Solutions for Concise Introduction to Linear Algebra 1st Edition by Hu

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

Chapter 2

Solving linear systems

2.1	Vectors and linear equations	11
2.2	Matrix operations	16
2.3	Inverse matrices	19
2.4	LU decomposition	24
2.5	Transpose and permutation	25

2.1 Vectors and linear equations

Exercise 2.1.1.

1. Redo Example 2.1.1 with the first elementary row operation $R_2 - R_1$. Solution:

System Matrix representation
$$\begin{cases} x-y=1\\ x+y=2 \end{cases} \qquad \begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

$$\Downarrow R_2 - R_1 \qquad E_1 = \begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix}$$

$$\begin{cases} x-y=1\\ 2y=1 \end{bmatrix} \begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1\\ 1 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1 & 0\\ -1 & 1 \end{bmatrix} \begin{bmatrix} 1\\ 2 \end{bmatrix}$$

$$\Downarrow \frac{1}{2}R_2 \qquad \begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1\\ 1 \end{bmatrix} \qquad E_3 = \begin{bmatrix} 1 & 0\\ 0 & \frac{1}{2} \end{bmatrix}$$

$$\begin{cases} x-y=1\\ y=\frac{1}{2} \end{cases} \qquad \begin{bmatrix} 1 & 0\\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & -1\\ 0 & 2 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1\\ 0\\ \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1\\ 1 \end{bmatrix}$$

$$\Downarrow R_1 + R_2 \qquad \begin{bmatrix} 1 & 0\\ 0 & \frac{1}{2} \end{bmatrix} \begin{bmatrix} 1 & -1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1\\ \frac{1}{2} \end{bmatrix} \qquad E_4 = \begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix}$$

$$\begin{cases} x=\frac{3}{2}\\ y=\frac{1}{2} \end{cases} \qquad \begin{bmatrix} 1 & 1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1 & -1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} x\\ y \end{bmatrix} = \begin{bmatrix} 1 & -1\\ 0 & 1 \end{bmatrix} \begin{bmatrix} 1\\ \frac{1}{2} \end{bmatrix}$$

$$\begin{bmatrix} 1 & 0 \\ 0 & 1 \end{bmatrix} \begin{bmatrix} x \\ y \end{bmatrix} = \begin{bmatrix} \frac{3}{2} \\ \frac{1}{2} \end{bmatrix}.$$

2. Determine whether the following matrices are in reduced row echelon form and row echelon form, respectively:

$$a)\begin{bmatrix}1&0&0&9&-2\\0&1&0&-2&\frac{1}{2}\\0&0&1&-5&\frac{1}{2}\end{bmatrix},\quad b)\begin{bmatrix}1&0&0&9\\0&1&0&1\\0&0&1&-5\end{bmatrix},\quad c)\begin{bmatrix}1&1&0&1\\0&1&0&\frac{1}{2}\\0&0&1&\frac{1}{2}\end{bmatrix}.$$

Solution: a) and b) are in reduced row echelon form (hence also in row echelon form). c) is in row echelon form.

3. Solve the following systems using Gauss–Jordan eliminations:

a)
$$\begin{cases} x+3z=1\\ 2x+3y=3\\ 4y+5z=5 \end{cases}$$

$$\begin{cases} x+2y+3z=1\\ 2x+3y+4z=3\\ 3x+4y+5z=5 \end{cases}$$

$$\begin{cases} x+2y+3z=1\\ 2x+3y+4z=3\\ 5x+9y+13z=7 \end{cases}$$

Solution: a) We re-write the system of linear equations in the matrix form $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 0 & 3 \\ 2 & 3 & 0 \\ 0 & 4 & 5 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}.$$

Then the corresponding augmented matrix is

$$[A:\mathbf{b}] = \begin{bmatrix} 1 & 0 & 3 & 1 \\ 2 & 3 & 0 & 3 \\ 0 & 4 & 5 & 5 \end{bmatrix}.$$

By the elementary row operations on [A:b] we have

$$\begin{bmatrix} 1 & 0 & 3 & 1 \\ 2 & 3 & 0 & 3 \\ 0 & 4 & 5 & 5 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 3 & -6 & 1 \\ 0 & 4 & 5 & 5 \end{bmatrix}$$

$$\xrightarrow{R_2/3} \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & -2 & \frac{1}{3} \\ 0 & 4 & 5 & 5 \end{bmatrix}$$

$$\xrightarrow{R_3 - 4R_2} \begin{bmatrix} 1 & 0 & 3 & 1 \\ 0 & 1 & -2 & \frac{1}{3} \\ 0 & 0 & 13 & \frac{11}{3} \end{bmatrix}$$

$$\xrightarrow{R_3/13} \begin{bmatrix}
1 & 0 & 3 & 1 \\
0 & 1 & -2 & \frac{1}{3} \\
0 & 0 & 1 & \frac{11}{39}
\end{bmatrix}$$

$$\xrightarrow{R_2+2R_3} \begin{bmatrix}
1 & 0 & 0 & \frac{6}{39} \\
0 & 1 & 0 & \frac{35}{39} \\
0 & 0 & 1 & \frac{11}{29}
\end{bmatrix}.$$

