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2.1 Vectors and linear equations

Exercise 2.1.1.

1. Redo Example 2.1.1 with the first elementary row operation Rs — Rj.

Solution:
System Matrix representation Elementary matrix
r—y=1 1 —1] [=] [t
T+y=2 |1 1__y_7_2
10
4 Ry — Ry Er=14 4
r—y=1 1 o]t =1][z] [ 1 0|1
2y =1 -1 1|1 1] |y |-1 1]|2
(1 —1] [z 1 10
1 _ _
L b o[l -1 sl
ry=toonoo) e <)l oot
y=15 0 30 2/ly] |0 3 [1
1 —1f |z 1 1 1
erer ][ m=lo ]
3
S i R P
1 1 - 1 |2
y=3 0 0 Y 0 3

11
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1 0] [«] _[3
0 1| |y| il

2. Determine whether the following matrices are in reduced row echelon form
and row echelon form, respectively:

1 0 0 9 -2 1 00 9 1 1 0 1
)01 0 =2 3|, b»lo 1 0 1|, |0 1 0 3
001 -5 1% 001 =5 001 3

Solution: a) and b) are in reduced row echelon form (hence also in row echelon
form). c) is in row echelon form. O

3. Solve the following systems using Gauss—Jordan eliminations:

r+3z=1 T+2y+3z=1 r+2y+3z=1
a) 2e+3y=3 b 20 4+3y+42=3 «¢) 204+ 3y +42=3
dy+5z=>5 3z+4y+52 =5 5r+9y+ 132 =7

Solution: a) We re-write the system of linear equations in the matrix form
Ax = b, where

1 0 3 x 1
A=12 3 0|,x=|y| and b= |3
0 4 5 z 5
Then the corresponding augmented matrix is
1 0 3 1
[A:b]=1(2 3 0 3
0 4 5 5
By the elementary row operations on [A : b] we have
1 0 3 1 heon 10 3 1
2 3 0 3| == 103 -6 1
0 4 5 5 04 5 5
10 3 1
R2/3 0 1 —9 %
0 4 5 5
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3 1]

R
3/13 _9 %
11
L 5.
6
S 1 0 0 35
=25 10 1 0
R1—3R3 2
0 0 1 355

Then we have an equivalent system with augmented matrix

S O =
o = O

0
0 35
1

The solution is

SISO
|
w
o

- 39

b) We re-write the system of linear equations in the matrix form Ax = b,
where

1 2 3] x 1
A=12 3 4| ,x=|y| and b= |3
3 4 5] P 5

Then the corresponding augmented matrix is

12
[A:b]= (2 3
3 4

T W
Ut W

By the elementary row operations on [A : b] we have

12 3 1 1 2 3 1
2 3 4 3| 22=2By 1 1 —2 1
3 4 5 5| 3 g 9 4 9
Com [F203 1

=210 1 2 -1

0 —2 —4 2

10 -1 3

Bst2Fo 1o 1 2 —1

=2 g g 0 0

Then we have an equivalent system with augmented matrix

1 0 -1 3
0 1 2 -1
0 0 O 0
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The solution is

. 3 1
yl = |-1| +t|-2|,teRr
z 0 1

¢) We re-write the system of linear equations in the matrix form Ax = b,
where

1 2 3 x 1
A=12 3 4|,x=|y| andb= |3
5 9 13 z 7
Then the corresponding augmented matrix is
1 2 3 1
[A:b]=1(2 3 4 3
5 9 13 7

By the elementary row operations on [A : b] we have

12 3 1 1 2 3 1
9 3 4 3| £=22E g 1 21
5 9 13 7| Bl 1 2 2
Com L2030

1o 1 2 -1

0 -1 -2 2

10 -1 3

R34+ Rso 0 1 2 _1

=2k g 9 0 1

Then we have an equivalent system with augmented matrix

1 0 -1 3
0 1 2 -1,
0 0 0 1
where the last equation is contradictory. The system has no solution. O

m]

4. Consider a linear system Az = b with A an m X n matrix and b an m x 1
matrix. Is it true if there is more than one solution for x in R™, there must be
infinitely many? You may use the fact that

Alx +y) =Az + Ay
A(tx) =tAwx,

for every z, y € R™ and t € R,
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which is called the linearity of matrix multiplication.

