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2.1  The Ideal Gas Law 

Problem 1 -  Assume we have a quantity of 10 grams of 11.1% nitrated nitrocellulose 
(C6H8N2O9) and it is heated to a temperature of 1000K and changes to gas somehow without 
changing chemical composition.  If the process takes place in an expulsion cup with a volume of 
10 in3, assuming ideal gas behavior, what will the final pressure be in psi? 
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Solution: 

This problem is fairly straight-forward except for the units.  We shall write our ideal gas law and 
let the units fall out directly.  The easiest form to start with is equation (IG-4) 

RTmp gV (IG-4) 

Rearranging, we have 
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You will notice that the units are all screwy – but that’s half the battle when working these 
problems!  Please note that this result is unlikely to happen.  If the chemical composition were 
reacted we would have to balance the reaction equation and would have to use Dalton’s law for 
the partial pressures of the gases as follows.  First, assuming no air in the vessel we write the 
decomposition reaction. 

 sCNCO5OH4ONHC 229286 

Then for each constituent (we ignore solid carbon) we have 
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So we can write 
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Then the total pressure is 
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2.2  Other Gas Laws 

Problem 2 -  Perform the same calculation as in problem 1 but use the Noble-Abel equation of 
state and assume the covolume to be 32.0 in3/lbm 
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Solution: 

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781138055315-SOLUTIONS-5/


This problem is again straight-forward except for those pesky units – but we’ve done this before.  
We start with equation (VW-2) 

  RTmcbp gV (VW-2) 

Rearranging, we have 
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So you can see that the real gas behavior is somewhat different than ideal gas behavior at this 
low pressure – it makes more of a difference at the greater pressures. 

Again please note that this result is unlikely to happen.  If the chemical composition were reacted 
we would have to balance the reaction equation and would again have to use Dalton’s law for the 
partial pressures of the gases.  Again, assuming no air in the vessel we write the decomposition 
reaction. 

 sCNCO5OH4ONHC 229286 

Then for each constituent (again ignoring solid carbon) we have 
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Then the total pressure is 
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Problem 3 – A hypothetical “air mortar” is to be made out of a tennis ball can using a tennis ball 
as the projectile.  The can has a 2-1/2” inside diameter and is 8” long.  If a tennis ball of the same 
diameter weighs 2 oz. and initially rests against the rear of the can, to what air pressure must one 
pressurize the can to in order to achieve a 30 ft/s launch of the tennis ball?  Assume that the 
tennis ball can be held against this pressure until released, that it perfectly obturates and also 
assume an isentropic process and ideal gas behavior with  = 1.4 for air.  

Solution:  First we need to get some parameters in order.  We start with a chamber volume.  
Since the tennis ball rests against the bottom of the can, the chamber volume is the volume of a 
cylinder of 2-1/2” diameter by 1-1/4” length minus the volume of half a sphere of 2-1/2” 
diameter. 
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The empty chamber has a volume of 
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There are several ways to solve this problem – the simplest one is to follow the method I 
described in the notes.  We can determine our fake chamber length through 
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We shall assume muzzle exit of the projectile occurs as the equator of the tennis ball passes 
through the plane of the end of the can.  Then the travel of the projectile is the length of the can 
less half the diameter of the tennis ball 
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The formula for muzzle velocity given an isentropic expansion of air was provided in the notes 
as equation (IG-28) 
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If we assume ideal gad behavior we recognize that the term mgRTi is the initial pressure times the 
initial chamber volume thus we can write 

igi RTmp 0V
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Making this substitution we have 
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Rearranging and solving for the pressure allows us to write 
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We now have a direct substitution with the data provided and calculated. 
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2.4  Thermodynamics 

Problem 4 -  The M898 SADARM projectile weighs 102.5 lb.  The projectile was fired from a 56 
caliber, 155mm weapon and a pressure-time trace was obtained.  The area under the pressure-
time curve was (after converting the time to distance) calculated to be 231,482 psi-m.  Calculate 

the muzzle energy of the projectile in MegaJoules.  Assume the bore area to be 29.83 in2. 

Answer  MJ7.30E

Solution: 

As given in the problem statement 

Wp 102.5 lb L 56 0.155  m

thus  

g 32.2
lb ft

lbf s2


and  

A 29.83 in
2



L 8.68m
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If we were not given the average pressure we would now have to calculate it from the pressure-
time trace, but since the individual who wrote the problem was such a nice guy and gave us the 
average pressure we shall use it directly to calculate the muzzle velocity. 
We shall call the area under the curve Apx 

Apx 231482 psi m

The average pressure is then the value of Apx divided by the length of travel 

The muzzle velocity is then found from 

The muzzle energy is calculated from 

E
Wp

2 g
Vm

2

To convert these units to Joules we used 1.356 Joules per foot pound force 

Problem 5 -  An 8” Mk. 14 Mod. 2 Navy cannon is used at NSWC Dahlgren, VA for “canister” 
firings.  These firings are used to gun harden electronics which are carried in an 8” projectile.  
The projectile used weighs 260 lb.  The measured muzzle velocity is around 2800 ft/s.  Calculate 

the muzzle energy of the projectile in MegaJoules.  Assume the bore area to be 51.53 in2.  The 
rifled length of the tube (distance of projectile travel) is 373.65 in. 