Then we have an equivalent system with augmented matrix

$$\begin{bmatrix} 1 & 0 & 0 & \frac{6}{39} \\ 0 & 1 & 0 & \frac{35}{39} \\ 0 & 0 & 1 & \frac{11}{39} \end{bmatrix}.$$

The solution is

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} \frac{6}{39} \\ \frac{35}{39} \\ \frac{11}{39} \end{bmatrix}.$$

b) We re-write the system of linear equations in the matrix form $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 3 & 4 & 5 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 5 \end{bmatrix}.$$

Then the corresponding augmented matrix is

$$[A:\mathbf{b}] = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 3 \\ 3 & 4 & 5 & 5 \end{bmatrix}.$$

By the elementary row operations on [A:b] we have

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 3 \\ 3 & 4 & 5 & 5 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & -2 & 1 \\ 0 & -2 & -4 & 2 \end{bmatrix}$$

$$\xrightarrow{\begin{array}{c} (-1) \cdot R_2 \\ \longrightarrow \end{array}} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -2 & -4 & 2 \end{bmatrix}$$

$$\xrightarrow{\begin{array}{c} R_3 + 2R_2 \\ \longrightarrow \end{array}} \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}$$

Then we have an equivalent system with augmented matrix

$$\begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 0 \end{bmatrix}.$$

13

The solution is

$$\begin{bmatrix} x \\ y \\ z \end{bmatrix} = \begin{bmatrix} 3 \\ -1 \\ 0 \end{bmatrix} + t \begin{bmatrix} 1 \\ -2 \\ 1 \end{bmatrix}, \ t \in \mathbb{R}.$$

c) We re-write the system of linear equations in the matrix form $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 1 & 2 & 3 \\ 2 & 3 & 4 \\ 5 & 9 & 13 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x \\ y \\ z \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 3 \\ 7 \end{bmatrix}.$$

Then the corresponding augmented matrix is

$$[A:\mathbf{b}] = \begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 3 \\ 5 & 9 & 13 & 7 \end{bmatrix}.$$

By the elementary row operations on $[A:\mathbf{b}]$ we have

$$\begin{bmatrix} 1 & 2 & 3 & 1 \\ 2 & 3 & 4 & 3 \\ 5 & 9 & 13 & 7 \end{bmatrix} \xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & -1 & -2 & 1 \\ 0 & -1 & -2 & 2 \end{bmatrix}$$

$$\xrightarrow{(-1) \cdot R_2} \begin{bmatrix} 1 & 2 & 3 & 1 \\ 0 & 1 & 2 & -1 \\ 0 & -1 & -2 & 2 \end{bmatrix}$$

$$\xrightarrow{R_3 + R_2} \begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix}$$

Then we have an equivalent system with augmented matrix

$$\begin{bmatrix} 1 & 0 & -1 & 3 \\ 0 & 1 & 2 & -1 \\ 0 & 0 & 0 & 1 \end{bmatrix},$$

where the last equation is contradictory. The system has no solution.

4. Consider a linear system Ax = b with A an $m \times n$ matrix and b an $m \times 1$ matrix. Is it true if there is more than one solution for x in \mathbb{R}^n , there must be infinitely many? You may use the fact that

$$A(x+y) = Ax + Ay$$
$$A(tx) = tAx,$$

for every $x, y \in \mathbb{R}^n$ and $t \in \mathbb{R}$,

which is called the **linearity** of matrix multiplication.

Solution: Let x_1 and x_2 be distinct solutions. Then $A(x_1-x_2)=Ax_1-Ax_2=0$ and for every $t \in \mathbb{R}$, we have

$$A(x_1 + t(x_1 - x_2)) = Ax_1 + tA(x_1 - x_2) = b.$$

Hence $x = x_1 + t(x_1 - x_2)$, $t \in \mathbb{R}$ are all solutions of Ax = b. That is, Ax = b has infinitely many solutions.

5. Let k be a real number. Consider the following linear system of equations:

$$\begin{cases} x_2 + 2x_3 + x_4 = 1\\ 2x_1 + x_2 + 3x_3 = 2\\ x_1 + 4x_3 + 2x_4 = 3\\ kx_2 + x_4 = 1. \end{cases}$$
(2.1)

Find all possible values of k such that system (2.1) i) has a unique solution; ii) has no solutions and iii) has infinitely many solutions.