Solution: Let 27 and x5 be distinct solutions. Then A(z1—x2) = Ax1—Axg =
0 and for every t € R, we have

A(J?l + t(.%‘l — 332)) = Axq + tA($1 — l‘2) =b.

Hence x = 1 + t(x1 — x2), t € R are all solutions of Az = b. That is, Az =b
has infinitely many solutions. O

5. Let k£ be a real number. Consider the following linear system of equations:
To+2x3+ 14 =1
21’1 +I2+3I3 =2

T+ 4rs + 224 = 3
kxo + x4 = 1.

(2.1)

Find all possible values of k such that system (2.1) i) has a unique solution;
ii) has no solutions and iii) has infinitely many solutions.

Solution: We re-write the system of linear equations in the matrix form
Ax = b, where

01 2 1 1 1
121 .30 R |2
A= 10 4 2% 5 and b = 3
0 k 0 1 Ty 1

Then the corresponding augmented matrix is

01 2 11
21 3 0 2
[A:b] = 1 0 4 2 3
0 k 0 1 1
By the elementary row operations on [A : b] we have
01 2 11 1 0 4 2 3
21 3 0 2| RoRrRy |2 1 3 0 2
1 0 4 2 3 01 2 11
0 k 0 1 1 0 k 0 1 1
(1 0 4 2 3
R:—2R, [0 1 -5 -4 —4
01 2 1 1
0ok 0 1 1
1 0 4 2 3
Ri—kR; |0 1 =5 —4 —4
R3—Ro 0 0 7 5 5
10 0 5k 1+4k 1+4k
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1 0 4 2 3
Rs/7 |0 1 =5 —4 —4
0 0 1 5/7 5/7
0 0 5k 1+4k 1+4k
1 0 4 2 3
R4—(5k)-R3 0 1 -5 —4 —4
0 0 1 5/7 5/7

0 0 0 1+43k/7 1+3k/7

Then we have an equivalent system with augmented matrix

10 4 2 3
01 -5 —4 —4
00 1 5/7 57|

0 0 0 143k/7 1+3k/7

i) If 14 3k/7 # 0, that is, k # —7/3 the original system has a unique solutiuon;

ii) If 1 + 3k/7 = 0, that is, k = —7/3 the original system has infinitely many
solutions.

Therefore, for every k € R, the system has at least one solution. O

2.2 DMatrix operations

Exercise 2.2.1.
1 2 10 1 0] . . .
1. Let A= {3 4}, B= [O 1 0 1]. i) Compute AB. ii) Does BA exist?

Solution: i)

AB—P 2 1 2]'

3 4 3 4

ii) BA does not exist since their sizes do not match as B is 2 x 4 and A is
2 x 2. o

1 2 1 -1
ptaas ]t Jooo ]l -l

partitioned into B = [By : By], is it

(1) (1)} i) Compute AB. ii) If B is block
true AB = [AB; : ABy]?
Solution: i)

31 2 1
AB = {7 1 4 3]
ii) According to the definition of matrix multiplication, the statement is true.

]
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3. Show Lemma 2.2.6.
Solution: Follow the approach for the proof of Theorem 2.2.5. O
b1
ba
4. Let A=Jay :az---:ay], B=| .| bemxn and n X r matrices. Show
bn,

that AB = a1by + asby + -+ - + a,by,.
Solution: By the definition of matrix multiplication we have
(AB)i,j = @i 1b1,j + @i 2by j + - + @i nbn,
= (a1b1)i,j + (azb2)i,j + - + (anbn)i,;
= (a161 + agby + - + anbn)i7j.

Therefore, we have AB = a1by + asbs + -+ - + anby,. O

1 2 1 -1 0 1 .
5. Let A= {3 4}, B = [1 11 0} . Use Question 4 to compute AB.

