

16. by the Modification Rule for a simple root.

.

18. The Basic Rule and the Sum Rule are needed. We obtain

. y � e�x cos 3x � 0.4 cos x � 1.8 sin x � 6 cos 3x � sin 3x

 yh � e�x(A cos 3x � B sin 3x)

y � e2x � 3
2 � 3xe2x � 1

2 e
�2x

yh � c1e2x � c2, yp � C1xe2x � C2e�2x

y � (1 � x)e�2x � 1
4 e�2x sin 2x

y � (c1 � c2x)e�2x � 1
4 e�2x sin 2x

�2

y � 1.8 cos 2x � sin 2x � 3x cos 2x.

y � (c1 � c2x)e�x � (1 – x) cos x � sin x

N � 1
�2N � 2K � 0P � 1K � �1�2Kx � 2x

P � �KM � 02Mx � 0

 (�2Kx � 2M � 2N � 2K) sin x � 2x sin x

 (2K � 2Mx � 2P � 2M) cos x � 0

yp � Kx cos x � Mx sin x � N cos x � P sin x

2x sin x

yp2 � K2x cos 3x � M2x sin 3xyp1 � K1 cos x � M1 sin x

yp � yp1 � yp2yp

y � A cos 3x � B sin 3x � 1
8 cos x � 1

18 x sin 3x

yr
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20. Team Project. (b) Perhaps the simplest way is to take a specific ODE, e.g.,

and then experiment by taking various to find the form of choice functions. The
simplest case is a single power of x. However, almost all the functions that work as

in the case of an ODE with constant coefficients can also be used here.

SECTION 2.8. Modeling: Forced Oscillations. Resonance, page 85

Purpose. To extend Sec. 2.4 from free to forced vibrations by adding an input (a driving
force, here assumed to be sinusoidal). Mathematically, we go from a homogeneous to a
nonhomogeneous ODE which we solve by undetermined coefficients.

New Features
Undamped Forced Oscillations. Resonance (Fig. 55)
Resonance appears if the physical system is (theoretically) undamped (in practice, if it
has small enough damping that the damping effect can be neglected), and if the input
frequency is exactly equal to the natural frequency of the system. Then a solution

(11)

has a factor t which makes it increase to (Fig. 55).
The approach to resonance as is also characterized by the resonance

factor in Fig. 54.

Undamped Forced Oscillations. Beats (Fig. 56)
Beats occur if the input frequently is approximately equal to the natural frequency of the
physical system. Then

(12)

with .

Damped Forced Oscillations. For these the transient solution approaches the steady-state
solution as , practically after some time which may often be rather short. If ,
there is no more true resonance, but the maximum amplitude (16) may still be large, as Fig.
57 illustrates. Also, there is a phase lag , discontinuous and equal to 0 or when 

, and continuous and monotone when (Fig. 58).

Problem Set 2.8
Problems 3–7 concern damped systems. Hence a general solution of such a physical system
is that of a homogeneous linear ODE and approaches 0 as , so that solving these
problems amounts to determining a particular solution of the corresponding ODE.

Problems 8–15 amount to finding a general solution of the nonhomogeneous ODE.
Problems 16–20 are IVPs for nonhomogeneous linear ODEs. Problem 17 is of the kind

that will occur in connection with partial sums of Fourier series in Chap. 11. Problem 18
is a typical example illustrating the rapidity of approach to the steady-state solution.

Beats are considered in Probs. 21, 22, and 25 with , whereas for farther away
from (corresponding to the natural frequency of the physical system) the form of
vibrations cannot be guessed immediately (see Fig. 60).

v0 � 1
vv � 0.9

t : 


c � 0c � 0
p�

c � 0t : 


K � F0>[m(v0
2 � v2)]

y � K (cos vt � cos v0t)

v: v0 (� 1k>m2



y � At sin v0t

r(x)

r(x)

x2ys � 6xyr � 6y � r(x)
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Practical resonance is considered experimentally in Team Experiment 23.

Continuity Conditions
Nonhomogeneous linear ODEs with a driving force acting for some finite interval of time
only will require the idea of continuity conditions of y and at the instant of time when
the driving force becomes identically zero. This makes such problems more involved, as
Prob. 24 illustrates, and motivates the application of an “operational method,” such as the
Laplace transform (Chap. 6).

SOLUTIONS TO PROBLEM SET 2.8, page 91

2. Problems 2, 8, 18. Note that the damping and restoring terms must have positive
coefficients, and that Prob. 12 shows resonance; hence it is not a candidate.