Solution: We re-write the system of linear equations in the matrix form $A\mathbf{x} = \mathbf{b}$, where

$$A = \begin{bmatrix} 0 & 1 & 2 & 1 \\ 2 & 1 & 3 & 0 \\ 1 & 0 & 4 & 2 \\ 0 & k & 0 & 1 \end{bmatrix}, \mathbf{x} = \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \text{ and } \mathbf{b} = \begin{bmatrix} 1 \\ 2 \\ 3 \\ 1 \end{bmatrix}.$$

Then the corresponding augmented matrix is

$$[A:\mathbf{b}] = \begin{bmatrix} 0 & 1 & 2 & 1 & 1 \\ 2 & 1 & 3 & 0 & 2 \\ 1 & 0 & 4 & 2 & 3 \\ 0 & k & 0 & 1 & 1 \end{bmatrix}.$$

By the elementary row operations on $[A:\mathbf{b}]$ we have

$$\begin{bmatrix} 0 & 1 & 2 & 1 & 1 \\ 2 & 1 & 3 & 0 & 2 \\ 1 & 0 & 4 & 2 & 3 \\ 0 & k & 0 & 1 & 1 \end{bmatrix} \xrightarrow{R_3 \leftrightarrow R_1} \begin{bmatrix} 1 & 0 & 4 & 2 & 3 \\ 2 & 1 & 3 & 0 & 2 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & k & 0 & 1 & 1 \end{bmatrix}$$

$$\xrightarrow{R_2 - 2R_1} \begin{bmatrix} 1 & 0 & 4 & 2 & 3 \\ 0 & 1 & -5 & -4 & -4 \\ 0 & 1 & 2 & 1 & 1 \\ 0 & k & 0 & 1 & 1 \end{bmatrix}$$

$$\xrightarrow{R_4 - kR_2} \begin{bmatrix} 1 & 0 & 4 & 2 & 3 \\ 0 & 1 & -5 & -4 & -4 \\ 0 & 0 & 7 & 5 & 5 \\ 0 & 0 & 5k & 1 + 4k & 1 + 4k \end{bmatrix}$$

$$\xrightarrow{R_3/7} \begin{bmatrix}
1 & 0 & 4 & 2 & 3 \\
0 & 1 & -5 & -4 & -4 \\
0 & 0 & 1 & 5/7 & 5/7 \\
0 & 0 & 5k & 1+4k & 1+4k
\end{bmatrix}$$

$$\xrightarrow{R_4-(5k)\cdot R_3} \begin{bmatrix}
1 & 0 & 4 & 2 & 3 \\
0 & 1 & -5 & -4 & -4 \\
0 & 0 & 1 & 5/7 & 5/7 \\
0 & 0 & 0 & 1+3k/7 & 1+3k/7
\end{bmatrix}.$$

Then we have an equivalent system with augmented matrix

$$\begin{bmatrix} 1 & 0 & 4 & 2 & 3 \\ 0 & 1 & -5 & -4 & -4 \\ 0 & 0 & 1 & 5/7 & 5/7 \\ 0 & 0 & 0 & 1 + 3k/7 & 1 + 3k/7 \end{bmatrix},$$

- i) If $1+3k/7 \neq 0$, that is, $k \neq -7/3$ the original system has a unique solution;
- ii) If 1 + 3k/7 = 0, that is, k = -7/3 the original system has infinitely many solutions.

Therefore, for every $k \in \mathbb{R}$, the system has at least one solution.

2.2 Matrix operations

Exercise 2.2.1.

1. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & 0 & 1 & 0 \\ 0 & 1 & 0 & 1 \end{bmatrix}$. i) Compute AB. ii) Does BA exist? **Solution:** i)

$$AB = \begin{bmatrix} 1 & 2 & 1 & 2 \\ 3 & 4 & 3 & 4 \end{bmatrix}.$$

- ii) BA does not exist since their sizes do not match as B is 2×4 and A is 2×2 .
- **2.** Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$. i) Compute AB. ii) If B is block partitioned into $B = [B_1 : B_2]$, is it true $AB = [AB_1 : AB_2]$?

Solution: i)

$$AB = \begin{bmatrix} 3 & 1 & 2 & 1 \\ 7 & 1 & 4 & 3 \end{bmatrix}$$

ii) According to the definition of matrix multiplication, the statement is true.

17

3. Show Lemma 2.2.6.

Solution: Follow the approach for the proof of Theorem 2.2.5.

4. Let $A = [a_1 : a_2 \cdots : a_n], B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ be $m \times n$ and $n \times r$ matrices. Show

that $AB = a_1b_1 + a_2b_2 + \dots + a_nb_n$.

Solution: By the definition of matrix multiplication we have

$$(AB)_{i,j} = a_{i,1}b_{1,j} + a_{i,2}b_{2,j} + \dots + a_{i,n}b_{n,j}$$

= $(a_1b_1)_{i,j} + (a_2b_2)_{i,j} + \dots + (a_nb_n)_{i,j}$
= $(a_1b_1 + a_2b_2 + \dots + a_nb_n)_{i,j}$.

Therefore, we have $AB = a_1b_1 + a_2b_2 + \cdots + a_nb_n$.

5. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$, $B = \begin{bmatrix} 1 & -1 & 0 & 1 \\ 1 & 1 & 1 & 0 \end{bmatrix}$. Use Question 4 to compute AB.