Answer   MJ43E

Solution: 

As given in the problem statement 

 lbm260pW  in65.373L

and  













2slbf

ftlbm
2.32cg  2in53.51A

P
Apx

L
 P 2.667 10

4
 psi 1( )

Vm
2 g P A L

Wp
 Vm 1.15 10

3


m

s
 2( )

E 3.072 10
7

 J 3( )
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The muzzle energy is calculated directly from 

2

2
m

c

p
V

g

W
E 

  

 
  























2

2
2

2

s

ft
2800

slbf

ftlbm
2.322

lbm260
E

    MJ43
lbfft

J
356.1ftlbf000,652,31 







E

2.5 Combustion 

Problem 6 - Calculate the A-F ratio for the combustion of the following fuels.  Calculate the ratio 
with both theoretical air and 10% excess air. 

a.) Benzene – C6H6 

b.) n-Butane – C4H10 

c.) Ethyl Alcohol – C2H5OH

Answer a.) 13.24 and 14.56, b.) 15.42 and 12.5.96, c.) 8.98 and 9.88 

Solution: 

Benzene 

C6H6 + 7.50 O2 + (7.5)(3.76)N2  6CO2 + 3H2O + 28.20N2

1 Mole C6H6 = 78.11 lbm 

Mass of Air = (7.5)(4.76)(28.97) = 1034.23 lbm 

A-F = 
11.78

23.1034
 = 13.24 

With 10% Excess Air: 

A-F = 
11.78

)1.1)(23.1034(
 = 14.56 

n – Butane 
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C4H10 + 6.50 O2 + (6.5)(3.76)N2  4CO2 + 5H2O + 24.44N2

1 Mole C4H10 = 58.12 lbm 

Mass of Air = (6.5)(4.76)(28.97) = 896.33 lbm 

A-F = 
12.58

33.896
 = 15.42 

With 10% Excess Air: 

A-F = 
12.58

)1.1)(33.896(
 = 16.96 

Ethyl Alchohol 

C2H5OH + 3O2 + (3)(3.76)N2  2CO2 + 3H2O + 11.28N2

1 Mole C2H5OH = 46.07 lbm 

Mass of Air = (3)(4.76)(28.97) = 413.69 lbm 

A-F = 
07.46

69.413
 = 8.98 

With 10% Excess Air: 

A-F = 
07.46

)1.1)(69.413(
 = 9.88 

Problem 7 – Let us examine a pressure vessel identical to the example problem in the text 
containing 0.001 kg of methane (CH4) and 0.002 kg of air.  The enthalpy of formation for the 
methane is -74,850 kJ/kgmol and its molecular weight is 16.04 kg/kgmol.  The reaction will 
begin at 298 K and we shall remove enough heat from the vessel that the final temperature 
becomes 1,000 K.   
a.) determine much heat is given off.   
b.) compare the result in a.) above with the example problem in this chapter. 

Answer a.)  kJ386.0Q , b.) This situation removes 2.984 kJ more energy than the example. 

Solution:  We need to balance the chemical reaction on a molar basis so we shall determine how 
many moles of methane and air we have in the container.  This is exactly the same procedure as 
in the chapter example problem.  For the methane we have: 
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  

 
 

4

4

4 CH
5CH

CH kgmol1023.6

kgmol

kg
04.16

kg001.0










N

For the air we have 

  

 
 air

5air
air kgmol1090.6

kgmol

kg
97.28

kg002.0 









N

Our balanced reaction is then 

        
          2

5-5-
2

5-
2

5-

22
-5

4
-5

N1045.5sC1023.6H1056.9OH109.2

N79.0O0.21106.90CH106.23





We shall examine the reactants first.  For the methane we have  

         



























 

 K298
Kkgmol

kJ
314.80

kgmol

kJ
850,74kgmol1023.6 5

CH298
0

CH 44
TRhhN uTf

   kJ82.4
44 CH298

0
CH   TRhhN uTf

For the oxygen and nitrogen we have 

          


















 

 K298
Kkgmol

kJ
314.800kgmol1090.621.0 5

O298
0

O 22
TRhhN uTf

   kJ036.0
22 O298

0
O   TRhhN uTf

          


















 

 K298
Kkgmol

kJ
314.800kgmol1090.679.0 5

N298
0

N 22
TRhhN uTf

   kJ13.0
22 N298

0
N   TRhhN uTf

The enthalpies of the reactants are the same as in the example problem therefore 

         kJ986.4kJ13.0kJ036.0kJ82.4  reacureac
i

i TRhN

For the products we have (using the tables in the appendix) 

         


















 

 K000,1
Kkgmol

kJ
314.8993,25845,241kgmol109.2 5

OH298
0

OH 22
TRhhN uTf
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   kJ50.6OH298
0

OH 22
  TRhhN uTf

         


















 

 K000,1
Kkgmol

kJ
314.8664,200kgmol1056.9 5

OH298
0

H 22
TRhhN uTf

   kJ18.1OH298
0

H 22
  TRhhN uTf

          



























 

 K000,1
Kkgmol

kJ
314.8

kgmol

kJ
468,210kgmol1090.679.0 5

N298
0

N 22
TRhhN uTf

   kJ72.0
22 N298

0
N   TRhhN uTf

         



























 

 K000,1
Kkgmol

kJ
314.8

kgmol

kJ
795,110kgmol1023.6 5

C298
0

C TRhhN uTf

   kJ217.0C298
0

C   TRhhN uTf

The enthalpies of the products are then given by 

           kJ38.4kJ217.0kJ72.0kJ18.1kJ50.6  produprod
i

i TRhN

The heat given off by the reaction is then calculated as 

       kJ606.0kJ986.4kJ38.4 Q

The example in the text generated a heat output of 3.37 kJ so we have actually removed 2.764 kJ 
more energy by reducing the temperature of the products. 