Solution: Let A =[a; : as], B = |:l;1:|
2

AB = a1b1 + a2b2

1 2

:_3][1 —101]+M[1 1 1 0
_'1—101+2220
T3 -3 03 "|44 40
31 21

71 o4 3]

]

6. Let A and B be m x n and n X r matrices. Show that i) every column of
AB is a linear combination of the columuns of A; ii) every row of AB is a linear
combination of the rows of B.

by

bo
Solution: Let A=[a;:a2---:a,], B=| .| be mxnand n X r matrices.

b
(AB); j = a; 1b1 j +a; 2ba j + -+ a; nbn, ;.
The j-th column of AB is
(AB); = a1b1 j + agba j + -+ -+ anby j,

which is a linear combination of the columns of A. m]
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1 2 . .
7. Let A= {3 4} Find all matrices B such that AB = BA.

Solution: Let B = [Z b]. Then BA = AB leads to a linear system of

d
r=(a, b, c, d) €R:
3b—2c=0
20+3b—2d=0
3a+3c—3d=0
3b—2c=0.

Using Guass-Jordan elimination, we obtain the solution

-1 1
~12/3 0
T=81 +t 0 , 8, teR.
0 1
That is,
B:{ts 25/3}.
K 4

8. Let A and B be n x n matrices. Explain that in general we have (A4 +
B)(A—B) # A2 — B? and (A+ B)? # A2 + 2AB + B~

Solution: We note that in general, AB # BA. So (A + B)(A — B) = A? —
AB+ BA—B?# A? — B® and (A+ B)? # A> + 2AB + B* if AB # BA.

9. Let A be an n x n matrix. Define V. = {B : AB = BA}. Show that i)
V # ;i) if By € V and By € V, then every linear combination of By and Bs
isin V.
Solution: i) Since AI =IB and I € V, we have V # (.
ii) If By € V and By € V, then for every s € R and t € R, we have
(SBl + th)A :SBlA + tBQA
:SABl + f,ABQ
:A(SBl + tBQ).

Therefore, we have sB1+tBs € V. We have shown that V' is a vector space. 0O

10. Give an example that A2 = 0 but A # 0.

.

Solution:

We have A2 =0 but A # 0.
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11. Give an example that A2 = I but A # +1.
Solution:
0 1
)

We have A2 =1 but A # +1.

12. Let A be an n X n matrix. If we want to define a limit lim,, . A™, how
would you define the closeness (distance) between matrices?

Soglution: If we identify A as a vector in R™*. Then we can borrow norms on
R™ for defining the distance between matrices. For example, we can define

1

2

distance(A, B) = Z Z(aij - bij)2 )

i=1 j=1

where a;; and b;; are entries at (¢, j)-position of A and B, respectively. O

2.3 Inverse matrices
Exercise 2.3.1.

1. Determine whether or not the following matrices are invertible. Find the
inverse of each matrix if it exists.

1 2 -1 2 1 2
I R R i
_ 11
Solution: a) [ ],b) [ 2 ?},c) not invertible.
12
i

2. Determine whether or not the following matrices are invertible. Find the
inverse of each matrix if it exists.

00 1 100 100

a) [0 1 0|, b (2 1 0|, ¢ [0 6 0

1 00 0 3 1 0 0 1
0 0 1 1 00 1 00
Solution: a){0 1 0|,b) [-2 1 0], b) |0 & O
1 00 6 -3 1 0 0 1
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3. Determine whether or not the following matrices are invertible. Find the
inverse of each matrix if it exists.

a)

Solution: a)

O W =

oW N

2
4
0

0
of,
1

ONI= =
= o O

1 00

b o -1 2],
0 3 6
10 0
b)) |0 =3 %
1 1

0 7 1w

O W =
S O N
_ o O

, ¢) not invertible.

O

4. For the given matrix A, use elimination to find A~! and record each ele-
mentary row operation and the corresponding elementary matrix at the same

time.
Solution:
3 0 1
2 4 2
1 -1 5
I
1 -1 5
2 4 2
3 0 1
U
1 -1 5
6 -8
3 0 1
{3
1 -1 5
0 6 -8
0 3 —-14
U

o

o

= o O

o

o = O

—_

O =

O = O

o

-2

b

Il
—_ N W
= s O
(G20 VRN

Row operation

Ry & R3

Row operation

Ry — 2Ry

Row operation

Rs — 3R

Row operation

Ry — Ry/2

Elementary Matrix

0
Ey =10
1

o = O

1
0
0
Elementary Matrix

1
Ey=|-2
0

o = O

0
0
1
Elementary Matrix

1
Es=1] 0
-3

o = O

0
0
1
Elementary Matrix

E, =

o O =
N = O

0
0
1
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1 -1 50
0 6 -8 0
0 0 -10 1