Solution: Let $A = [a_1 : a_2], B = \begin{bmatrix} b_1 \\ b_2 \end{bmatrix}$

$$AB = a_1b_1 + a_2b_2$$

$$= \begin{bmatrix} 1 \\ 3 \end{bmatrix} \begin{bmatrix} 1 & -1 & 0 & 1 \end{bmatrix} + \begin{bmatrix} 2 \\ 4 \end{bmatrix} \begin{bmatrix} 1 & 1 & 1 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 1 & -1 & 0 & 1 \\ 3 & -3 & 0 & 3 \end{bmatrix} + \begin{bmatrix} 2 & 2 & 2 & 0 \\ 4 & 4 & 4 & 0 \end{bmatrix}$$

$$= \begin{bmatrix} 3 & 1 & 2 & 1 \\ 7 & 1 & 4 & 3 \end{bmatrix}.$$

6. Let A and B be $m \times n$ and $n \times r$ matrices. Show that i) every column of AB is a linear combination of the columns of A; ii) every row of AB is a linear combination of the rows of B.

Solution: Let $A = [a_1 : a_2 \cdots : a_n], B = \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_n \end{bmatrix}$ be $m \times n$ and $n \times r$ matrices.

$$(AB)_{i,j} = a_{i,1}b_{1,j} + a_{i,2}b_{2,j} + \dots + a_{i,n}b_{n,j}.$$

The j-th column of AB is

$$(AB)_j = a_1b_{1,j} + a_2b_{2,j} + \dots + a_nb_{n,j},$$

which is a linear combination of the columns of A.

7. Let $A = \begin{bmatrix} 1 & 2 \\ 3 & 4 \end{bmatrix}$. Find all matrices B such that AB = BA.

Solution: Let $B=\begin{bmatrix} a & b \\ c & d \end{bmatrix}$. Then BA=AB leads to a linear system of $x=(a,\,b,\,c,\,d)\in\mathbb{R}^4$:

$$\begin{cases} 3b - 2c = 0 \\ 2a + 3b - 2d = 0 \\ 3a + 3c - 3d = 0 \\ 3b - 2c = 0. \end{cases}$$

Using Guass-Jordan elimination, we obtain the solution

$$x = s \begin{bmatrix} -1\\2/3\\1\\0 \end{bmatrix} + t \begin{bmatrix} 1\\0\\0\\1 \end{bmatrix}, \, s, \, t \in \mathbb{R}.$$

That is,

$$B = \begin{bmatrix} t - s & 2s/3 \\ s & t \end{bmatrix}.$$

8. Let A and B be $n \times n$ matrices. Explain that in general we have $(A + B)(A - B) \neq A^2 - B^2$ and $(A + B)^2 \neq A^2 + 2AB + B^2$.

Solution: We note that in general, $AB \neq BA$. So $(A+B)(A-B) = A^2 - AB + BA - B^2 \neq A^2 - B^2$ and $(A+B)^2 \neq A^2 + 2AB + B^2$ if $AB \neq BA$.

9. Let A be an $n \times n$ matrix. Define $V = \{B : AB = BA\}$. Show that i) $V \neq \emptyset$; ii) if $B_1 \in V$ and $B_2 \in V$, then every linear combination of B_1 and B_2 is in V.

Solution: i) Since AI = IB and $I \in V$, we have $V \neq \emptyset$.

ii) If $B_1 \in V$ and $B_2 \in V$, then for every $s \in \mathbb{R}$ and $t \in \mathbb{R}$, we have

$$(sB_1 + tB_2)A = sB_1A + tB_2A$$
$$= sAB_1 + tAB_2$$
$$= A(sB_1 + tB_2).$$

Therefore, we have $sB_1+tB_2 \in V$. We have shown that V is a vector space. \square

10. Give an example that $A^2 = 0$ but $A \neq 0$.

Solution:

$$A = \begin{bmatrix} 0 & 1 \\ 0 & 0 \end{bmatrix}.$$

We have $A^2 = 0$ but $A \neq 0$.

19

11. Give an example that $A^2 = I$ but $A \neq \pm I$.

Solution:

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

We have $A^2 = I$ but $A \neq \pm I$.

12. Let A be an $n \times n$ matrix. If we want to define a limit $\lim_{m\to\infty} A^m$, how would you define the closeness (distance) between matrices?

Solution: If we identify A as a vector in \mathbb{R}^{n^2} . Then we can borrow norms on \mathbb{R}^{n^2} for defining the distance between matrices. For example, we can define

distance(A, B) =
$$\left(\sum_{i=1}^{n} \sum_{j=1}^{n} (a_{ij} - b_{ij})^2\right)^{\frac{1}{2}}$$
,

where a_{ij} and b_{ij} are entries at (i, j)-position of A and B, respectively.

2.3 Inverse matrices

Exercise 2.3.1.

1. Determine whether or not the following matrices are invertible. Find the inverse of each matrix if it exists.

$$a)\quad\begin{bmatrix}1&2\\3&4\end{bmatrix},\quad b)\quad\begin{bmatrix}-1&2\\3&6\end{bmatrix},\quad c)\quad\begin{bmatrix}1&2\\3&6\end{bmatrix}.$$

Solution: a) $\begin{bmatrix} -2 & 1 \\ \frac{3}{2} & -\frac{1}{2} \end{bmatrix}$, b) $\begin{bmatrix} -\frac{1}{2} & \frac{1}{6} \\ \frac{1}{4} & \frac{1}{12} \end{bmatrix}$, c) not invertible.