4.
6.
8.

10.
12. . Note that, whereas a single term on the right

side of the ODE will usually produce two terms in the solution (the response), the
present problem shows that sometimes the opposite will also occur.

14. . Note that this does not give resonance,
but, on the contrary, , which is understandable because the driving force on
the right approaches 0 as t approaches .

16. A general solution is

From the initial condition we obtain and . Hence the answer is

.

Note that, whereas in general both solutions of a basis occur in the solution of an
IVP, here we have only one of them. Of course, this could be changed by changing
the initial conditions.

18. . At the exponential term has
decreased to less than of its original value. This marks the end of the transition
from a practical point of view. is the time when that term has become less
than of a percent in absolute value.

20. A general solution is

.

Using the initial conditions, we obtain the answer

.

22. .

(a) changes the coefficient of 

(b) changes the amplitude

cos 5t

y � 100 cos 4.9t � 98 cos 5t

y �
1

p2 � 5
 acos 15 t �

p

15
 sin 15 t � cos pt � sin ptb

y � A cos 15 t � B sin 15 t � (cos pt � sin pt)>(p2 � 5)

1>10
t � 1.8

1%
t � 1.2y � e�4t cos t � 26.8 sin 0.5t � 6.4 cos 0.5t

y � cos 5t � sin t

B � 0A � 1

y � A cos 5t � B sin 5t � sin t.



yp : 0

y � A cos t � B sin t � e�t(cos t � 2 sin t)

y � e�t(A cos 2t � B sin 2t) � 2 sin t

y � A cos 4t � B sin 4t � 7t sin 4t 

y � e�t(A cos 1.5t � B sin 1.5t) � 0.6 cos 1.5t � 0.2 sin 1.5t

yp � 1
10 cos t � 1

90 cos 3t � 1
5 sin t � 1

45 sin 3t

yp � cos 4t � 0.6 sin 4t

yr
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24. If , then a particular solution

gives and

;

thus,

.

Hence a general solution is

.

From this and the first initial conditions,

.

The derivative is

and gives . Hence the solution is

(I) if , 

and if , then

(II)

with and to be determined from the continuity conditions

.

So we need from (I) and (II)

and

yr(t) � (1 � 2>p2) sin t � 2t>p2

y(p) � 2(1 � 2>p2) � 1 � 1 � 4>p2 � y2(p) � �A2

y(p) � y2(p),   yr(p) � yr2 (p)

B2A2

y � y2 � A2 cos t � B2 sin t

t � p

0 � t � py(t) � (1 � 2>p2)(1 � cos t) � t 2>p2

yr(0) � B � 0

yr � �A sin t � B cos t �
2

p2
 t

y(0) � A � 1 �
2

p2
� 0,  A � �a1 �

2

p2
b

y � A cos t � B sin t � 1 �
2

p2
�

1

p2
  t2

K2 � � 

1

p2
,  K1 � 0,  K0 � 1 � 2K2 � 1 �

2

p2

ysp � yp � K0 � 2K2 � K1t � K2t2 � 1 �
1

p2
  t2

ysp � 2k2

yp � K0 � K1t � K2t 2

0 � t � p
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and from this and (II),

.

This gives the solution

if .

Answer:

.

The function in the second line gives a harmonic oscillation because we disregarded
damping.

SECTION 2.9. Modeling: Electric Circuits, page 93

Purpose. To discuss the current in an RLC-circuit with sinusoidal input , as
follows.

Modeling the RLC-circuit

Solving the model (1) for the current I(t)

Discussion of a typical IVP

Discussion of a electrical–mechanical analogy

Modeling the RLC-circuit. The student should first review the special case of an 
RL-circuit in Example 2 of Sec. 1.5, which is modeled by a first-order ODE, using
Kirchhoff’s KVL. The present addition of a capacitor is very simple in terms of setting
up the model, resulting in a second-order ODE. Proceed stepwise in this way:

Write the voltage drop across the capacitor in the form Q (rather than CQ) is a
standard convention to obtain generally more convenient numbers.

Solve the model (1) by the method of undetermined coefficients (see Sec. 2.7).
ATTENTION! The right side in (1) is , because of differentiation.
In solving, two quantities of practical importance are introduced, namely, the reactance

(3)

and the impedance (also called the apparent resistance)

.

