Test Bank for Explorations 10th Edition by Arny #### CLICK HERE TO ACCESS COMPLETE Test Bank # Test Bank ⊙ true #### CORRECT ANSWERS ARE LOCATED IN THE 2ND HALF OF THIS DOC. | TRUE/FALSE - Write 'T' if the statement is true and 'F' if the statement is fals | TRUE/ | FALSE - | Write 'T' if the | e statement is true | and 'F' if the s | statement is false | |--|-------|---------|------------------|---------------------|------------------|--------------------| |--|-------|---------|------------------|---------------------|------------------|--------------------| 1) The angular size of an object increases as the distance to the observer increases. | | © Taise | |----|---| | 2) | The angular size of the Sun as observed from Earth is about 0.5 degree. o true false | | 3) | The angular size of the Moon as observed from Earth is about 0.5 degree. o true false | | 4) | The paths of the planets' orbits lie in all different directions in the sky. o true false | | 5) | The inability to observe parallax of stars contributed to the ancient Greek astronomers' rejection of the idea that Earth revolves around the Sun. o true TBEXAM.COM false | | 6) | The motion of the Sun with respect to the stars is retrograde, i.e., east to west relative to the stars. o true false | | 7) | During retrograde motion, the planet Mars rises in the west and sets in the east. o true false | | 8) | Parallax is the shift in a star's apparent position due to Earth's motion around the Sun. o true false | | 9) | The concept of the epicycle was introduced in the heliocentric model to explain the retrograde motion of the planets. o true false | ⊙ false ### **Explorations Edition 10 by Arny** | 10) In the heliocentric model, the retrograde motion of the planets was explained as the consequence of the different orbital speeds of the planets, without the use of epicycles. true false | |--| | 11) Copernicus' model was significantly better at predicting future positions of planets than Ptolemy's. true false | | 12) Galileo deduced many empirical laws of motion before Newton was even born. true false | | 13) During the month of January, Earth goes through the point of closest approach to the Sun. Using Kepler's Second law we can conclude that Earth moves faster in January than in July. true false | | 14) In geocentric theories, Earth is assumed to be the center of the solar system. true | | 15) The Sun is located at the center of Earth's elliptical orbit. true false | | 16) According to Kepler's laws the Sun is located at one of the foci of Earth's orbit. true false | | 17) Copernicus was able to calculate the distances to the observed planets relative to Earth's distance from the Sun. true false | | 18) Tycho Brahe relied on the use of telescopes to record his accurate positions for the planets. true | # **MULTIPLE CHOICE - Choose the one alternative that best completes the statement or** | answers the question. | | |---|--| | 19) The Moon appears larger when it rises than when it is high in the sky because | | - A) you are closer to it when it rises (angular-size relation). - B) you are farther from it when it rises (angular-size relation). - C) it's an illusion from comparison to objects on the horizon. - D) it's brighter when it rises. | 20) _ | was th | e first person | to measure the | circumference | of Earth. | |-------|--------|----------------|----------------|---------------|-----------| |-------|--------|----------------|----------------|---------------|-----------| - A) Ptolemy - B) Copernicus - C) Eratosthenes - D) Galileo - E) Aristarchus - 21) When was it first known that Earth was spherical in shape? - A) it was always known to be spherical - B) at the time of the Greeks - C) at the beginning of the Renaissance - D) only after Galileo used a telescope to study other planets - E) only recently within the last hundred years OM - 22) What is the size of an object located at a distance of 1,000 meters and that has angular size A - = 4 degrees? - A) about 11 meters - B) about 35 meters - c) about 70 meters - D) about 4,000 meters - 23) One observation supporting the idea of a spherical Earth is that ______. - A) the shape of Earth's shadow on the Moon during an eclipse is circular - B) a traveler moving south will see stars they could not previously see - c) a ship moving away from the observer will move such that the hull is not seen, then the sails disappear over the horizon - D) all of these choices are correct Version 1 3 | 24) The cu | irved shape of Earth's shadow during an eclipse was evidence for | |-------------------|---| | A) | a flat, circular Earth | | B) | a spherical Earth | | C) | a spherical Moon | | D) | a flat, circular Moon | | E) | None of these choices is correct | | 25) Which | of the following is a contribution that Eratosthenes made to astronomy? | | A) | He determined the circumference of Earth. | | В) | He discovered epicycles. | | C) | He discovered his Three laws (of Planetary Motion). | | D) | He was the first person known to have pointed a telescope at the sky. | | 26) What i | is meant by the phrase "angular size"? | | A) | an object's diameter | | B) | how big an object looks, expressed as an angle | | C) | the distance around an object | | D) | the angle between two circular objects | | 27) If you | triple your distance from an object, what happens to its angular size? | | A) | It decreases by one-half. TBEXAM.COM | | В) | It stays the same. | | C) | It reduces to one-third of what it was. | | D) | It increases by a factor of nine. | | 28) The Su | un and the Moon have an angular size of approximately | | A) | 1 degree | | В) | 5 degrees | | C) | 0.5 degree | | D) | 23.5 degrees | | E) | 2.35 degrees | | 29) The si | milarity of the Sun's and the Moon's angular sizes allow to occur. | | A) | tides | | В) | lunar phases | | C) | eclipses | | D) | sunspots | | E) | seasons | | | | | 30) | rne ap | pparent size of an object based on the amount of sky it covers is caned its | |-----|--------|---| | | A) | diameter | | | B) | shadow-width | | | C) | horizon | | | D) | angular size | | | E) | celestial extent | | 31) | The Su | un and the Moon have the same angular size. If the Sun is 400 times farther away than | | | the Mo | oon, the Sun must be times the size of the Moon. | | | A) | 400 | | | B) | 1/400 | | | C) | 1/4 | | | D) | 4 | | | E) | 4π | | 32) | One of | f two identical buildings is nearby, the other is twice as far away as the first. The | | | angula | r size of the more distant building is the nearby building's angular size. | | | A) | two times | | | B) | four times | | | C) | one half | | | D) | one fourth TBEXAM.COM | | | E) | the same as | | 33) | When | the Moon is on the horizon, it appears larger than when it is high in the sky. Why? | | | A) | When it is on the horizon, it is closer to us. | | | B) | This is an optical illusion. | | | C) | The brightness of the Moon makes it seem larger. | | | D) | Earth's atmosphere acts like a lens, magnifying it. | | | E) | Its angular size is larger on the horizon. | | 34) | One ol | oservation that supported an Earth-centered solar system is | | | A) | retrograde motion | | | В) | the phases of the Moon | | | C) | the lack of parallax in the stars | | | D) | the shape of Earth's shadow on the Moon | | | E) | the phases of Venus | | | | | | 35) | The shift | of a | star's | apparent | position | due to | o Earth' | s motion | around | the Sun | is cal | led | |-----|-----------|------|--------|----------|----------|--------|----------|----------|--------|---------|--------|-----| |-----|-----------|------|--------|----------|----------|--------|----------|----------|--------|---------|--------|-----| - A) parallax - B) retrograde motion - C) prograde motion - D) geocentricity - E) proper motion - 36) The parallax shift of a nearby star would be _____ that of a more distant star. - A) greater than - B) less than - C) the same as - D) brighter than - E) faster than - 37) The paths of the planets in the sky are tilted with respect to the celestial equator by about - A) 5 degrees. - B) 23 degrees. - C) 45 degrees. - D) 90 degrees. #### TBEXAM.COM - 38) One of the methods used to date supernova remnants (the remains of exploded stars) today is by using - A) the notebooks of Galileo. - B) the records of ancient Chinese, Japanese, and Korean astronomers. - C) the works of Ptolemy. - D) Kepler's laws. - 39) Which of the following objects passes through the zodiac? - A) Sun - B) Planets - C) Earth and Moon - D) All of these choices are correct. - E) None of these choices is correct. - 40) What is retrograde motion? - A) east to west motion of the Sun over many successive nights - B) east to west motion of the Moon relative to the stars over many successive nights - C) occasional east to west motion of the planets relative to the stars over many successive nights - D) occasional west to east motion of the planets relative to the stars over many successive nights - 41) During retrograde motion, a planet moves from______ to_____ relative to the stars. - A) east; west (moves westward) - B) west; east (moves eastward) - 42) Retrograde motion is discernible by watching a planet over the course of - A) a few minutes. - B) many hours. - C) many nights. - D) many years. - 