2. Determine whether or not the following matrices are invertible. Find the inverse of each matrix if it exists.

a)
$$\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$$
, b) $\begin{bmatrix} 1 & 0 & 0 \\ 2 & 1 & 0 \\ 0 & 3 & 1 \end{bmatrix}$, c) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & 6 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Solution: a) $\begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$, b) $\begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 6 & -3 & 1 \end{bmatrix}$, b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & \frac{1}{6} & 0 \\ 0 & 0 & 1 \end{bmatrix}$

3. Determine whether or not the following matrices are invertible. Find the inverse of each matrix if it exists.

a)
$$\begin{bmatrix} 1 & 2 & 0 \\ 3 & 4 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -1 & 2 \\ 0 & 3 & 6 \end{bmatrix}$, c) $\begin{bmatrix} 1 & 2 & 0 \\ 3 & 6 & 0 \\ 0 & 0 & 1 \end{bmatrix}$.

Solution: a) $\begin{bmatrix} -2 & 1 & 0 \\ \frac{3}{2} & -\frac{1}{2} & 0 \\ 0 & 0 & 1 \end{bmatrix}$, b) $\begin{bmatrix} 1 & 0 & 0 \\ 0 & -\frac{1}{2} & \frac{1}{6} \\ 0 & \frac{1}{4} & \frac{1}{12} \end{bmatrix}$, c) not invertible.

4. For the given matrix A, use elimination to find A^{-1} and record each elementary row operation and the corresponding elementary matrix at the same time.

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 4 & 2 \\ 1 & -1 & 5 \end{bmatrix}.$$

Solution:

$\begin{bmatrix} 3 & 0 & 1 & 1 & 0 & 0 \\ 2 & 4 & 2 & 0 & 1 & 0 \\ 1 & -1 & 5 & 0 & 0 & 1 \end{bmatrix}$	Row operation	Elementary Matrix
$\begin{bmatrix} 1 & -1 & 5 & 0 & 0 & 1 \end{bmatrix}$	$R_1 \leftrightarrow R_3$	$E_1 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 1 & 0 \\ 1 & 0 & 0 \end{bmatrix}$
$\begin{bmatrix} 1 & -1 & 5 & 0 & 0 & 1 \\ 2 & 4 & 2 & 0 & 1 & 0 \\ 3 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$	Row operation	Elementary Matrix
[5	$R_2 - 2R_1$	$E_2 = \begin{bmatrix} 1 & 0 & 0 \\ -2 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$
$\begin{bmatrix} 1 & -1 & 5 & 0 & 0 & 1 \\ 0 & 6 & -8 & 0 & 1 & -2 \\ 3 & 0 & 1 & 1 & 0 & 0 \end{bmatrix}$	Row operation	Elementary Matrix
	$R_3 - 3R_1$	$E_3 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -3 & 0 & 1 \end{bmatrix}$
$\begin{bmatrix} 1 & -1 & 5 & 0 & 0 & 1 \\ 0 & 6 & -8 & 0 & 1 & -2 \\ 0 & 3 & -14 & 1 & 0 & -3 \end{bmatrix}$	Row operation	Elementary Matrix
↓	$R_3 - R_2/2$	$E_4 = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & -\frac{1}{2} & 1 \end{bmatrix}$

Then we have

$$A^{-1} = \frac{1}{60} \begin{bmatrix} 22 & 1 & -4 \\ -8 & 14 & -4 \\ -6 & 3 & 12 \end{bmatrix},$$

which can be written as the product of elementary matrices $E_9E_8E_7E_6E_5E_4E_3E_2E_1$.

5. For what values of $\lambda \in \mathbb{R}$ is the following matrix

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 4 & 2 \\ 1 & -1 & \lambda \end{bmatrix}$$

invertible?

Solution: We use elimination to determine when the reduced row echelon form is an identity matrix. We have

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 4 & 2 \\ 1 & -1 & \lambda \end{bmatrix} \xrightarrow{R_2 \leftrightarrow R_1} \begin{bmatrix} 2 & 4 & 2 \\ 3 & 0 & 1 \\ 1 & -1 & \lambda \end{bmatrix}$$

$$\xrightarrow{R_1/2} \begin{bmatrix} 1 & 2 & 1 \\ 3 & 0 & 1 \\ 1 & -1 & \lambda \end{bmatrix}$$

$$\xrightarrow{R_2-2R_1} \begin{bmatrix} 1 & 2 & 1 \\ 0 & -6 & -2 \\ 0 & -3 & \lambda - 1 \end{bmatrix}$$

$$\xrightarrow{R_2/(-6)} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & \frac{1}{3} \\ 0 & -3 & \lambda - 1 \end{bmatrix}$$

$$\xrightarrow{R_3+3R_2} \begin{bmatrix} 1 & 2 & 1 \\ 0 & 1 & \frac{1}{3} \\ 0 & 0 & \lambda \end{bmatrix}.$$

The reduced row echelon form of A is I if and only if $\lambda \neq 0$. That is, A is invertible if and only if $\lambda \neq 0$.

6. Let A be an $n \times n$ matrix. If $A = \begin{bmatrix} r_1 \\ r_2 \\ \vdots \\ r_n \end{bmatrix}$ satisfies that $r_2 = r_3 + r_1$, is A

invertible?

