
 

Solutions for Biomolecular Thermodynamics From Theory
to Application Foundations of Biochemistry and Biophysics
                              1st Edition by Barrick

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

https://testbanks.ac/product/9781138068841-SOLUTIONS-5/
https://testbanks.ac/product/9781138068841-SOLUTIONS-5/
https://testbanks.ac/product/9781138068841-SOLUTIONS-5/
https://testbanks.ac/product/9781138068841-SOLUTIONS-5/


	 Solution Manual	 13

e = 1000 it is ∼2 × 10−47. Evaluating the energy sum above to e = 100 gives 
<e> = 9.9971. Evaluating to e = 200, Mathematica returns <e> = 9.9999999. 
It seems pretty clear that the average is converging to 10.

1.19	 The first moment of the Gaussian distribution can be calculated using Equation 
1.43, namely
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	 This integral can be calculated by a substitution of variables:
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	 This substitution simplifies the exponent, and it transforms the distribution 
to a new variable on which it is centered and symmetrical. Such 
transformations often allow integrals to be eliminated based on simple 
symmetry arguments. And although the transformation makes the leading 
term more complicated by introducing a second term, these two terms can 
be integrated separately:
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	 With respect to the new, centered variable u, the first integral is the product of 
an odd symmetrical function and an even symmetrical function. This product 
has odd symmetry, and its integral over all space is zero. Thus, the leading 
integral is zero, no matter what the value of sigma.

CHAPTER 2

2.14	 As the above function is well-behaved (continuous and differentiable), its 
differential can be calculated using the exact differential formula given above 
(Equation 2.22).
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2.15	 We can compare the differential calculated in Question 1.1 to the general 
differential relationship (Equation 2.38) we used to state the Euler criterion for 
exactness:

	 df S x y dx T x y dy xdx ydy= + = +( , ) ( , ) 2 2 	

	 	 Because x and y are independent variables, and can each be incremented by 
any amount (including dx=0, dy≠0, and vice versa), the above equation implies 
that two separate equalities hold:
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	 	 Using these expressions in the Euler criterion (Equation 2.41) gives
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	 	 The differential satisfies the Euler criterion and is thus exact.

2.16	 Starting with the differential of the paraboloid dz = 2xdx+2ydy, the first step 
integrates as follows:
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	 	 Similarly, the second step integrates as
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	 	 Because z = x2+y2 is a well-behaved state function, we can calculate the 
overall change in z by adding up any set of changes in z that connect up from 
the initial and final state. The Dz1 and Dz2 values from steps 1 and 2, calculated 
above, connect from the initial state (1,1) to the final state (2,2) when added, 
thus,

	 ∆ ∆ ∆z z z= + = + =1 2 3 3 6 	
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	 	 This can be verified directly, since we have an analytic for z in terms of x and y:

	 ∆ ∆ ∆z z z= + = + − + = − −( , ) ( , ) ( ) ( )2 2 1 1 2 2 1 1 8 2 62 2 2 2
	

2.17	 Expressed as a single variable, the differential of z has a particularly simple 
form analogous to Equation 2.7:
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	 	N ote that for completeness, you might be tempted to include θ, the other 
variable in a two-dimensional polar coordinate system. The exact differential 
would, in general, look like this:
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	 	 However, for the paraboloid, the second term is zero because
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2.18	 In this problem, the path is along an increasing radial line, with no change in 
the polar angle q. Thus, the integral can be written quite simply:
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	 	 The problem is that we have initial and final position in the x–y plane and we 
need to represent them as changes in r. This is done with the Pythagorean 
theorem:
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	 	 Using these values of r1 and r2 in the integral for Δz above gives
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	 	 This is the same value as was calculated above using Cartesian coordinates.