43) During the course of a single night, a planet that is moving in retrograde motion will move - A) east to west. - B) west to east. TBEXAM.COM - C) not at all. - D) randomly about the sky. - 44) Imagine the much more massive Jupiter were to switch places with the less massive Mercury. Which of the following would accurately describe the outcome? - A) Jupiter would orbit the Sun in less time than it did before. - B) Jupiter would orbit the sun in more time than it did before. - C) Mercury would orbit the Sun in less time than it did before. - D) The orbital time for each of the planets would not change. - 45) Where on the celestial sphere would you look for the planets? - A) on the celestial equator - B) on the galactic equator - C) in the zodiac (near the ecliptic) - D) at the north celestial pole - 46) If you see a bright "star" in the sky, how could you tell whether it is a star or a planet? - A) Planets are too dim to be seen without a telescope. - B) Planets are round; stars have five points. - C) Planets always appear right next to the Moon. - D) Look at it several days later—if it's a planet, it will move across the background stars. - 47) The planets move _____ through the sky, relative to the background stars. - A) east to west - B) west to east - C) retrograde - D) northeast to southwest - E) None of these choices is correct. - 48) Of the earliest known planets, which exhibits retrograde motion? - A) All of these choices are correct - B) None of these choices is correct - C) Only Mars - D) Mercury, Venus, and Mars - E) Mars and Mercury - 49) What do we call it when a planet moves backward (east to west) through the stars? - A) retrograde motion - B) the Zodiac - C) regression - D) prograde motion - 50) Where will a planet in retrograde motion rise? - A) in the north - B) in the south - C) in the east (just like everything else in the sky) - D) in the west (the opposite of everything else in the sky) - 51) The planets (other than Earth) known to ancient Western cultures were _____. - A) Mercury, Venus, and Mars - B) Venus, Mars, Jupiter, and Saturn - C) Venus, Jupiter, Saturn, Uranus, and Neptune - D) Mercury, Venus, Mars, Jupiter, and Saturn - E) Mercury, Mars, Jupiter, and Saturn | 52) As th | e planets orbit the Sun, they are never far from the on the celestial sphere. | |-----------------------|---| | Α | ecliptic | | В | celestial equator | | С | horizon | | D | celestial pole | | E | meridian | | 53) The p | eath of the planets through the sky is tipped 23.5 degrees from the | | | celestial equator | | В | ecliptic | | С | zodiac | | D | north celestial pole | | E | the plane of the galaxy | | 54) The g | geocentric model was based on the observation that | | А | everything moves around Earth from east to west | | В | the sphere was a divine shape | | С | crystalline spheres rotated through the sky | | D | the Sun and Moon were flawless spheres | | E) | Earth is motionless in space | | | TBEXAM.COM | | 55) One j | phenomenon that the geocentric models struggled to explain was | | А | sunspots | | В | the rotation of Earth | | С | retrograde motion | | D |) parallax | | E | epicycles | | 56) An e _j | picycle was used in geocentric models to explain | | Α | parallax | | В | aurora | | С | retrograde motion | | D |) eclipses | | E, | Earth's circular shadow | - 57) Islamic scholars _____. - A) studied and expanded upon older texts in astronomy - B) made detailed studies of the motions of the planets - C) influenced the naming of bright stars - D) developed algebra - E) all of these choices are correct - 58) Asian astronomers ______. - A) kept detailed records of unusual celestial events - B) devised ways to predict eclipses - C) recorded the existence of sunspots - D) All of these choices are correct - 59) Kepler's Third, or harmonic, law states that the - A) period of an orbit cubed equals the semi-major axis squared. - B) semi-major axis of an orbit cubed equals the period squared. - C) planets move fastest when they are closest to the Sun. - D) semi-major axis of an orbit is inversely proportional to the period. - 60) Copernicus' heliocentric model failed to work as well as it might to predict the positions of planets because Copernicus insisted the orbits/were M - A) circular. - B) elliptical. - C) circular, mounted on epicycles. - D) hyperbolic. - 61) One of Tycho Brahe's major contributions to astronomy was to prove - A) that a supernova (exploding star) was much farther away than the planets. - B) that a comet was outside Earth's atmosphere. - C) that the Sun was the center of the solar system. - D) that a supernova (exploding star) was