Problem 8 – A really interesting person takes the tennis ball mortar we built in problem 3 and 
modifies it – squirting in and igniting 0.003 oz. of acetylene gas (C2H2(g)). If we assume the 
combustion kinetics are fast enough such that the energy release occurs before the ball can move 
we want to determine the muzzle velocity of the tennis ball.  Proceed along the following steps: 

a.)  Balance the stoichiometric reaction equation for acetylene. 
b.)  Balance the actual equation neglecting the volume the acetylene occupies in the 

chamber.  Assume the air initially in the chamber is at 14.7 psia and 77 ºF. 
c.)  Determine the increase in internal energy of the gas as we have done in class 
d.)  Assuming the gas is calorically perfect (U = mgcvT) and that cv = 0.33 BTU/lbm-

ºR for the mixture, determine the increase in temperature of the gas.  
NOTE:  you will have to do c.) and d.) by iteration, first assuming a final reaction temperature, 
carrying out the calculation for u and seeing if the T you get matches – if not iterate again – 
once you get an answer within say 10% that is good enough. 

e.)  Based on the result of d.) above, determine the initial pressure on the tennis ball 
assuming the specific gas constant of the products is R = 80 ft-lbf/lbm-ºR. 
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f.)  Use the result of e.) and possibly your results from problem 2.) to determine the 
muzzle velocity of the tennis ball.  Assume  = 1.4 

g.)  Determine the temperature of the gases at shot exit.  

For acetylene n = 26.038 lbm/lbmol, h0
f  = +97,477 BTU/lbmol 

Solution:  We begin by balancing the stoichiometric equation. 

     2222222 N4.9OHCO2N5.276.3O5.2HC g

As in the homework we will first need to determine the amount of air initially in the chamber.  
The volume of the chamber was determined in problem 2.) as 

        333
0 in045.2in

2

181.8
in136.6V 

The density of the air can be found from the ideal gas equation of state as 

RT

p
RTpv  

The air weighs 28.97 lbm/lbmol and the density of air is calculated from 

   

      













































3

2

in

lbm
0000428.0

R537
ft

in
12

Rlbmol

lbfft
1545

lbmol

lbm
97.28

in

lbf
7.14



So the amount of air we actually have is  

      lbm0000875.0in045.2
in

lbm
0000428.0V 3

30 





 airm

The amount of fuel was given in ounces 

     lbm0001875.0
oz

lbm
0625.0oz003.0 





fuelm

For the actual combustion we need to use our mass information from before and convert it to 
molar values. 

For the fuel we have 
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  
 

 lbmol10201.7

lbmol

lbm
038.26

1
lbm0001875.0 6









fuel

fuel

fuel
n

m
N

  
 

 lbmol10020.3

lbmol

lbm
97.28

1
lbm0000875.0 6









air

air
air

n

m
N

for each lbmol of air we know that 1/4.76 lb-moles of it is oxygen so we have 

    lbmol10344.6lbmol10020.3
76.4

1 76
O2

 N

    lbmol10385.2lbmol10020.3
76.4

76.3 66
N2

 N

Now we can write our actual equation as 

         
2

6
2

7
22

-6 N10385.2O10344.6HC10201.7 g

        2
6

2
65

2
6 N10385.2H10932.5C10440.1OH10269.1  

Now for the reaction calculation.  Since the combustion occurs over a constant volume there is 
no work done on the projectile so our first law of thermodynamics is provided as  

UUU PR 

Since we are dealing with internal energies and not enthalpies we need to calculate RuT for the 
initial and final state of the gases.  Unfortunately we do not know the temperature of the products 
after the reaction takes place let’s assume it is 2000 ºR.  For the reactants we have 

      




 


















lbmol

lbfin
980,955,9

ft

in
12R537

Rlbmol

lbfft
1545TRu

I used units of inches because everything else we have in the problem statement is in inches.  
Let’s look at the internal energies for each of the reactants 

Reactant         Enthalpy of formation (BTU/lbmol) Enthalpy of formation (in-lbf/lbmol) 
C2H2(g)        +97,477  +910,232,428  
O2 0            0 
N2 0            0 

The conversion used here is as follows 
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      




 











 







lbmol

lbfin
9.337,9

ft

in
12

BTU

lbfft
16.778

lbmol

BTU
xx

For the products we have 

Product Enthalpy of formation (BTU/lbmol)  Enthalpy of formation (in-lbf/lbmol) 
H2O (g) -104,040 -971,515,116 
N2 0 0 
C(s)  0 0 
H2 0 0 

Since the reactants will be invariant here let’s deal with them first. 