2.28	 The F matrix for this problem is 31 × 2 (n = 31 data points, m = 2 
parameters)
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	 	L eft-multiplying F by FT by its transpose gives the 31 × 2 A matrix:
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F F

f x
p

f x
p

f

T

i

i

n
i

=

∂
∂











∂
∂











∂

=
∑ ( ) ( )

1

2

1 1

(( )

( ) ( )

x
p

f x
p

f x
p

i

i

n

i i

∂











∂
∂











∂
∂

=
∑

21

1 221 2

2

1











∂
∂






















= =
∑ ∑

i

n
i

i

n
f x
p
( )
















	

	 	 The determinant of this matrix (which is also the determinant of the 
transpose) is
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	 	 Each of the cofactors (there are only three unique ones because FTF is 
symmetric is
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	 	 Together, these three cofactor equations can be combined with the 
determinant equation to calculate the four elements of the covariance 
matrix V. For the variance term for parameter p1,
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	 	 A similar formula (with differentiation by p1 in the numerator instead of p2) is 
obtained for v2,2. The two covariance elements are given by

v
cof F F

F F

f x p f x p

f x

T

T

i i

i

n

i

1 2
1 2

1 2

1
,

, ( )
( ( ) )( ( ) )

( ( )

∝ =

∂ ∂ ∂ ∂

∂ ∂

=
∑ / /

/ pp f x p

f x p f x p

i

i

n

i

n

i i

i

n

1
2

2
2

11

1 2

1

) ( ( ) )

( ( ) )( ( ) )

∂ ∂

− ∂ ∂ ∂ ∂

==

=

∑∑

∑

/

/ /














2

K10030_Solution Manual.indd   16 10-07-2017   21:09:30

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781138068841-SOLUTIONS-5/


	 Solution Manual	 17

2.32	 The mode of the distribution (that is, the peak) can be found by differentiating 
with respect to χ2 and setting the result to zero:
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	 	 The zero in the equation above has to come from the term in the curly braces, 
since all of the multiplying terms outside the braces are everywhere positive. This 
means

	 ( )( ) ( )( )/ ( )/ν χ χν ν− − =− −2 02 4 2 2 2 2
	

	 	 Rearranging gives
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	 	 Cancelling the exponents gives the value of χ2 at the critical point,

	 χ ν2 2= − 	

	 	 Based on the shape of the probability distribution, it is clearly a 
maximum. This can be confirmed by a second derivative test, but 
the exponential from the third line above needs to be included in 
the differentiation.

2.33	 The normalization condition means that
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	 	 The integral on the left-hand-side of the distribution can be broken into two 
parts, or “complements”:
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	 	 This is a result of the fundamental theorem of calculus, but it may be easier to 
see by thinking about the integrals as area under the curve. Rearranging the 
equation above gives the desired equality.

2.34	 To carry out this test, we need to start with fits using both models. The fit for 
the exponential decay model (we will call it model 2) is shown in Figure 2.17. 
For the cubic model, the fit is shown in below.
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	 	 As can be seen from the residuals, the quartic model does not fit as well as the 
exponential (this may not be a surprise, since we used an exponential model to 
generate the data). Using the SSR values for the two fits, we can calculate the 
fobs ratio as

f
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	 	 The f-ratio distribution, given the degrees of freedom ν1=96, ν2=98, is shown 
below:
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fobs (96, 98) = 1.84

f (96, 98)

0.2
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	 	 As indicated by the arrow, there is very little of getting an f-ratio value 
of 1.84 or higher from statistically equivalent models with 96 and 
98 degrees of freedom. The exact probability can be calculated by 
solving the equation
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	 	 (easiest done with the CDF[FRatioDistribution…] command in 
Mathematica). In other words, it is pretty unlikely (about one in a thousand) 
that you would get this f-value from two statistically equivalent models. 
Compared to the exponential model, SSR is unexpectedly high for the quartic 
model. We can certainly reject the model at the 95% confidence level.

CHAPTER 3

3.4	 Starting with equation

	 dV Vdp VdT VdnT= − + +κ α 	

	 Substituting the ideal gas results κT = p−1 , α = T−1, and the single-component 
molar volume definition V V n= /  gives
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n
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	 Dividing by V separates variables:
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	 We need to integrate this expression from starting values Vi, Ti, pi, and ni, to 
general values p, V, T, and n. Using the ideas developed in Chapter 2, we can 
integrate in three steps, first changing V at constant T and n, next changing T at 
constant V and n, and finally changing n at constant V and T. Each of these will 
lead to a change in p, which can be added to get the total change in pressure.

3.5	 Assuming the ideal gas law,
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	 As described above, to maintain the pressure throughout the expansion, the 
temperature increases.

3.9	 To calculate the work done on the polymer (you can think of it as the system), 
integrate Equation 3.17. A nice way to do this is with a single limit of x = 0 end-
to-end separation, giving work as an analytical function of of x:
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