
Solutions for Dopants and Defects in Semiconductors 2nd Edition by McCluskey

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

Chapter 2

- **2.1** GaAs:C_{As} Single acceptor
 - Si:Se <u>Double donor</u>
 - Ge:Cu Triple acceptor
 - GaAs:N_{As} <u>Isoelectronic</u>
 - GaAs:CuGa Double acceptor
 - Si:Zn <u>Double acceptor</u>
 - ZnO:Alzn Single donor
 - ZnS:Cu_{Zn} Single acceptor
 - GaAs:Si_{Ga} Single donor
- **2.2** Because Zn is a double acceptor, the net acceptor concentration is $1 \times 10^{17} 7 \times 10^{16}$ cm⁻³ = 3×10^{16} cm⁻³. It is *p*-type.
- **2.3** The fraction of occupied donors (<u>neutral</u>) is

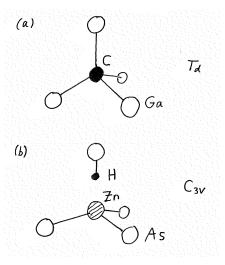
$$f(E) = \frac{1}{e^{(E-E_F)/kT} + 1} = \frac{1}{e^{-1.0} + 1} = 0.731$$

The fraction of unoccupied donors ($\underline{positive}$) is $\underline{0.269}$.

- **2.4** $N_d = 3 \times 10^{16} \text{ cm}^{-3}$
 - $N_a = 8 \times 10^{16} \text{ cm}^{-3}$
 - (a) $[N_d^+] = [N_a^-] = 3 \times 10^{16} \text{ cm}^{-3}$
 - (b) <u>*p*-type</u>
- **2.5** $N_d = 5 \times 10^{16} \text{ cm}^{-3}$

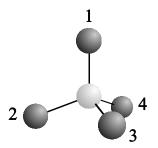
$$N_a = 1 \times 10^{16} \text{ cm}^{-3}$$

The donor binding energy is $40\ \text{meV}$.


- (a) $[N_d^+] = 1 \times 10^{16} \text{ cm}^{-3}$
- (b) $[N_a] = 1 \times 10^{16} \text{ cm}^{-3}$
- (c) Fermi level is at the donor level, 40 meV below the conduction-band minimum.

2.6 Compensation: Donors give electrons to acceptors. Example: Si_{Ga} donors compensate C_{As} acceptors in GaAs.

Passivation: An impurity such as hydrogen forms a neutral complex with a donor/acceptor.


Example: Hydrogen passivates the boron acceptor in silicon.

2.7 (a) Carbon acceptor in GaAs, (b) zinc-hydrogen complex in GaAs:

2.8 Threefold rotations

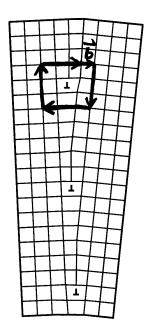
"1" axis:
$$(1,2,3,4) \rightarrow (1,4,2,3)$$

 $\rightarrow (1,3,4,2)$
"2" axis: $\rightarrow (3,2,4,1)$
 $\rightarrow (4,2,1,3)$
"3" axis: $\rightarrow (4,1,3,2)$
 $\rightarrow (2,4,3,1)$
"4" axis: $\rightarrow (2,3,1,4)$
 $\rightarrow (3,1,2,4)$

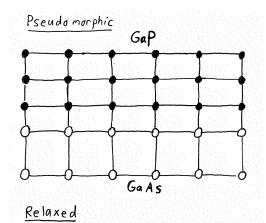
Twofold rotations

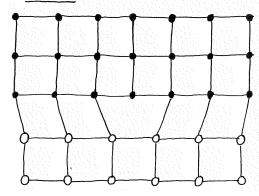
Axis bisecting 1,4: \rightarrow (4,3,2,1)

Axis bisecting 1,3: \rightarrow (3,4,1,2)


Axis bisecting 1,2: \rightarrow (2,1,4,3)

Reflections


- 1-4 plane: \rightarrow (1,3,2,4)
- 1-3 plane: \rightarrow (1,4,3,2)
- 1-2 plane: \rightarrow (1,2,4,3)
- 2-3 plane: \rightarrow (4,2,3,1)
- 3-4 plane: \rightarrow (2,1,3,4)
- 2-4 plane: \rightarrow (3,2,1,4)


Improper rotations

- Axis bisecting 1,4: \rightarrow (3,1,4,2)
 - \rightarrow (2,4,1,3)
- Axis bisecting 1,3: \rightarrow (2,3,4,1)
 - \rightarrow (4,1,2,3)
- Axis bisecting 1,2: \rightarrow (4,3,1,2)
 - \rightarrow (3,4,2,1)
- 2.9 Burgers circuit and Burgers vector:

- **2.10** Ratio of the lattice constants = 5.65/5.45 = 1.0367.
 - (a) (The lattice constant difference has been exaggerated for clarity)

(b) Over n lattice constants, the two materials are in registry.

$$5.65(n-1) = 5.45n$$

$$0.2n = 5.65$$

$$n = 28$$

5.45n = 153 Å. There is 1 dislocation in this interval.

1 dislocation / $(1.53 \times 10^{-8} \text{ cm})^2 = \underline{4 \times 10^{11} \text{ cm}^{-2}}$