4
1 -1 5 0
0 6 -8 0
0 0 1 —4

4
1 -1 0 3
0 6 0 -2
0 01 —&

¢
1 -1 0 3
0 1 0 —55
0 01 —%

¢
100 %
01 0 —z
00 1 —5%

Then we have

NI —_ O

A71

Solving linear systems

-2
-2

|
S N

= g O

ot %‘M

OJ‘N

S g"\’ =)

Row operation

Rs/(—10)

Row operations

Ry — 5R3

Ry +8R3

Row operation

Ry /6

Row operation

R+ Ry
22 1 -4
i -8 14 —-4],
60
—6 3 12

21

Elementary Matrix

1 0 -5
Es=10 1 o,
00 1
1 00
E.=|0 1 8
00 1

Elementary Matrix

P =

o O =
oo o
o

Elementary Matrix

Eo =

S O =
O~ =
_ o O

which can be written as the product of elementary matrices F9 Fs By EgEs EsE3FEoFy .

O
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5. For what values of A € R is the following matrix
3 01
A=12 4 2
1 -1 A

invertible?

Solution: We use elimination to determine when the reduced row echelon
form is an identity matrix. We have

-1 -1
R 1 2 1
! 3 0 1
1 -1 A
12 1
L2l 1) 6 -2
RBs=Fv 1 3 N1
2 1
R2/(—6) 0 1 %
0 —3 A—1)
M2 1
R3+3R2 0 1 %
0 0 X

The reduced row echelon form of A is I if and only if A # 0. That is, A is
invertible if and only if A # 0.

O
1
)

6. Let A be an n x n matrix. If A = | . | satisfies that ro = r3 +171,is A4
Tn

invertible?

Solution: A is not invertible since using elementary eliminations to substract
r1 and rg from ro will result in a matrix with a zero row which is not invertible.
O

7. Let A be an nxn matrix. If A = [cl N R cn] satisfies that co = c3+c¢q,
is A invertible?

Solution: By the previous question, AT is not invertible and hence A is not
invertible. O
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1
8. Let v, w € R™ be vectors. Is the matrix A = [|UU7|L| Hw”] invertible?
Solution: A is not invertible if and only if ||v| - ||w| = |v - w]. mi

9. Give an example of a 3 X 3 dominant matrix and find its inverse.

10. Find a sufficient condition on a, b, ¢ and d € R such that the matrix

A a?+b*  2ab
T 2d A+

is invertible.

0 1 1
11. Let A= [0 0 1]|.i) Compute A?;ii) Show that for every k > 3, k € N,
0 0 O
Ak = 0.
0 0 1 0 00
Solution: A2= |0 0 0| and A>= |0 0 O0]. Therefore for every k > 3,
0 00 0 00
kEeN, A = A3AF=3 = 0. . O

12. Let A be an n x n matrix. Show that if A* = 0, then I — A is invertible

and
(I-A)'=T+A+ A%+ AL

Solution: Hint: We have (I — A)(I + A+ A2 +... + AP 1) = I mi

13. Let A be an n x n matrix and A =tI + N, t € R with N* = 0 for some
k € N. Compute A?* in terms of t and N.

Solution: Note that tIN = N(tI). We have A* = N* + (tI)N3 + (tI)2N? +

(tI)3N + (tI)* = tN3 +t2N? + 3N + t11. O
14. Let D = diag{\1, Ag, -+ , A\, } be a diagonal matrix with the main diago-
nal entries A1, Ag, -+, A,. Show that D is invertible if and only if A\; # 0, for
every 1 =1, 2, --- ,n.

Solution: Hint: if A\; # 0, for every i =1, 2, --- ,n, the reduced row echelon
form of D is the identity matrix. O

15. Let A be an n x n matrix. i) If A*> = I, find A~%; ii) If A¥ = T for
some k € N, find A~ iii) If A¥ = 0 for some k € N, is it possible that A is
invertible?