(Its complex analog, the complex impedance iS, is mentioned in the answer to
Prob. 20.)

Example 1 shows a typical IVP with rapidly going to 0, as illustrated in Fig. 62, 
so that the transient current rapidly approaches a harmonic steady-state current.

Table 2.2 shows a strictly quantitative electrical–mechanical analogy, which is used in
transducers, as explained in the text.

Ih

Z � R �

2R2 � C 2

S � vL � 1>(vC)

E0v cos vt

(1>C)

E0  sin vt

y � e (1 � 2>p2)(1 � cos t) � t2>p2   if 0 � t � p

�(1 � 4>p2) cos t � (2>p) sin t   if t � p

t � py � �(1 � 4>p2) cos t � (2>p) sin t

yr(p) � �2>p � B cos p � �B2
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SOLUTIONS TO PROBLEM SET 2.9, page 98

2. This is another special case of a circuit that leads to an ODE of first order,

.

Integration by parts gives the solution

where . The first term decreases steadily as t increases, and the
last term represents the steady-state current, which is sinusoidal. The graph of is
similar to that in Fig. 62.

4. The integral that occurs can be evaluated by integration by parts, as is shown (with
other notations) in standard calculus texts. From (4) in Sec. 1.5 we obtain

.

6. , , , , is given.
follows from

.

Answer:

.

8. , , so that the steady-state solution is

.

10. The ODE is

.Is � 2Ir � 20I � 157 # 3

I � 62.5 (cos 2t � sin 2t) A

 0.5Is � 4Ir � 10I � 1000 cos 2tEr � 1000 cos 2t

I � 0.02(t � 0.05  sin 20t)

LIr(0) � Q(0)>C � E(0) � 0

Ir(0) � 0
I(0) � 0Is � 400I � 8t 0.5Is � 200I � 4tEr � 4tE � 2t 2

 � ce�Rt>L �
E0

2R2 � v2L2
 sin (vt � d),   d � arctan 

vL

R

 � ce�Rt>L �
E0

R2 � v2L2
  (R sin vt � vL cos vt)

 I � e�Rt>L c E0

L �eRt>L sin vt dt � c d

I(t)
tan d � �1>(vRC)

 � ce�t>(RC) �
vE0C

21 � (vRC)2
 

 sin (vt � d),

 � ce�t>(RC) �
vE0C

1 � (vRC)2   (cos vt � vRC sin vt)

 I(t) � e�t>(RC) c v E0

R �et>(RC) cos vt dt � c d

RIr � I>C � Er � vE0 cos vt
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52 Instructor’s Manual

The steady-state solution is

.

Note that if you let C decrease, the sine term in the solution will become smaller and
smaller, compared with the cosine term.

12. The ODE is

.

Its characteristic equation is

Hence a general solution of the homogenous ODE is

.

The transient solution (rounded to 4 decimals) is

.

14. Write and , as in the text before Example 1. Here
, and can be real or imaginary. If is real, then 

because . Hence . If is imaginary,
then represents a damped oscillation, which certainly goes to zero as .

16. The ODE is

.

A general solution is

.

The initial conditions are , which because of , that is,

,

leads to . This gives

,

, .

Hence the answer is

.I � �(6 � 200t)e�20t � 6 cos 10t � 8 sin 10t

c2 � �200Ir(0) � �20c1 � c2 � 80 � 0

c1 � �6I(0) � c1 � 6 � 0

Ir(0) � 0

LIr(0) � RI102 �
Q(0)

C
� E(0) � 0

(1r)I(0) � 0, Q(0) � 0

I � (c 1 � c2t)e�20t � 6 cos 10t � 8 sin 10t

0.2Is � 8Ir � 80I � 1000 cos 10t

t : 
Ih(t)
b(and l2 	 0, of course)l1 	 0R2 � 4L>C � R2
b � R>(2L)bba � R>(2L) � 0

l2 � �a � bl1 � �a � b

I � e�t(A cos 2t � B sin 2t ) � 7.0064 cos 314t � 0.0446 sin 314t A

e�t(A cos 2t � B sin 2t)

0.1[(l � 1) 2 � 4] � 0.

0.1Is � 0.2Ir � 0.5I � 220 # 314 cos 314t

I � 33 cos 3t � 18 sin 3t
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18. The characteristic equation of the homogenous ODE is

.

The initial conditions are as given, by formula in
the text and . Also, . The ODE is

.

The answer is

.

20. . Substitution gives

.