We calculate UR first 

     TRhhNTRhhNTRhhNU ufufufR 


2222 NOHC

Plugging in the numbers we have we get 

   

   

    




 







 







 








lbmol

lbfin
980,955,900lbmol10385.2

lbmol

lbfin
980,955,900lbmol10344.6

lbmol

lbfin
980,955,90428,232,910lbmol10201.7

6

7

6
RU

 lbfin453,6 RU

At 2000 ºR we have the following values for RuT and the products – we will neglect the effect of 
the solid carbon other than the effect with RuT.   

      




 


















lbmol

lbfin
000,080,37

ft

in
12R2000

Rlbmol

lbfft
1545TRu

Product   Enthalpy at temperature (BTU/lbmol)    Enthalpy at temperature (in-lbf/lbmol) 
H2O (g) 13,183  123,102,854 
N2 10,804  100,887,752 
C(s)  0 0 
H2 10,337  96,526,906 

We calculate Up in at 2000 ºR as 
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       TRhhNTRhhNTRhhNTRhhNU ufufufufp 


CNHOH 222

   

   

   

    






 









 






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Then  

PR UUU 

       lbfin606,7lbfin153,1lbfin453,6 U

Comparing this to the expression given in the problem statement 

TcmU vg 
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Based on this let’s try a final temperature of 4000 ºR. 
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Product   Enthalpy at temperature (BTU/lbmol)    Enthalpy at temperature (in-lbf/lbmol) 
H2O (g) 36,251  338,508,213 
N2 27,587  257,604,647 
C(s)  0 0 
H2 26,071  243,448,391 

We calculate Up in at 4000 ºR as 

       TRhhNTRhhNTRhhNTRhhNU ufufufufp 


CNHOH 222
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Then  

PR UUU 

       lbfin976,6lbfin5.523lbfin453,6 U

Comparing this to the expression given in the problem statement 

TcmU vg 
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Now let’s try a final temperature of 7000 ºR. 
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Product   Enthalpy at temperature (BTU/lbmol)    Enthalpy at temperature (in-lbf/lbmol) 
H2O (g) 76,146  711,043,733 
N2 54,109  491,901,896 
C(s)  0 0 
H2 52,678  505,264,431 

We calculate Up in at 7000 ºR as 

       TRhhNTRhhNTRhhNTRhhNU ufufufufp 


CNHOH 222
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Then  

PR UUU 

       lbfin773,5lbfin6.679lbfin453,6 U

Comparing this to the expression given in the problem statement 

TcmU vg 
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This answer is close to 5% so we’re good to go.  The temperature is now 7,000 ºR – pretty hot! – 
that’s why acetylene works so good as a cutting torch fuel.   Now the initial pressure on the 
tennis ball comes through the ideal gas equation of state. 

RTpi 
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2in
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The muzzle velocity of the tennis ball is then 
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For the temperature of the gases when muzzle exit occurs we can use equation (IG-19) 

 1

V

V














c
iTT (IG-19) 

Assuming muzzle exit occurs as we have stated earlier we can write 

2

V
UV

sphere

cane 

       3222
can in27.39in8in5.2

44
U 


Ld

then we have 

       3
3

3
e in179.35

2

in8.181
in27.39V 

Then the temperature at muzzle exit is given by 

     
  

 14.1

3

3

in35.179

in2.045
R000,7











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   F783,1R243,2  T

Problem 9 – A potato is stuffed into the 3” diameter exhaust pipe of a car that is not running too 
well.  1 gram of incompletely combusted combustion products (assume gaseous Heptane) mixes 
with a stoichiometric amount of air behind the potato and ignites.  If the potato is wedged 4” into 
the exhaust (i.e. it has 4” of travel) and weighs 0.25 lbm, and assuming the combustion takes 
place before the potato moves, determine the theoretical maximum “muzzle” velocity of the 
potato.  Also calculate the muzzle velocity assuming an isentropic expansion.  For gas expansion 
purposes you can assume the volume available initially behind the potato is equal to the volume 
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between the point of obturation and the end of the exhaust and assume a “smeared” specific heat 
ratio of 1.3 for the product gases.  Also assume the combustion begins at 500 K and completes at 
1,500 K.  Assume the total enthalpy at 500 K for n-Heptane (C7H16) is -120,000 kJ/kgmol.   

Solution:  We know that the combustion is occurring under stoichiometric conditions so we can 
write the balance reaction equation as follows: 

     22222167 N36.41OH8CO7N1176.3O11HC g

This is on a one mole of fuel basis.  We need to write it for what we actually have which is 1 
gram of fuel.  First we determine the molecular weight of the Heptane to be 100.2 kg/kgmol.  
Therefore the number of moles of Heptane we have is 

  
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So the balanced equation becomes 

              2
-5

2
-5

2
-5

2
-5

2
-5

167
-5 N1036.14OH108CO107N1036.14O1011HC101  g

Now let’s deal with the thermochemistry.  We start with our second law of thermodynamics 
equation, simplified by the fact that there is no heat transfer and no shaft work.  Then the energy 
of the fuel-air mixture equals the work done on the projectile plus the energy of the products of 
combustion plus the work done on the gas.  (Note the difference here than in the text where we 
lumped the work done on the gas with the losses)   