Solution: A is not invertible since using elementary eliminations to substract r_1 and r_3 from r_2 will result in a matrix with a zero row which is not invertible.

7. Let A be an $n \times n$ matrix. If $A = [c_1 : c_2 : \cdots : c_n]$ satisfies that $c_2 = c_3 + c_1$, is A invertible?

Solution: By the previous question, A^T is not invertible and hence A is not invertible.

8. Let $v, w \in \mathbb{R}^n$ be vectors. Is the matrix $A = \begin{bmatrix} \|v\| & 1 \\ |v \cdot w| & \|w\| \end{bmatrix}$ invertible?

Solution: A is not invertible if and only if $||v|| \cdot ||w|| = |v \cdot w|$.

- **9.** Give an example of a 3×3 dominant matrix and find its inverse.
- 10. Find a sufficient condition on a, b, c and $d \in \mathbb{R}$ such that the matrix

$$A = \begin{bmatrix} a^2 + b^2 & 2ab \\ 2cd & c^2 + d^2 \end{bmatrix}$$

is invertible.

11. Let $A = \begin{bmatrix} 0 & 1 & 1 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \end{bmatrix}$. i) Compute A^2 ; ii) Show that for every $k \geq 3, k \in \mathbb{N}$, $A^k = 0$.

Solution: $A^2 = \begin{bmatrix} 0 & 0 & 1 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$ and $A^3 = \begin{bmatrix} 0 & 0 & 0 \\ 0 & 0 & 0 \\ 0 & 0 & 0 \end{bmatrix}$. Therefore for every $k \ge 3$, $k \in \mathbb{N}$ $A^k = A^3 A^{k-3} = 0$

12. Let A be an $n \times n$ matrix. Show that if $A^k = 0$, then I - A is invertible and

$$(I-A)^{-1} = I + A + A^2 + \dots + A^{k-1}.$$

Solution: Hint: We have $(I-A)(I+A+A^2+\cdots+A^{k-1})=I$.

13. Let A be an $n \times n$ matrix and A = tI + N, $t \in \mathbb{R}$ with $N^4 = 0$ for some $k \in \mathbb{N}$. Compute A^4 in terms of t and N.

Solution: Note that tIN = N(tI). We have $A^4 = N^4 + (tI)N^3 + (tI)^2N^2 + (tI)^3N + (tI)^4 = tN^3 + t^2N^2 + t^3N + t^4I$.

14. Let $D = \text{diag}\{\lambda_1, \lambda_2, \dots, \lambda_n\}$ be a diagonal matrix with the main diagonal entries $\lambda_1, \lambda_2, \dots, \lambda_n$. Show that D is invertible if and only if $\lambda_i \neq 0$, for every $i = 1, 2, \dots, n$.

Solution: Hint: if $\lambda_i \neq 0$, for every $i = 1, 2, \dots, n$, the reduced row echelon form of D is the identity matrix.

15. Let A be an $n \times n$ matrix. i) If $A^3 = I$, find A^{-1} ; ii) If $A^k = I$ for some $k \in \mathbb{N}$, find A^{-1} ; iii) If $A^k = 0$ for some $k \in \mathbb{N}$, is it possible that A is invertible?

Solution: i) $A^{-1} = A^2$, ii) $A^{-1} = A^{k-1}$, iii). No. Notice that AB is invertible if and only if both A and B are invertible, where A and B are square matrices of the same size.

16. Show that A is invertible if and only if A^k is invertible for every $k \in \mathbb{N}, k \geq 1$.

Solution: Notice that AB is invertible if and only if both A and B are invertible. The conclusion follows.

17. Let A and B be $n \times n$ invertible matrices. i) Give an example to show that A + B may not be invertible; ii) Show that A + B is invertible if and only if $A^{-1} + B^{-1}$ is invertible.

Solution: i) Let A=I and $B=\begin{bmatrix}0&1\\1&0\end{bmatrix}$ be 2×2 matrixes. Then A and B are both invertible while $A+B=\begin{bmatrix}1&1\\1&1\end{bmatrix}$ is not invertible.

ii). Note that $A+B=A(A^{-1}+B^{-1})B$. A+B is invertible if and only if $A^{-1}+B^{-1}$ is invertible. \Box

2.4 LU decomposition

Exercise 2.4.1.

1. Let $-l_{ij}$ be the entry of the 4×4 E_{ij}^{-1} matrix below the main diagonal. Which one of the following products can be obtained by directly writing $-l_{ij}$ into the (i,j) position of the products? i) $E_{31}^{-1}E_{32}^{-1}E_{41}^{-1}E_{42}^{-1}E_{43}^{-1}$; ii) $E_{32}^{-1}E_{21}^{-1}E_{31}^{-1}E_{42}^{-1}E_{43}^{-1}$.