Divide this by on both sides and solve the resulting equation algebraically for
K, obtaining

(A)

where S is the reactance given by (3). To make the denominator real, multiply the
numerator and the denominator of the last expression by . This gives

.

The real part of is

in agreement with (2) and (4).
We mention that (A) can be written

where

is called the complex impedance. Note that its absolute value is
the impedance, as defined in the text.

ƒ  Z ƒ � 2R2 � S2

Z � R � iS � R � i avL �
1

vC
b

K �
E0

iZ

 �
�E0

S2 � R2
 (S cos vt � R sin vt),

 (Re K)(Re eivt) � (Im K)(Im eivt) �
�E0S

S2 � R2
 cos vt �

E0R

S2 � R2
 sin vt

Keivt

K �
�E0(S � iR)

S2 � R2

�S � iR

K �
E0

�avL �
1
vC
b � iR

�
E0

�S � iR

veivt

a�v2L � ivR �
1
C
b  Keivt � E0veivt

I�p � Keivt, I�pr � ivKeivt, I�ps � �v2Keivt

I � 160 e�8t � 205e�10t � 45 cos 10t � 5 sin 10t

Is � 8Ir � 80I � �8200 sin 10t

Er � �8200 sin 10tQ(0) � 0
1sIr(0) � E(0)>L � 820I(0) � 0

0.2(l � 8)(l � 10) � 0
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SECTION 2.10. Solution by Variation of Parameters, page 99

Purpose. To discuss the general method for particular solutions, which applies in any
case but may often lead to difficulties in integration (which we, by and large, have avoided
in our problems, as the subsequent solutions show).

Comments
The ODE must be in standard form, with 1 as the coefficient of —students tend to
forget that.

Here we do need the Wronskian, in contrast with Sec. 2.6 where we could get away
without it.

SOLUTIONS TO PROBLEM SET 2.10, page 102

2. . Hence in (2),

Answer:

4. . Hence in (2),

Answer:

6. . Hence in (2),

Answer:

y � (c1 � c2x)e�3x � 8[�ln (x2 � 1) � 2x arctan x] e�3x.

 � y1r

W
 dx � � (e�3x)16e�3x>(x2 � 1)

e�6x  dx � � 16

x2 � 1
 dx � 16 arctan x.

 � y2r

W
 dx � � (xe�3x)16e�3x>(x2 � 1)

e�6x  dx � � 16x

x2 � 1
 dx � 8 ln (x2 � 1)

y1 � e�3x, y2 � xe�3x, W � e6x

y � 3A cos x � B sin x � x cos x � (sin x) ln ƒ sin x ƒ 4e2x.

 � y1r

W
 dx � � (e2x cos x)e2x>sin x

e4x  dx � ln ƒ sin x ƒ .

 � y2r

W
 dx � � (e2x sin x)e2x>sin x

e4x  dx � x

y1 � e2x cos x, y2 � e2x sin x, W � e4x

y � A cos 3x � B sin 3x �
x
3

 cos 3x �
1
9

 (sin 3x) ln ƒ sin 3x ƒ

 � y1r

W
 dx �

1
3 � cos 3x

sin 3x
 dx �

1
9

 ln ƒ sin 3x ƒ .

 � y2r

W
 dx �

1

3 � sin 3x

sin 3x
 dx �

x

3

y1 � cos 3x, y2 � sin 3x, W � 3, r � csc 3x

ys
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8.

10. . Hence in (2),

This gives the particular solution

Answer:

.

12. The right side suggests the following choice of a basis of solutions:

Then , and

14. TEAM PROJECT. (a) From (2),

Answer:

This was much more work than that for undetermined coefficients.

y � c1e�3x � c2e�x � cos 2x � 8 sin 2x.

 � �cos 2x � 8 sin 2x.

 � 65
2 (�e�3x 1

13 e3x(3 cos 2x � 2 sin 2x) � e�x 15  ex(cos 2x � 2 sin 2x))

 �
65
2

 a�e�3x�e3x cos 2x dx � e�x�ex cos 2x dxb

 yp � �e�3x� e�x65 cos 2x

2e�4x  dx � e�x� e�3x65 cos 2x

2e�4x  dx

y1 � e�3x, y2 � e�x, W � 2e�4x, r � 65 cos 2x.