Solution: i) A~! = A2 ii) A=! = A*=1 iii). No. Notice that AB is invertible
if and only if both A and B are invertible, where A and B are square matrices
of the same size. O
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16. Show that A is invertible if and only if A* is invertible for every k €
N k> 1.

Solution: Notice that AB is invertible if and only if both A and B are
invertible. The conclusion follows. ]

17. Let A and B be n x n invertible matrices. i) Give an example to show
that A+ B may not be invertible; ii) Show that A+ B is invertible if and only
if A=1 4+ B! is invertible.

0 1

Solution: i) Let A =1 and B = [1 0

} be 2 x 2 matrixes. Then A and B

are both invertible while A + B = E ﬂ is not invertible.

ii). Note that A+ B = A(A~! 4+ B~Y)B. A + B is invertible if and only if
A~! 4+ B~ is invertible. o

2.4 LU decomposition

Exercise 2.4.1.

1. Let —l;; be the entry of the 4 x 4 Eigl matrix below the main diago-
nal. Which one of the following products can be obtained by directly writ-
ing —1; ; into the (i, j) position of the products? i) E3' Eqy By  Ent Er's i)
En' By Ef'ER B

Solution: The point is that the row of the identity matrix to be added to
another row should not the changed. i) Row 1, 2, 3 were not changed when
they are used to change row 4 and row Row 1 and 2 were not changed when
they are used to change row 3. So the matrix F3,'Ey' Ej' Ep' Eps' can be
obtained by directly writing —I; ; into the (4, j) position of the products.

ii) Since row 2 were changed with E;ll before applying to E3—21,
B By E;'Eyt E' can not be obtained by directly writing —I;; into the
(i, §) position of the products.

O

2. Find the LU decomposition of

A:

— N W
i )
(G280 RN
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Solution: Using elementary eliminations we have

3 0 1
EspFE3EnA= |0 4 3| :=0,
0 0 5
where
1 00 1 00 1 00
By |-2 1 0|,E3 = 0 1 0|,FE3x=1{0 1 0
001 -1 01 0 1 1
Then we have A = LU, where
1 0 0
L=E;'E;'Ey' =13 10
1 _1 9
3 1
m]
3 01
3. Letb=(1,2,3)and A= |2 4 2|.Usethe LU decomposition of A to
1 -1 5

solve system Ax = b.

Solution: Since A = LU, we have LUx = b. Let Uz = y. Then Ly = b with
solution y = (1, %, 3). Solving Uz = y we have

2 2 3
r=—,—, - |.
157 15" 5

4. Is it true that a matrix A does not have an LU decomposition? Justify your
answer.

O

Solution: Yes, for example

2.5 Transpose and permutation

Exercise 2.5.1.
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01 00
|0 01 0 . _1 T
1. Let A= 00 0 1.FlndA and A*.
1 0 00

Solution: A is a permutation matrix and is orthogonal.

00 01
SRR
0 010
O
010
2. Let A = 8 8 (1) . 1) Find AAT and AT A. ii) Determine which one of
1 0 0

AAT and AT A is invertible. iii) If one of AAT and AT A is invertible, does it
contradict Theorem 2.3.67

Solution: i)

0100 100
AAT = ATA=10 1 0
0 0 0 O 00 1
0 0 01
ii) AT A is invertible.
iii) No. Theorem 2.3.6 is about square matrices. ]
3. Let
01 2 3 1 2 3 4
1 2 3 4 01 2 3
A= 2 3 4 5|’ B= 3 4 5 6
3 4 5 6 2 3 45

i) Find a permutation matrix P; such that B = P; A; ii) Find a permutation
matrix P, such that A = P,B. iii) Compute P; P> and Py P;.

Solution: Examining how the rows of A were rearranged to obtain B, we
have

01 00 01 00
_|L00o0f 5 pr_ |1 000 o
Pl_ 0 0 0 1 ,PQ_PI_ 00 0 1 3P1P2—P2P1—I.
0 010 001 0
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4. Let
71 2 3
1 2 3 4
A= 2 3 4 5
3 4 5 7

Find a permutation matrix P, a lower triangular matrix L and a diagonal
matrix D such that PA = LU.