Solution: The point is that the row of the identity matrix to be added to another row should not the changed. i) Row 1, 2, 3 were not changed when they are used to change row 4 and row Row 1 and 2 were not changed when they are used to change row 3. So the matrix $E_{31}^{-1}E_{32}^{-1}E_{41}^{-1}E_{42}^{-1}E_{43}^{-1}$ can be obtained by directly writing $-l_{ij}$ into the (i,j) position of the products.

ii) Since row 2 were changed with E_{21}^{-1} before applying to E_{32}^{-1} , $E_{32}^{-1}E_{21}^{-1}E_{31}^{-1}E_{42}^{-1}E_{43}^{-1}$ can not be obtained by directly writing $-l_{ij}$ into the (i, j) position of the products.

2. Find the LU decomposition of

$$A = \begin{bmatrix} 3 & 0 & 1 \\ 2 & 4 & 2 \\ 1 & -1 & 5 \end{bmatrix}.$$

Solution: Using elementary eliminations we have

$$E_{32}E_{31}E_{21}A = \begin{bmatrix} 3 & 0 & 1 \\ 0 & 4 & \frac{4}{3} \\ 0 & 0 & 5 \end{bmatrix} := U,$$

where

$$E_{21} \begin{bmatrix} 1 & 0 & 0 \\ -\frac{2}{3} & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}, E_{31} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ -\frac{1}{3} & 0 & 1 \end{bmatrix}, E_{32} = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & \frac{1}{4} & 1 \end{bmatrix}.$$

Then we have A = LU, where

$$L = E_{21}^{-1} E_{31}^{-1} E_{32}^{-1} = \begin{bmatrix} 1 & 0 & 0 \\ \frac{2}{3} & 1 & 0 \\ \frac{1}{3} & -\frac{1}{4} & 1 \end{bmatrix}.$$

3. Let $b=(1,\,2,\,3)$ and $A=\begin{bmatrix}3&0&1\\2&4&2\\1&-1&5\end{bmatrix}$. Use the LU decomposition of A to

Solution: Since A = LU, we have LUx = b. Let Ux = y. Then Ly = b with solution $y = (1, \frac{4}{3}, 3)$. Solving Ux = y we have

$$x = \left(\frac{2}{15}, \, \frac{2}{15}, \, \frac{3}{5}\right).$$

4. Is it true that a matrix A does not have an LU decomposition? Justify your answer.

Solution: Yes, for example

$$A = \begin{bmatrix} 0 & 1 \\ 1 & 0 \end{bmatrix}.$$

Transpose and permutation

Exercise 2.5.1.

25

1. Let
$$A = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \\ 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \end{bmatrix}$$
. Find A^{-1} and A^{T} .

Solution: A is a permutation matrix and is orthogonal.

$$A^{-1} = A^{T} = \begin{bmatrix} 0 & 0 & 0 & 1 \\ 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

2. Let $A = \begin{bmatrix} 0 & 1 & 0 \\ 0 & 0 & 1 \\ 0 & 0 & 0 \\ 1 & 0 & 0 \end{bmatrix}$. i) Find AA^T and A^TA . ii) Determine which one of

 AA^T and A^TA is invertible. iii) If one of AA^T and A^TA is invertible, does it contradict Theorem 2.3.6?

Solution: i)

$$AA^{T} = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \end{bmatrix}, A^{T}A = \begin{bmatrix} 1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$

ii) $A^T A$ is invertible.

iii) No. Theorem 2.3.6 is about square matrices.

3. Let

$$A = \begin{bmatrix} 0 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 6 \end{bmatrix}, \quad B = \begin{bmatrix} 1 & 2 & 3 & 4 \\ 0 & 1 & 2 & 3 \\ 3 & 4 & 5 & 6 \\ 2 & 3 & 4 & 5 \end{bmatrix}.$$

i) Find a permutation matrix P_1 such that $B = P_1A$; ii) Find a permutation matrix P_2 such that $A = P_2B$. iii) Compute P_1P_2 and P_2P_1 .

Solution: Examining how the rows of A were rearranged to obtain B, we have

$$P_1 = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, P_2 = P_1^T = \begin{bmatrix} 0 & 1 & 0 & 0 \\ 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 0 & 1 & 0 \end{bmatrix}, P_1P_2 = P_2P_1 = I.$$

27

4. Let

$$A = \begin{bmatrix} 7 & 1 & 2 & 3 \\ 1 & 2 & 3 & 4 \\ 2 & 3 & 4 & 5 \\ 3 & 4 & 5 & 7 \end{bmatrix}.$$

Find a permutation matrix P, a lower triangular matrix L and a diagonal matrix D such that PA = LU.

Solution:

$$L = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 1/7 & 13/25 & 1 & 0 \\ 2/7 & 19/25 & 1/2 & 1 \\ 3/7 & 1 & 0 & 0 \end{bmatrix}, U = \begin{bmatrix} 7 & 1 & 2 & 3 \\ 0 & 25/7 & 29/7 & 40/7 \\ 0 & 0 & 14/25 & 3/5 \\ 0 & 0 & 0 & -1/2 \end{bmatrix},$$

$$P = \begin{bmatrix} 1 & 0 & 0 & 0 \\ 0 & 0 & 0 & 1 \\ 0 & 1 & 0 & 0 \\ 0 & 0 & 1 & 0 \end{bmatrix}$$

5. Let $R_{\theta} = \begin{bmatrix} \cos \theta & -\sin \theta \\ \sin \theta & \cos \theta \end{bmatrix}$. Show that R_{θ} is an orthogonal matrix.