 � �(cosh x) ln ƒ cosh x ƒ � x sinh x.

 yp � �cosh x�(sinh x)>cosh x dx � sinh x�(cosh x)>cosh x dx

W � 1

y1 � cosh x,  y2 � sinh x.

y � e�x[A cos x � B sin x � 2(cos 2x)>cos x]

 � e�x[�2(cos 2x)>cos x].

 e�x c�(cos x) 
2

cos2 x
� 4(sin x) tan x d � e�x

 a�2 � 4 sin2 x
cos x

b

 � y1r

W
 dx � � (e�x cos x) 4e�x>cos3 x

e�2x  dx � 4 tan x.

 � y2r

W
 dx � � (e�x sin x) 4e�x>cos3 x

e�2x  dx �
2

cos2 x

y1 � e�x cos x, y2 � e�x sin x, W � e�2x

y � c1 cos 2x � c2 sin 2x � 1
8 cosh 2x
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(b) We can treat on the right by undetermined coefficients, obtaining the
contribution to the solution. We could treat it by the other method, but
we would have to evaluate additional integrals of an exponential function times a
power of x. We treat the other part, , by the method of this section, calling
the resulting function We need From this and (2),

Complete answer:

(c) If the right side is a power of x, say, , then substitution of gives

This can be solved for C. To explore further possibilities, one may work “backwards”;
that is, assume a solution, substitute it on the left, and see what from one gets as a
right side.

SOLUTIONS TO CHAPTER 2 REVIEW QUESTIONS AND PROBLEMS, page 102

8.
10.
12.
14.
16.
18. by the chain rule, 

hence

Also, is a solution.

20. Obtain the particular solution by undetermined coefficients.
Answer: 

22. The auxiliary equation is

Hence a general solution is

From the initial conditions, c1 � 2, c2 � 3.

y � (c1 � c2 ln ƒ x ƒ )x�7.

m(m � 1) � 15m � 49 � (m � 7) 2 � 0.

y � 3ex � 5e2x � 3 cos x � sin x

y � 0

y � 1>(c�1x � �c2).

�1>y � c1x � c2;z � c1y2 � yr, dy>y2 � c1 dx,ln ƒ z ƒ � 2 ln ƒ y ƒ � c*,

dz>z � 2dy>y,yz dz>dy � 2z2,yr � z, ys � (dz>dy)z

y � e�x(A cos x � B sin x) � e�x cos 2x

y � c1x3 � c2x�3

y � (c1 � c2x)e�2px
y � e�0.1x(A cos 0.4x � B sin 0.4x)

y � c1e�4x � c2e3x

x2ys � axyr � by � (k(k � 1) � ak � b)Cxk � r0 x
k.

yp � Cxkr � r0xk

y � (c1 � c2x)ex � 4exx7>2 � x2 � 4x � 6.

 � 35 a�ex�x5>2 dx � xex�x3>2 dxb � 4exx7>2.

 yp1 � �ex� xex

e2x 35x3>2ex dx � xex� ex

e2x 35x3>2ex dx

y1 � ex, y2 � xex, W � e2x.yp1.
35x3>2ex

x2 � 4x � 6
x2
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24.
26.

28. The equation is

;

thus,

The solution satisfying the initial conditions is

,

as obtained by the method of undetermined coefficients.
The last two terms result from the driving force. In the first two terms,

. This shows that resonance would occur if the driving force had
the frequency 

30. is given by (16), Sec. 2.8. The maximum is obtained by equating the derivative
to zero; this gives (15*) in Sec. 2.8, which for our numerical values becomes

,

so that Equation (16) in Sec. 2.8 then gives the maximum amplitude

.

To check this result, we determine the general solution, using the method of
undetermined coefficients, finding

,

and confirm the result by calculating the amplitude

20.252 � 0.52 � 0.5590.

y(t) � e�2t(A cos 215t � B sin 215t) � 0.25 cos 4t � 0.5 sin 4t

C*(vmax) �
2 # 1 # 10

424 # 12 # 24 � 16
� 0.5590

v � 4.

16 � 2(24 � v2)

C*(v)

v(2p) � 3>(2p).
v 0 � 2k>m � 3

y � �cos 3t � 4
3  sin 3t � cos t � 4 sin t

ys � 9y � 8 cos t � 32 sin t.

0.125ys � 1.125y � cos t � 4 sin t

1.985219 cos 314t A
I � e�50t(A cos 150t � B sin 150t) � 0.847001 sin 314t �Er � 220 � 314 cos 314t,

I � c1e�1999.87t � c2e�0.125008t A
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