PPR WHH 

Let’s look at the internal energies for each of the reactants 

Reactant Total Enthalpy (kJ/kgmol)   
C7H16(g) -120,000 

Enthalpy of formation (kJ/kgmol)   Δh(500) (kJ/kgmol)   
O2 0            6,097  
N2 0            5,920  

For the products we have 

Product Enthalpy of formation (kJ/kgmol)  Δh(1,500) (kJ/kgmol)   
H2O (g) -241,845 48,121  
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CO2 (g) -393,546 61,681  
N2 0 38,404 

We will rearrange our second law equation as follows 

pRp HHW 

We calculate HR first 

     hhNhhNhhNH fffR 

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Plugging in the numbers we have we get 
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We calculate Hp in a similar manner 

     hhNhhNhhNH fffp 
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Then the work done on the projectile is 

      kJ8.24kJ8.22kJ919.1 pW

Now we need to recall that this work equals the muzzle energy of the projectile 

 kJ8.24
2

1 2  mVW p

Therefore the theoretical maximum velocity for this reaction is 
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This is over twice the speed of sound!  To get a more realistic answer let’s look at the ideal gas 
equation of state.  If the projectile doesn’t move, the volume behind it is 

        34
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The volume of the exhaust pipe when the potato is at the end is twice this value.  The initial 
pressure is calculated from the ideal gas equation of state then using this volume 
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If we use the isentropic formulation for muzzle velocity we can start from equation (LG-180) 
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(LG-180) 

In our case we can safely assume the gas is massless and the initial velocity is zero so we have 
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Integrating we have 
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Inserting the limits of integration we obtain 
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Rearranging we have 
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Inserting our numbers we have 
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
















































V









s

m
601V

Still way high but we neglected friction and LOTS of losses. 

Problem 10 – Assume we have a quantity of 29 pounds of 11.1% nitrated nitrocellulose 
(C6H8N2O9) and it is placed in an empty chamber of a gun at 77°F and 14.7 psia.  The chamber is 
1160 cubic inches in volume.  The propellant density is 0.060 lbm/in3.  If the air in the chamber 
is NOT neglected and assuming the volume is fixed: 

a.) Write the balanced equation for this combustion (assume the oxygen goes preferentially 
into CO2 instead CO this time – you will find the difference later) 

b.) Using the tables in the textbook, estimate the adiabatic flame temperature of the resultant 
gas (Hint: recall the definition of adiabatic flame temperature) 

Solution: 

First we need to convert the units for the amount of propellant and air into moles.  For the 
propellant it is exactly as found in the notes 0.115 lbmol.  For the air in the chamber we have to 
play with a few equations.  First, the volume the propellant occupies in the chamber is  



m
p V (1) 

  

 
 3

3

in483

in

lbm
060.0

lbm29
V 







p (2)
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The volume the air occupies is then 

pcair V-VV  (3) 

     333 in677in483in1160V air (4)

The number of moles of air then can be found from the ideal gas equation of state as follows 

airu

air
air

TR

p
N

V
 (5) 

Noting that the air temperature must be in Rankine we have 

    

      R537
ft

in
12

Rlbmol

lbfft
545,1

in677
in

lbf
14.7 3

2



























airN (6) 

 lbmol001.0airN (7)

Balancing the chemical equation we have 

              

            sC00021.00.1155.3N00079.0115.0

CO00021.00.1155.3OH0.1154N001.0
4.76

76.3
O

4.76

1
001.0ONHC0.115

2

22229286






















(8) 
or 

               sC400.0N116.0CO403.0OH0.460N00079.0O00021.0ONHC0.115 222229286 

(9)

So this is our balanced reaction.  To solve for the adiabatic flame temperature we need to write 
the first law of thermodynamics as in equation (CT-42) 

WHHQ PRVC .. (CT-42) 

The problem statement stated that the volume was fixed so W = 0 and there is no flow work.  
Since we are looking for the adiabatic flame temperature we assume that QC.V. = 0 also.  Then we 
see that 

PR UU  (10)
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Looking at the notes we see that the enthalpy of formation for the propellant was given as 
2,605.5 Btu/lbmol.  The tables in the book are in kJ/kgmol so we have some unit conversions to 
do. 

      






























kgmol

kJ
046,6

kgmol

lbmol
2.2

Btu

kJ
055.1

lbmol

Btu
5.605,2

9286 ONHC

0
fh (11)

We can change this over to internal energy (because there was no flow work by using the 
definition of enthalpy, thus 

       





























kgmol

kJ
568,3K298

Kkgmol

kJ
314.8

kgmol

kJ
046,6RU

We can put equation (9) on a per mol of propellant basis by dividing by 0.115.  We then have 

           sC496.2N007.1CO504.3O4HN00687.0O0018.0ONHC 222229286 

(12) 

To get everything in gmol we would multiply by 52.27 but we will hold off on this for now.  
Since we know diatomic oxygen and nitrogen are entering at STP their enthalpies of formation 
are zero and the LHS boils down to equation (11).  Now we have to create an equation for the 
RHS as a function of temperature.  We have 

          TRNNNNhhNhhNhhNhhNU uffffp CNCOOHCNCOOH 222222




(13) 

Plugging in our values (in kJ/kgmol) we have 

          
   0314.8487.3007.1513.24

0)487.3(0007.1546,393513.2845,2414

T

hhhhU p





(14)

At this point we look in the tables in the book and apply temperatures to equation (14) until we 
achieve a balance.  Because this problem ended up going beyond the upper limit of the table I 
simply extrapolated from the last entry to obtain T0 = 5,848.7 K. 