much farther away than the planets, and also that a comet was outside Earth's atmosphere. - E) that a supernova (exploding star) was much farther away than the planets, that a comet was outside Earth's atmosphere, and that the Sun was the center of the solar system. | 62) | The ge | eneral heliocentric model proposed by Copernicus was appealing, and eventually | |-----|---------|--| | | becam | e preferred, because | | | A) | it explained why we do not observe stellar parallax. | | | B) | it replaced Earth with the Sun as the center of the solar system. | | | C) | it was more aesthetically pleasing than the complicated Ptolemaic model. | | | D) | it made more accurate predictions than the Ptolemaic model. | | 63) | In | models, the Sun is assumed as the center of the solar system. | | | A) | Geocentric | | | B) | Anthropomorphic | | | C) | Epicyclic | | | | Heliocentric | | 64) | Galile | o was the first to observe the phases of | | | A) | the moon | | | B) | Venus | | | C) | Earth | | | D) | the sun | | 65) | In Cop | pernicus' model of the solar system, the planets orbited the in | | | orbits. | TBEXAM.COM | | | A) | Earth; circular | | | В) | Sun; elliptical | | | C) | Sun; circular | | | D) | Earth; elliptical | | 66) | | major contribution to astronomy is his extensive series of measurements of | | | planeta | ary positions. | | | A) | Tycho Brahe's | | | B) | Galileo's | | | C) | Kepler's | | | D) | Copernicus's | | 67) | | used the extensive records of planetary positions measured by to | | | discov | er that the orbits of the planets are | | | A) | Tycho; Kepler; circular | | | В) | Tycho; Kepler; elliptical | | | C) | Kepler; Tycho; elliptical | | | D) | Kepler; Galileo; elliptical | | 68) | Kepler | 's law states that the orbits of planets are elliptical, with the Sun at one | |-----|---------|---| | | focus. | | | | A) | First | | | B) | Second | | | C) | Third | | | D) | Fourth | | 69) | From I | Kepler's law, we conclude that the planets do not move with constant speed. | | | A) | First | | | B) | Second | | | C) | Third | | | D) | Fourth | | 70) | From I | Kepler's law, we conclude that Mars completes a full orbit much faster than | | | Pluto. | | | | A) | First | | | B) | Second | | | C) | Third | | | D) | Fourth | | 71) | Observ | vations indicate that it takes Saturn longer than Jupiter to complete one orbit about the | | | Sun. T | his agrees with which of Kepler's laws? | | | A) | First | | | B) | Second | | | C) | Third | | | D) | Fourth | | 72) | The tir | ne between the vernal equinox and the autumnal equinox is somewhat greater than the | | | time be | etween the autumnal equinox and the vernal equinox. This is a result of | | | Kepler | 's law. | | | A) | First | | | B) | Second | | | C) | Third | | | D) | Fourth | | 73) | Which | of the following is a contribution that Kepler made to astronomy? | | | A) | He determined the size of Earth. | | | B) | He discovered epicycles. | | | C) | He discovered his Three laws (of Planetary Motion). | | | D) | He discovered four moons (or satellites) of Jupiter. | - 74) Which of the following is a contribution that Galileo made to astronomy? - A) He determined the size of Earth. - B) He discovered epicycles. - C) He developed the first successful heliocentric theory. - D) He discovered four moons (or satellites) of Jupiter. - 75) Galileo's observation of sunspots showed that ______. - A) the Sun was not a flawless sphere - B) Earth revolved around the Sun - C) planets moved along elliptical orbits around the Sun - D) the stars could change - E) none of these choices is correct - 76) Galileo's observation of the satellites of Jupiter showed that _____. - A) there were objects that did not orbit Earth - B) planets orbited the Sun - C) the Moon was not a flawless sphere - D) nothing orbited Earth - E) none of these choices is correct TBEXAM.COM # Σ 0 \mathcal{O} Σ ∢ \bowtie 되 Щ \vdash ## **Explorations Edition 10 by Arny** ## **Answer Key** Test name: Chapter 02 - 1) FALSE - 2) TRUE - 3) TRUE - 4) FALSE - 5) TRUE - 6) FALSE - 7) FALSE - 8) TRUE - 9) FALSE - 10) TRUE - 11) FALSE - 12) TRUE - 13) TRUE - 14) TRUE - 15) FALSE - 16) TRUE - 17) TRUE - 18) FALSE - 19) C - 20) C - 21) B - 22) C - 23) D - 24) B - 25) A - 26) B - 27) C - 28) C - 29) C - 30) D - 31) A - 32) C - 33) B - 34) C - 35) A 36) A 37) B TBEXAM.COM Version 1 14 38) B Σ 0 \mathcal{O} Σ ∢ \bowtie 뙤 Щ \vdash 73) C74) D75) A76) A 39) D 40) C 41) A 42) C 43) A 44) A 45) C 46) D 47) B 48) D 49) A 50) C 51) D 52) A 53) A 54) A 55) C 56) C 57) A 58) D TBEXAM.COM 59) B 60) A 61) D 62) C 63) D 64) B 65) C 66) A 67) C 68) A 69) B 70) C 71) C 72) B