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Chapter 2

Methods of Proof

1. If m, n are odd then, by definition, m = 2k + 1 and n = 2` + 1 for some

k, ` ∈ Z. Multiplying, we obtain:

m · n = (2k + 1) · (2` + 1) = 2(2k` + k + `) + 1,

which is odd by definition.

2. If n is even then, by definition, n = 2` for some ` ∈ Z. Multiplying, we

obtain:

m · n = m(2`) = 2(m`),

which is even by definition.

4. Writing things out, we obtain

2 + 4 + · · · + (2k − 2) + 2k = 2 (1 + 2 + · · · + (k − 1) + k)

= 2
k(k + 1)

2
by Prop. 2.4.2

= k2 + k.

5
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6 CHAPTER 2. METHODS OF PROOF

5. Writing things out, we obtain

1 + 3 + · · · + (2k − 3) + (2k − 1)

= (2 − 1) + (4 − 1) + · · · + ((2k − 2) − 1) + (2k − 1)

= (2 + 4 · · · + (2k − 2) + 2k) − k

= (k2 + k) − k by Exercise 2.4

= k2.

7. We can write m = 3k and n = 3` for some k, ` ∈ N. Let us assume,

without loss of generality, that k ≤ `. Seeking a contradiction, assume that

m + n = 3r, for some r ∈ N. Then we have:

m + n = 3` + 3k = 3k(1 + 3`−k) = 3r, with ` − k ≥ 0.

Now note that since 3k = m < m + n = 3r, it must be that k < r. Hence,

1 + 3`−k = 3r−k , with r − k ≥ 0.

The righthand side of the last equality is either 1 or divisible by 3, whereas

the lefthand side is bigger than or equal to 2 and definitely not divisible

by three. Thus, the equality must be false, which means that our original

hypothesis m + n = 3r, for some r ∈ N) was false.

11. Following the given scheme, we have 2q2 = p2. If q has, say, r prime

factors, then q2 has 2r prime factors. Thus 2q2 has 2r + 1 prime factors.

On the other hand, p2 must have an even number of prime factors, and we

arrive at a contradiction. Hence our original assumption
√

2 = p/q must be

false.

12. Write n = k2, and suppose that n + 1 = `2 for some l ∈ N. Then 1 =
(n + 1) − n = `2 − k2 = (` + k)(` − k). Then ` + k = 1, and that is

impossible for natural numbers ` and k.

13. We proved in Exercise 2.1 that the product of two odd numbers is odd.

Therefore, if the product of two numbers is even, at least one of them must

be even.

15. If n is even, then n − 1 is odd. Now, n = (n − 1) + 1, so n is the sum of

two odds. If n is odd, then n = n, so n is the sum of one odd integer.
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17. False: 12 + 22 = 5, which is not a perfect square.

18. True: Suppose, seeking a contradiction, that there are no perfect squares

in that list. This means that all the numbers in the list fall between two

consecutive squares, i.e., there is a k such that k2 < n < n + 1 < . . . <
2n + 2 < (k + 1)2. We then have:

2n + 2 < (k + 1)2 = k2 + 2k + 1 < n + 2k + 1,

or

n + 1 < 2k.

Squaring both sides, we obtain:

n2 + 2n + 1 < 4k2 < 4n,

or

(n − 1)2 = n2 − 2n + 1 < 0,

which is impossible.

19. True: 6=1+2+3, or 28=1+2+4+7+14. In fact, these numbers have a name:

Perfect numbers. Not much is known about perfect numbers. It is conjec-

tured that there are no odd perfect numbers, mainly because nobody ever

found an odd perfect number, but it has never been proved. It has also not

been proved that there are infinitely many perfect numbers.

21. False: 22 + 12 = 5, which is a prime.

23. False: Take n = 2, a1 = 1, a2 = 4. Then the inequality would read:

5

2
=

1 + 4

2
≤ (1 · 4)1/2 = 2,

which is clearly false.

25. True: Write the rationals as fractions p1/q, p2/q with the same denominator

q so that p1 + 2 ≤ p2 (one can always achieve this by taking q big enough).

Then either
√

p1
2 + 1 or

√

p1
2 + 2 is an irrational number that lies between

p1 and p2 (cf. Exercise 2.12). Divide this irrational by q to obtain another

irrational that lies between the two rationals.
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8 CHAPTER 2. METHODS OF PROOF

27. We will use the alternative form of the principle of complete mathematical

induction given in the text (see also Exercise 2.31). The property is clearly

true for 2 (since 2 is prime). Assume that it is true for any k < n. We have

to prove that it is true for k = n. If the only divisors of n are n itself and

1, we are done, since that would imply that n is itself a prime. Otherwise

n has a divisor d < n. By the mathematical induction hypothesis, d must

have some prime factor p. Now, since p divides d which divides n, p must

also divide n. But then p will be a factor of n. Hence the property is also

true for n.

29. The property is true for k = 3, since 23 = 8 > 7 = 1 + 2 · 3. Assume that

the property is true for k = n− 1. We want to show that it is true for k = n.

In other words, we want to prove that

2n > 1 + 2n.