So the adiabatic flame temperature for this reaction is 5,848.7 K or 10,524 °R (REAL high).  The 
reality is that the assumptions of the product species was incorrect. 
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2.6  Solid Propellant Combustion 

Problem 11 - M1 propellant is measured in a closed bomb.  Its adiabatic flame temperature is 
3906 F.  Its molar mass is 22.065 lbm/lbmol, what is the effective mean force constant in ft-
lbf/lbm?  

Answer  







lbm

lbf-ft
709,305

Solution:  This is just a straight use of the definition of the force constant from the notes. 

    R4603906
R-lbmol

lbf-ft
1545

lbm

lbmol

065.22

1
0 



















 TnRu









lbm

lbf-ft
709,305

Problem 12 - M15 propellant was tested in a strand burner to determine the linear burning rate.  
The average pressure evolved was 10,000 psi. If the burning exponent,  was known to be 0.693 
and the pressure coefficient,  was known to be 0.00330 in/s/psi0.693, determine the average 
linear burning rate, B in in/s. 

Answer    







s

in
952.1pB

Solution: 

We can write the burning rate equation 

  ppB 

Then the average burning rate is 

     


















































693.0

2

693.0

0.693

2

in

lbf
000,10

in

lbf

s

in

00330.0pB

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781138055315-SOLUTIONS-5/


  







s

in
952.1pB

Problem 13 - .  Please derive the functional form of  in terms of f for a flake propellant.  
Assume cylindrical geometry. 

Hint  Flake propellant consists of grains that have thicknesses muck smaller than any other 
characteristic dimension. 

Answer ft  1)(

Solution:  Given a short, (circular) flake of propellant, we can define the weight of the material 
as the product of the specific weight times the volume. 

Vgc grain (1) 

Here grain is the density of the propellant grain, g is the acceleration of gravity (the product 
graing is the specific weight), V is the volume of the grain and c is the weight of the propellant 
grain.  If we define the cross-sectional area of the propellant grain as if it were a short, right 
circular cylinder as 

4

2D
Ainit


    and   




4
V

2D
Ainitinit  (2) 

where, D is the diameter of the grain and  is the thickness (length).  Then the initial weight of 
the propellant grain is 





4

2D
gc graininit  (3) 
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Since matter can neither be created nor destroyed, the weight of the gas generated by burning a 
propellant grain is equal to the initial weight of the grain minus the weight of solid grain left.  
This is described conveniently by the mass fraction f.  In the case of a flake the surface area of 
the flats is much greater than that around the cylindrical section (this is in direct contrast to the 
long cylindrical grain).  
Therefore the “web” of a 
flake is the thickness, , 
and the regression of the 
diameter (or the edges if 
the geometry is not 
circular for that matter) is 
insignificant with respect 
to the loss of volume due 
to the thickness change.  
This is the fraction of the 
thickness (and therefore 
mass if we neglect the 
burning of the 
circumference) remaining 
after a time t as depicted 
in Figure 1.  

 The weight of the 
unburnt propellant grain at time t is given by 




 f
D

gtc grain
4

)(
2

  (4) 

As stated earlier 

)(tccc initgas  (5) 

Substitution of equations (3) and (4) into (5) yields 

   f
D

gf
D

gc graingraingas  1
44

22







 (6) 

We now introduce the fraction of gas generated .  Initially  = 0 and  = 1 at “all burnt”.  This 
function is defined as 

init

gas

c

c
t )( (7) 

Substitution of equations (3) and (6) into (7) yields the desired relation 

f


Original thickness 

Figure 1.  Propellant grain geometry 

Thickness at time t

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781138055315-SOLUTIONS-5/


ft  1)( (8) 

We need to note that this formulation will work for any geometry of flake propellant where the 
thickness is much smaller than any other dimension. 
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Problem 14 - An M60 projectile is to be fired from a 105mm M204 Howitzer.  The propellant 
used in this semi-fixed piece of ammunition is 5.5 lbm of M1 propellant.  M1 propellant consists 
of single perforated grains ( = 0) with a web thickness of 0.0165 inches.  If the average pressure 
(over the launch of this projectile) developed in the weapon is 20,455 psi.  Calculate the average 
burning rate coefficient in in3/lbf-s if the burn rate is (we use a negative sign in the burn rate to 
make the form come out right later) 

 1-s9.185
dt

df

Answer 







 

s-lbf

in
1050.1

3
4

Solution: We will use equation (2) from the notes to calculate , thus we have 

p
dt

df
D     or      

dt

df

p

D

avg



Inserting the information provided (and watching the units) above we can directly calculate 

  

 
   


















 

s-lbf

in
1050.1s9.185

in

lbf
20455

in0165.0 3
41-

2



Problem 15  is actually a function of pressure and temperature (it is really given in tables at 
25F at this value). For simplification (and illustration) we will assume it is constant.  Given this 
assumption, calculate the functional form of the web fraction, f from problem P 2.6.4 , above. 