Solution: R_{θ} is an orthogonal matrix since we have

$$R_{\theta}R_{\theta}^{T}=I.$$

6. Let $x \in \mathbb{R}^n$ with $x^T x = 1$. Define the **Householder matrix** by

$$H = I - 2xx^T.$$

i) Show that H is an orthogonal matrix; ii) Show that H is symmetric.

Solution: i) Verify by the definition that $H^TH = I$. Indeed, we have

$$\begin{split} H^T H &= (I - 2xx^T)^T (I - 2xx^T) \\ &= (I - 2xx^T) (I - 2xx^T) \\ &= (I - 2xx^T) - 2xx^T (I - 2xx^T) \\ &= (I - 2xx^T) - 2xx^T + 4xx^Txx^T \\ &= I - 4xx^T + 4xx^T \\ &= I. \end{split}$$

ii) $H^T = (I - 2xx^T)^T = H$. H is symmetric.

7. Let $S = \begin{bmatrix} I & A \\ A^T & O \end{bmatrix}$, where I is $m \times m$ and A is $m \times n$, O the zero matrix. Find a block diagonal matrix D and block lower triangular matrix L such that

$$S = LDL^T$$
.

Solution: Let $L = \begin{bmatrix} I & O \\ -A^T & I \end{bmatrix}$. We have

$$LS = \begin{bmatrix} I & O \\ -A^T & I \end{bmatrix} \begin{bmatrix} I & A \\ A^T & O \end{bmatrix} = \begin{bmatrix} I & A \\ O & -A^TA \end{bmatrix}.$$

Then

28

$$LSL^T = \begin{bmatrix} I & O \\ -A^T & I \end{bmatrix} \begin{bmatrix} I & A \\ A^T & O \end{bmatrix} \begin{bmatrix} I & -A \\ O & I \end{bmatrix} = \begin{bmatrix} I & O \\ O & -A^TA \end{bmatrix}.$$

8. Show that AA^T is invertible if and only if the rows of A are linearly independent.

Solution: We know that the columns of A are linearly independent if and only if A^TA is invertible. If follows that $(A^T)^TA^T$ is invertible if and only if the columns of A^T are linearly independent. That is, AA^T is invertible if and only if the rows of A are linearly independent.

9. We say A is **skew-symmetric** if $A^T = -A$. i) Show that if A is a skew-symmetric $n \times n$ matrix then $a_{ii} = 0$ for every $i = 1, 2, \dots, n$. ii) If A is both symmetric and skew-symmetric, then A = 0.

Solution: i) We have $A^T = -A$. Then it follows that for every $i = 1, 2, \dots, n$,

$$(A^T)_{ii} = (A)_{ii} = (-A)_{ii} \Rightarrow a_{ii} = -a_{ii}.$$

We have $a_{ii} = 0$ for every $i = 1, 2, \dots, n$.

ii) If A is both symmetric and skew-symmetric, then $A^T = -A = A$. That is, A = 0.

10. Let A be an $n \times n$ matrix. Show that i) $A + A^T$ is symmetric; ii) $A - A^T$ is skew-symmetric; iii) For every square matrix B, there exist a unique symmetric matrix B_1 and a unique skew-symmetric matrix B_2 such that $B = B_1 + B_2$.

Solution: i) Since $(A + A^T)^T = A^T + A = A + A^T$, $A + A^T$ is symmetric.

ii) Since
$$(A - A^T)^T = A^T - A = -(A - A^T)$$
, $A - A^T$ is skew-symmetric. \square

11. A matrix is called **lower triangular** if every entry above the main diagonal is zero and is called **upper triangular** if every entry below the main diagonal is zero. Let A be an $n \times n$ invertible matrix. i) Show that if A is lower

triangular, A^{-1} is also lower triangular; ii) Show that if A is upper triangular, then A^{-1} is also upper triangular.

Solution: i) We use matrix partition. Suppose A and $B=A^{-1}$ are partitioned as following:

$$A = \begin{bmatrix} A_{11} & O \\ A_{21} & a_{nn} \end{bmatrix}, B = A^{-1} = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & b_{nn} \end{bmatrix}.$$

Then we have

$$BA = \begin{bmatrix} B_{11} & B_{12} \\ B_{21} & b_{nn} \end{bmatrix} \begin{bmatrix} A_{11} & O \\ A_{21} & a_{nn} \end{bmatrix} = \begin{bmatrix} B_{11}A_{11} + B_{12}A_{21} & B_{12}a_{nn} \\ B_{21}A_{11} + b_{22}A_{21} & b_{nn}a_{nn} \end{bmatrix} = I_n,$$

where I_n is the $n \times n$ identity matrix. Since $a_{nn} \neq 0$, we have $B_{12} = O$. It follows that $B_{11}A_{11} = I_{n-1}$. By the same token, we can show that right upper block of B_{11} is zero. Repeat the same argument on the sub-martrices of B_{11} , we obtain that B is lower triangular.

ii) Notice that if A is invertible we have $(A^{-1})^T = (A^T)^{-1}$. The statement follows from i).