Solution:
1 0 0 0 7 1 2 3
I 1/7 13/25 1 0 U— 0 25/7 29/7 40/7
l2/7 19/25 1/2 1’7 T |0 0 14/25 3/5|’
3/7 1 0 0 0 0 0 —-1/2
1 0 00
0 0 0 1
P= 01 00
0 010
O
5. Let Ry = 0950 —sind . Show that Ry is an orthogonal matrix.
sin 6 cos 6
Solution: Ry is an orthogonal matrix since we have
RoRy" =1
[m}

6. Let x € R™ with 2”2 = 1. Define the Householder matrix by
H=1-2z2".

i) Show that H is an orthogonal matrix; ii) Show that H is symmetric.
Solution: i) Verify by the definition that H” H = I. Indeed, we have

V(T — 2x2™)
= (I —222")(I — 2227

Ty —222T (I — 2227
= (I —2z2™) — 2z2” + dwa” za”

— 4zzT + 4z2”

ii) HT = (I — 222™)T = H. H is symmetric. m|
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I
AT
Find a block diagonal matrix D and block lower triangular matrix L such that

7. Let S = g} , where I is m x m and A is m x n, O the zero matrix.

S =LDL".

I O
—AT T

is_ [ I O|[I A]_[I A4
T |-AT I||AT o] T |0 —ATAl

Solution: Let L = [ ] . We have

Then

r [ I O][I Al[1 -4] [1 o
LSL _{—AT I} {AT 0} {o 1}—{0 —ATA}

O

8. Show that AAT is invertible if and only if the rows of A are linearly inde-
pendent.

Solution: We know that the columns of A are linearly independent if and
only if AT A is invertible. If follows that (AT)T AT is invertible if and only if
the columns of AT are linearly independent. That is, AAT is invertible if and
only if the rows of A are linearly independent. o

9. We say A is skew-symmetric if AT = —A. i) Show that if A is a skew-

symmetric n X n matrix then a;; = 0 for every ¢ =1, 2, - -+ ;n. ii) If A is both
symmetric and skew-symmetric, then A = 0.
Solution: i) We have AT = — A. Then it follows that for every i = 1, 2, --- , n,

(AT)i; = (A)i = (= A)is = ai; = —ay.

We have a;; =0 for every i =1, 2, -+ ,n.
ii) If A is both symmetric and skew-symmetric, then A7 = —A = A. That is,
A=0. O

10. Let A be an n x n matrix. Show that i) A + AT is symmetric; ii) A —
AT is skew-symmetric; iii) For every square matrix B, there exist a unique
symmetric matrix By and a unique skew-symmetric matrix Bs such that B =
By + Bs.

Solution: i) Since (A + AT)T = AT + A= A+ AT A+ AT is symmetric.
ii) Since (A — AT)T = AT — A= —(A— A7), A— AT is skew-symmetric. O
11. A matrix is called lower triangular if every entry above the main di-

agonal is zero and is called upper triangular if every entry below the main
diagonal is zero. Let A be an n x n invertible matrix. i) Show that if A is lower
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triangular, A~! is also lower triangular; ii) Show that if A is upper triangular,
then A~ is also upper triangular.

Solution: i) We use matrix partition. Suppose A and B = A~! are parti-
tioned as following:

o A11 O _o4—-1 Bll BlQ
A= |:A21 ann:| B=AT = Bo1 bun |’

Then we have

BA— Bii Biz| [Ann O | _ |BuAun + BizAsr Bizann 7
Bt bun| |A21 ann Bo1 A1y + bag Ao bppann "

where I, is the n x n identity matrix. Since a,, # 0, we have B1s = O. It
follows that B11A11 = I,,_1. By the same token, we can show that right upper
block of Bi; is zero. Repeat the same argument on the sub-martrices of By,
we obtain that B is lower triangular.

ii) Notice that if A is invertible we have (A71)7 = (AT)~!. The statement
follows from 1i). mi


https://testbanks.ac/product/9781138044494-SOLUTIONS-5/

[CLI cK HERE TO ACCESS THE COMPLETE Sol uti ong



https://testbanks.ac/product/9781138044494-SOLUTIONS-5/