Answer t
D

p
f

avg
1

Solution: Since we have all the data on the burn rate from problem 1, we only need to 
integrate equation (2) 

D

p

dt

df avg
   or     

t avgf

dt
D

p
df

01


  performing the integration we get 

.Const1  t
D

p
f

avg
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We now need to evaluate the constant of integration by inserting the initial conditions of  f = 1 at 
t = 0.  Performing this task and substituting the constant back into the above equation yields the 
proper form 

t
D

p
f

avg
1

Problem 16 - Given the data provided in problems P 2.6.4 and P 2.6.5, above, determine the 
proper form of the fraction of charge burnt. 

Answer   tt 9.185

Solution: This is determined by simply substituting the relation we obtained for f above and 
 into equation (1) from the interior ballistics notes.  Thus we have 

     t
D

p
t

D

p
fft

avgavg 
 








 1111

Inserting numerical values into this relation gives us 

 
   

  
ttt 9.185

in0.0165

in

lbf
20455

s-lbf

in
105.1

2

3
4


























Note here that because  is equal to zero,  is equal to df/dt! (with the sign change) 

Problem 17 – You are asked to characterize a commercial propellant.  In order to do this you 
take one grain of the propellant and place it in a closed bomb of 0.5 in3 volume, initially 
evacuated.  You have a temperature and pressure sensor in the device.  After 0.063 seconds you 
decide that the propellant has fully combusted. You read the data – pressure was measured to be 
3.706 psi (this is not a big value but it was only one small grain of propellant) but it looks as 
though the temperature sensor is broken.  The initial propellant grain weighed 0.003189 grains 
and it was 0.1 inches long by 0.01 inch diameter.  Based on this data only –  
a.)  Estimate the propellant force, λ, in ft-lbf/lbm   
b.)  Estimate the linear burn rate coefficient, β in in/s/psi.    
c.)  List all assumptions and explain why you believe these estimates are too high or too low. 
(certain assumptions may make the estimates high while others make them low) – There are at 
least 4 buried in there  

Solution:  We can determine the propellant force for a cylindrical grain directly from equation 
(SP-23). 
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     tmRTtmtp ggB  0V (SP-23) 

 
 tm

tp

g

B V


Since all of the material is presumably gas at the end of the combustion we can simply insert 
values into this equation 

    

   







































grains

lbm

000,7

1
grains003189.0

in

ft

12

1
in5.0

in

lbf
3.706 3

2











lbm

lbf-ft
000,339

A note here about why we used the gage pressure.  This is because the bomb is usually evacuated 
to obtain a true measure – if there was air in there we would have accounted for that too.  The 
burn rate coefficient can be approximated from equation (SP-38)  

c

D
tt

D

c
BB



 V
350

V

2
700  (SP-38) 

ct

D

B


V
350

Inserting our numbers we have 

 
     

        grains003189.0
ft

in
12

lbm

lbfft
000,339s063.0

lbm

grains
000,7in5.0in0.01

350

3












 
































2in

lbf
s

in

15

The assumptions that went into these equations were as follows 
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1.) Ideal gas behavior – even though in the burn portion the Noble-Able equation of state 
was utilized – this will produce a temperature that is too high – thus the results will be slightly 
high 

2.) Combustion products are generated at the adiabatic flame temperature of the 
propellant – again this is the most energy we can get out of the propellant – results will be 
slightly high 

3.) No heat transfer occurred to the walls of the container – adiabatic behavior – There is 
always heat transfer so the actual pressure should be higher than we obtained – the answers will 
be slightly low 

4.) The combustion of the propellant grain neglected end effects – so the propellant will 
have had more surface area burning in the time we assumed only the cylindrical portion was 
regressing – the burn rate will be too high thus the force constant will be too low. 
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2.7  Fluid Mechanics

Problem 18 - The principle behind a muzzle brake on a gun is to utilize some of the forward 
momentum of the propelling gases to reduce the recoil on the carriage.  In the simple model 
below, the brake is assumed to be a flat plate with the jet of gases impinging upon it.  If the jet 
diameter is 105mm and the velocity and density of the gas (assume air) are 750 m/s and 0.457 
kg/m3, find the force on the weapon in Newtons assuming the gases are directed 90 to the tube 
and the flow is steady. 

Answer -2,225.9 N 

Solution:  If we draw our control volume as shown below, we can write the following 
expression: 

Let’s look at the axial momentum to readily obtain the answer 

      0cos0cos
inininx

VAVVmF 

F

= 0, Steady flow

 
  






C.V. C.S.

V Avvv
v

F dρd
tdt

md


F

C.V.
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         N9.2225m
4

105.0

s

m
750

m

kg
0.457 2

2

2

2
2

3
























x

F

Problem 19 - Some engineer gets the idea that if deflecting the muzzle gases to the side is a good 
idea, then deflecting it rearward would be better (until of course an angry gun crew gets hold of 
him!).  If the jet diameter is again 105mm and the velocity and density of the gas (again assume 
air) are 750 m/s and 0.457 kg/m3, find the force on the weapon in Newtons assuming the gases 
are directed 150 to the tube and the flow is steady. 