Observing that 2n = 2 · 2n−1, we find an obvious place to apply the mathe-

matical induction hypothesis:

2n = 2 · 2n−1

> 2 · (1 + 2(n − 1)) from the mathematical induction hypothesis

= (1 + 2n) + (2n − 3)

> 1 + 2n since 2n − 3 > 0 for n ≥ 2.

31. If one starts the mathematical induction process from a number n0+1, n0 ≥
1, then P (1) might not be true (it might not even be defined), and we would

not be able to use mathematical induction according to the statement in the

text. But we can modify this statement using the following trick:

Define a property P ′ as follows:

P ′(k) is true if P (n0 + k) is true .

Then P ′(1) is true since P (n0 + 1) is true, and P ′(n− 1) ⇒ P ′(n) because

P (n0 + n − 1) ⇒ P (n0 + n) by hypothesis. But now we can apply math-

ematical induction (as stated in the text) to the property P ′, so that P ′(n)
holds for any natural number n. This implies that P (n0 + n) holds for all

n ∈ N, or equivalently, P (m) holds for all n ≥ n0 + 1.
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34. It is true for n = 5:

25 = 32 > 26 = 52 + 1.

Assume that it is true for n − 1 ≥ 5. We must prove it for n. We can write:

2n = 2 · 2n−1

> 2((n − 1)2 + 1) by the mathematical induction hypothesis

= n2 + 1 + (n2 − 4n + 3)

= n2 + 1 + (n2 − 4n + 4) − 1

= n2 + 1 + (n − 2)2 − 1

> n2 + 1 since (n − 2)2 − 1 > 0 if n > 4.

35. Let P (n) be the statement, “If n + 1 letters are placed into n mailboxes,

then some mailbox must contain two letters. When n = 1, the claim is that

if we put two letters into one mailbox, then some mailbox must contain two

letters. Obvious. Now suppose that P (n − 1) has been proved. We have n
mailboxes, and we place n + 1 letters into n mailboxes. If the last mailbox

contains two letters, then we are done. If not, then the last box contains one

or two letters. But then the first n−1 mailboxes contain at least n letters. So

the inductive hypothesis applies, and one of them must contain two letters.

That completes the inductive step, and the proof.

36. Assume that we have n mailboxes. Let `(j) be the number of letters in box

j. Now

`(1) + `(2) + · · · + `(n) = n + 1 ,

since all the letters taken together total n + 1 letters. Dividing by n gives

`(1) + `(2) + · · · + `(n)

n
=

n + 1

n
> 1 .

So the average number of letters per box exceeds 1. This can only be true if

some box contains more than 1 letter. Thus some box contains two letters.

38. Consider the set of S all ordered pairs (`, p) where ` is a line passing through

(at least) two of the given points and p is a point not on that line (certainly p
exists because the points are not all colinear). Define a function f on S by

f(`, p) = distance of ` to p.
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10 CHAPTER 2. METHODS OF PROOF

Then f is a function with a finite domain, so there is a particular ordered

pair (`0, p0) that minimizes the function. Then `0 is the line that we seek.

We invite the reader to check cases to verify this assertion.

40. Let

B(x) = x is a boy under the age of 10.

and

P (x) = x practices all pieces in his/her piano book every day.

Then our statement is

∀x, B(x) ⇒ P (x) .

We can rewrite this as

∼ ∃x,∼ (B(x) ⇒ P (x)) .

41. The assertion is true for n = 1 by inspection.

Assume now that the assertion is verified for n = j. Then we have

(
a 2
0 a

)j+1

=

(
a 2
0 a

)

·
(

a 2
0 a

)j

=

(
a 2
0 a

)

·
(

aj 2jaj−1

0 aj

)

=

(
aj+1 2(j + 1)aj

0 aj+1

)

.

That completes the inductive step.

42. The assertion is clear for n = 1. Now assume that it is true for n = j. We

write

(j + 1)3 − (j + 1) =
(
j3 + 3j2 + 3j + 1

)
− (j + 1)

= j3 + 3j2 + 2j

= (j3 − j) + (3j2 + 3j) .

Now, by the inductive hypothesis, j3 − j is divisible by 6. Also

3j2 + 3j = 3j(j + 1) .
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Since either j or j + 1 is divisible by 2, this last expression is also divisible

by 6. Hence (j + 1)3 − (j + 1) is divisible by 6, and the mathematical

induction is complete.

44. We will prove that, for any positive integer n,

1√
1

+
1√
2

+ · · · + 1√
n
≥

√
n .

The claim is plainly true for n = 1. Now assume that it has been established

for n = j. Then we have

1√
1

+
1√
2

+ · · · + 1√
j

+
1√

j + 1
≥

√

j +
1√

j + 1
.

So we need to show that

√

j +
1√

j + 1
≥

√

j + 1 .

Multiplying both sides by
√

j + 1, we see that this is the same as

√

j(j + 1) + 1 ≥ j + 1

or √

j(j + 1) ≥ j .

Now squaring both sides gives the result. The mathematical induction is

complete, and the result proved.
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