

Solutions for Software Engineering: 9th Edition by
 Pressman

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

https://testbanks.ac/product/9781259872976-SOLUTIONS-5/
https://testbanks.ac/product/9781259872976-SOLUTIONS-5/
https://testbanks.ac/product/9781259872976-SOLUTIONS-5/
https://testbanks.ac/product/9781259872976-SOLUTIONS-5/

Copyright 2020 © McGraw-Hill Education. All rights reserved. No reproduction or distribution

without the prior written consent of McGraw-Hill Education.

Solutions: Chapter 2: Process Models.

2.1)

a) Designers should ask users:

 Is the product satisfactory, or does it require redesign or rework?

 Was user input solicited, to avoid the product being unsatisfactory and requiring

 rework?

 Is there a need for new requirements?

 Is the product larger than estimated?

 Do the modules require more testing, design and implementation work to correct

 than expected?

b) Users should ask as designers:

Is the scope clear?

 Do we have the tools and people with skills required for the development?

 Are the requirements properly defined, are additional requirements needed.

 Are the specified areas of the product more time consuming than usual?

 Does the module require more testing, design?

c) Users should ask themselves about the software product that is to be built:

 What is the scope and purpose of the software product?

 Is the product larger than estimated?

 Are the best people available?

 Is the staff committed and possess skills required?

 Will the turnover among staff members be low enough to allow continuity?

d) Designers should ask themselves about software product that is to be built and the

process that will used to build it:

 Scope and purpose of the document?

 What tools are to be used?

 What are the objectives and risk aversion priorities?

What will be the steps for risk analysis, identification, estimation, and evaluation

and management?

2.2)

a) Linear process flow does not accommodate change well, but can be good if a

team is building a routine product similar to something they have done before

b) Iterative process flow handles change better by building in opportunities to

reviews the intermediate work products as they are developed. Often used when

building systems involving technologies that are new to the development team.

c) Evolutionary process models are often adopted for projects (e.g. WebApps) that

need to be developed in a rapid, but controlled manner that avoids unnecessary

rework.

d) Parallel process flow has the potential to allow self-contained work products to

be developed simultaneously for systems that are composed of subsystems.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781259872976-SOLUTIONS-5/

Copyright 2020 © McGraw-Hill Education. All rights reserved. No reproduction or distribution

without the prior written consent of McGraw-Hill Education.

 2.3) Task Set for Communication Activity: A task set would define the actual work to

be done to accomplish the objectives of a software engineering action. For the

communication activity these are:

Make a list of stakeholders for the project

 Invite all the stakeholders to an informal meeting

 Ask them to make a list of features and functions

 Discuss requirements and build a final list

 Prioritize requirements and note the areas that he is uncertain of

 These tasks may be larger for a complex software project, they may then

include

 To conduct a series of specification meetings, build a preliminary list of

functions and features based on stakeholder input.

 To build a revised list of stake holder requirements

 Use quality function deployment techniques to prioritize the requirements.

 Note constraints and restrictions on the system.

 Discuss methods for validating system.

2.4)

Pattern Name. Conflicting Stakeholder Requirements

Intent. This pattern describes an approach for resolving conflicts between stakeholders

during the communication framework activity.

Type. Stage pattern

Initial context. (1) Stakeholders have been identified; (2) Stakeholders and software

engineers have established a collaborative communication; (3) overriding software

problem to be solved by the software teams has been established; (4) initial

understanding of project scope, basic business requirements and project constraints

has been developed.

Problem. Stakeholders request mutually conflicting features for the software product under

development.

Solution. All stakeholders asked to prioritize all known system requirements, with

resolution being to keep the stakeholder requirements with highest priorities and/or

the most votes.

Resulting Context. A prioritized list of requirements approved by the stakeholders is

 established to guide the software team in the creation of an initial product

 prototype.

Related Patterns. Collaborative-guideline definition, Scope-isolation, Requirements

gathering, Constraint Description, Requirements unclear

Known Uses/Examples. Communication is mandatory throughout the software project.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781259872976-SOLUTIONS-5/

Copyright 2020 © McGraw-Hill Education. All rights reserved. No reproduction or distribution

without the prior written consent of McGraw-Hill Education.

2.5)

The waterfall model is amenable to the projects that focus on the attributes such as

the data structures, software architecture, and procedural detail and interface

characterization of objects.

2.6)

Software applications that are relatively easy to prototype almost always involve

human-machine interaction and/or heavy computer graphics. Other applications

that are sometimes amenable to prototyping are certain classes of mathematical

algorithms, subset of command driven systems and other applications where results

can be easily examined without real-time interaction. Applications that are difficult

to prototype include control and process control functions, many classes of real-

time applications and embedded software.

2.7)

As work moves outward on the spiral, the product moves toward a more complete

state and the level of abstraction at which work is performed is reduced (i.e.,

implementation specific work accelerates as we move further from the origin).

2.8)

The process models can be combined, each model suggests a somewhat different

process flow, but all perform the same set of generic framework activities:

communication, planning, modeling, construction, and delivery/feedback.

 For example the linear sequential model can serve as a useful process model in

situations where requirements are fixed and work is to proceed to completion in

a linear manner. In cases, where the developer may be unsure of the efficiency of

an algorithm, the adaptability of an operating system, or the form that human-

machine interaction should take. In these, and many other situations, a

prototyping model may offer the best approach. In other cases, an incremental

approach may make sense and the flow of Spiral model may be efficient. Special

process models take on many of the characteristics of one or more of the tradition.

2.9)

The advantages of developing software in which quality is ”good enough” is that

the product or software will meet the deadline, it may however lead to the delivery

of software that is low in quality and requires time to improper the quality. When

speed is emphasized over the product quality it may lead to many flaws, the

software may require more testing, design and implementation work then done.

Requirements may be poorly defined and may need to continuously change. Half

hearted and speed may cause the risk management to fail to detect major project

risks .Too little quality may result in quality problems and later rework.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781259872976-SOLUTIONS-5/

Copyright 2020 © McGraw-Hill Education. All rights reserved. No reproduction or distribution

without the prior written consent of McGraw-Hill Education.

2.10)

It is possible to use mathematical techniques to prove the correctness of software

components and even entire programs (see Chapter 28). However, for complex

programs this is a very time consuming process. It is not possible to prove the

correctness of any non-trivial program using exhaustive testing.

2.11)

UML provides the necessary technology to support object-oriented software

engineering practice, but it does not provide the process framework to guide

project teams in their application of the technology. Over the next few years,

Jacobson, Rumbaugh and Booch developed the Unified Process, a framework

for object-oriented software engineering using UML. Today, the Unified

Process and UML are widely used on OO projects of all kinds.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781259872976-SOLUTIONS-5/