 Answer  -4,153.5 N 

Solution:  If we draw our control volume as shown below, we can write the following 
expression: 

In the previous case, since the exiting fluid left at 90 to the control volume we were not 
concerned with the exiting area as cos(90) = 0.  Here we don’t know what the exit area is but we 
do know from the continuity equation that the mass flow into the C.V. must equal the mass flow 

F

30

(typ.)

= 0, Steady flow

 
  






C.V. C.S.

V Avvv
v

F dρd
tdt

md

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out of the C.V. and since we were not told otherwise, we assume that there is no loss in velocity, 
thus 

outoutoutinininoutin
AVAVmm      and therefore 

outin
AA    But since there are two outlets, each outlet is half of the area of the gun bore.  Now we 

can invoke the momentum equation to obtain the axial force. 
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It is sometimes helpful to write this equation as 
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Now the answer is 
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Problem 20 - Consider a shock tube that is 6 feet long with a diaphragm at the center.  Air is 
contained in both sections (γ = 1.4).  The pressure in the high pressure region is 2,000 psi.  The 
pressure in the low pressure region is 14.7 psi.  The temperature in both sections is initially 68° 
F.  When the diaphragm is burst 
Determine 

a) The velocity that the shock wave propagates into the low pressure region.  
Answer  2,798 ft/s 

b) The induced velocity behind the wave.  
Answer  1,946 ft/s 

c) The velocity of a wave reflected normally off the wall (relative to the laboratory). 
Answer  1,232 ft/s 

d) The temperature behind the incident wave. 
Answer  657F 

e) Draw an x-t diagram of the event. Include the path of a particle located 2 feet from the 
diaphragm. 

Solution:  We need to determine the velocity of the shock wave but before we do we need the 
speed of sound in the still air and we must find p2. The speed of sound comes directly from our 
hint. 
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We need to iterate to determine the static pressure behind the wave.  Since p2 has to lie between 
p1 and p4 we shall use 20 psi as a starting point.  The equation is: 

It is best to set this up in a spread sheet.  We have 
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Without going into detail, noting that since air is on both sides of the shock wave (γ4 = γ1) we 
have.   

Assumed p2 Calculated p4/p1

20 1.87822
40 8.94021
60 25.5956
100 123.602
105 146.638
103 137.014
102 132.41

102.5 134.695
102.7 135.619

102.793 136.05

We can now calculate the speed of propagation of the wave into the low pressure region as 
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We can now calculate the induced velocity behind the wave 

Now we need to see how this would reflect off of the rear wall.  We will first find the incident 
wave Mach number 

We now need to to find the reflected wave Mach number 

We need to write this as a quadratic to solve it 

94.101422.12  RRR MMM

Now we need the speed of sound behind the incident shock to get the reflected wave speed.  
Thus we need to find T2.   

Thus  

   F657R117,146068115.22
 T

This is pretty hot.  We then get the speed of sound as 
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The velocity of the reflected wave would then be  
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Just as a check, remember that there was an upper limit on up thus we can see that 
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The x-t plot is as follows 

Problem 21 – An explosion generates a shock wave in still air.  Assume we are far enough from 
the initial explosion that we can model the wave as a one-dimensional shock.  Assume that the 
pressure generated by the explosion was 10,000 psi and the ambient atmospheric pressure, 
density and temperature are 14.7 psi, 0.06 lbm/ft3 and 68° F, respectively. 
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Determine a.)  The static pressure behind the wave (assume γ = 1.4 and since  
we are far away from the effects of the explosion assume a1/a4 ≈           
0.5)  

b.) The velocity that the wave propagates in still air 
c.) The induced velocity that a building would see after the wave passes 
d.) The velocity of a wave reflected normally off a building 

Answers a.)  p2 = 376.6 psi;  b.) U = 5,294 ft/s;  c.)  up = 4,212 ft/s;  d.)  UR = 1,921 ft/s 

Solution:  We need to iterate to determine the static pressure behind the wave.  Since p2 has to lie 
between p1 and p4 we shall use 200 psi as a starting point.  The equation is: 

It is best to set this up in a spread sheet.  We have 
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Without going into detail, noting that since air is on both sides of the shock wave (γ4 = γ1) we 
have.   

Assumed p2 Calculated p4/p1

200 114.175
400 831.675
300 337.124
350 537.794
375 671.005
380 700.791
377 682.786
376 676.874

376.5 679.824
376.6 680.416

We now determine the velocity of the shock wave but before we do we need the speed of sound 
in the still air. 
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We can now calculate the speed of propagation of the wave through still air as 

This is a pretty respectable speed.  We can now calculate the induced velocity behind the wave. 

This high of a velocity would certainly make itself felt.  Now we need to see how this would 
reflect off of a building.  We will first find the incident wave Mach number 

We now need to use equation (UW-16c) to find the reflected wave Mach number 

We need to write this as a quadratic to solve it 

38.20196.12  RRR MMM

Now we need the speed of sound behind the incident shock to get the reflected wave speed.  
Thus we need to find T2.   

Thus  
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This is pretty hot.  We then get the speed of sound as 
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The velocity of the reflected wave would then be 
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Just as a check, remember that there was an upper limit on up thus we can see that 
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In this example the numbers were fabricated to give you a feel for the problem.  Thus these 
numbers should not be considered indicative of any particular explosive device. 
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