
Test Bank for College Physics 3rd Edition by Freedman

CLICK HERE TO ACCESS COMPLETE Test Bank

Test Bank

Name:	Class:	Date:
Chapter 01: Introduction to Physics		
1. Which of the following is a fundament a. kilometer b. joule c. kilogram d. gram e. newton ANSWER: c	al unit of the SI system of units?	
2. The SI unit for mass is		
a. µg.		
b. mg.		
c. g.		
d. kg.		
e. lb.		
ANSWER: d		
3. The prefix "giga" stands fora. 10 ¹²		
b. 10 ⁶		
c. 10^3		
d. 10 ⁹		
e. 10 ¹⁵		
ANSWER: d		
4. Which of the following is NOT one of	the fundamental physical quantities	es in the SI system?
a. mass		
b. lengthc. force		
d. time		
ANSWER: c		
5. The prefix "mega" means a. 10^2		
b. 10 ⁹		
c. 10 ⁻³		
d. 10^6		
e. 10 ⁻⁶		
ANSWER: d		

Name:	Class:	Date:
Chapter 01: Introduction to Physics		
6. The prefix "pico" means		
a. 10^{-12}		
b. 10 ⁻⁶		
c. 10^{-3}		
d. 10^6		
e. 10 ⁹		
ANSWER: a		
7. The prefix "micro" means		
a. 10^{-12}		
b. 10 ⁻⁶		
c. 10^{-3}		
d. 10^{-2}		
e. 10^{-1}		
ANSWER: b		
8. The prefix "milli" means		
a. 10^{-12}		
b. 10 ⁻⁶		
c. 10^{-3}		
d. 10 ⁻²		
e. 10 ⁻¹		
ANSWER: c		
9. The prefix "centi" means		
a. 10^{-12}		
b. 10 ⁻⁶		
c. 10^{-3}		
d. 10^{-2}		
e. 10^{-1}		
ANSWER: d		
10. The prefix "kilo" means		
a. 10^{-12}		
b. 10 ⁻⁶		
c. 10^{-3}		

Name:	Class:	Date:_
Chapter 01: Introduction to Physics		
d. 10^3		
e. 10 ¹		
ANSWER: d		
11. The prefix "nano" means a. 10 ⁻¹²		
b. 10 ⁻⁶		
c. 10^{-3}		
d. 10^{-2}		
e. 10 ⁻⁹		
ANSWER: e		
12. Which of the following prefixes doesa. nanob. microc. kilo	NOT represent a fractional part of a whole unit	t?
d. milli		
e. deci		
ANSWER: c		
a. kilob. megac. gigad. tera	NOT represent a quantity larger than a single u	ınit?
e. femto		
ANSWER: e		
14. Which of the following is NOT one o a. Newton	f the fundamental units in the SI system?	
b. meter		
c. kilogram		
d. second		
ANSWER: a		
	are mount of a substance, current, and luminous into amount of a substance, current, and luminous in	

c. mass, length, time, temperature, force, current, and luminous intensity.

Name: Class: Date:

- d. mass, length, time, force, momentum, amount of a substance, and current.
- e. weight, length, time, temperature, amount of a substance, potential energy, and luminous intensity.

ANSWER: a

- 16. The density of seawater was measured to be 1.07 g/cm³. This density in common SI units is _____.
 - a. $1.07 \times 10^{-3} \text{ kg/m}^3$
 - b. $(1/1.07) \times 10^3 \text{ kg/m}^3$
 - c. $1.07 \times 10^3 \text{ kg}$
 - d. $1.07 \times 10^{-3} \text{ kg}$
 - e. $1.07 \times 10^3 \text{ kg/m}^3$

ANSWER: e

- 17. To convert a quantity from km/h to m/s, you must
 - a. multiply by 1000 and divide by 60.
 - b. multiply by 1000 and divide by 3600.
 - c. multiply by 60 and divide by 1000.
 - d. multiply by 3600 and divide by 1000.

ANSWER: b

- 18. To convert a quantity from m/s to km/h, you must
 - a. multiply by 1000 and divide by 60.
 - b. multiply by 1000 and divide by 3600.
 - c. multiply by 60 and divide by 1000.
 - d. multiply by 3600 and divide by 1000.

ANSWER: d

- 19. To convert a quantity from km/($h \cdot s$) to m/s², you must
 - a. multiply by 1000 and divide by 60.
 - b. multiply by 1000 and divide by 3600.
 - c. multiply by 60 and divide by 1000.
 - d. multiply by 3600 and divide by 1000.

ANSWER: b

- 20. To convert a quantity from g/cm³ to kg/m³, you must
 - a. multiply by 0.01.
 - b. multiply by 100.
 - c. multiply by 1000.
 - d. multiply by 0.001.
 - e. multiply by 1,000,000.

CHICK III	INE TO ACCESS THE CONFIDENT	Tese Bank
Name:	Class:	Date:
Chapter 01: Introduction to Phys	<u>ics</u>	
ANSWER: c		
•	re at an expression in which the numer d. When the calculation is completed, to.	
b. meters, if you multiply by 10		
c. seconds, if you divide by 100		
d. seconds, if you multiply by 1		
e. meters squared per second, if <i>ANSWER:</i> d	f you multiply by 1000.	
THVSWER. U		
a. 30 mph	80 km/h. Your speed in mph is approx	imately
b. 40 mph		
c. 50 mph		
d. 60 mph		
e. 70 mph		
ANSWER: c		
The result will have units of		umerator and m/s ² in the denominator.
a. m^2/s^3		
b. s^{-1}		
c. s^3/m^2		
d. s		
e. m/s		
ANSWER: d		
	its mass divided by its volume. The m f the Sun is 2×10^{33} g and its radius is	hass of Earth is 6×10^{24} kg and its 7×10^5 km. Determine the ratio of the
b. 4×10^2		
c. 4×10^{0}		
d. 4×10^1		
ANSWER: c		
25. Evaluate: $(4.0 \times 10^{-6})(3.0 \times 10^{4})$		

Name: Class: Date:

Chapter 01: Introduction to Physics

- a. 12×10^{10}
- b. 1.2×10^{-10}
- c. 12×10^{-5}
- d. 1.2×10^{-1}
- e. 12×10^{-10}

ANSWER: d

26. Evaluate:

$\frac{(2\pi \times 10^3)(3.0 \times 10^7)}{(4.2 \times 10^5)^2}$

- a. 1.1×10^5
- b. 1.7×10^{-4}
- c. 3.6×10^{-8}
- d. 4.5×10^{5}
- e. 1.1

ANSWER: e

27. Compute:

$$\frac{(3 \times 10^8)(8 \times 10^4)}{(6 \times 10^5)}$$

- a. 1×10^{17}
- b. 6×10^{7}
- c. 6×10^7
- d. 4×10^{7}

ANSWER: d

28. Compute:

$$\frac{(6.2\times10^{-4})+(4.0\times10^{-5})}{(20\times10^{-3})}$$

- a. 3.3×10^{-6}
- $b.\ 5.1\times 10^6$
- c. 5.1×10^{-12}
- d. 3.3×10^{-1}

ANSWER: d

29. When we look up in the sky the Sun appears about as big as the moon; however, we know that the Sun is

Name:	Class:	Date:
-------	--------	-------

much further away. Given that the radius of the Sun is about 7×10^8 m and that the radius of the moon is about 2×10^6 m, calculate approximately the number of times the moon could fit inside the Sun.

- a. 4×10^2
- b. 4×10^{6}
- c. 1×10^{7}
- d. 1×10^5
- e. 2×10^{5}

ANSWER: c

30. Compute:

$$(12 \times 10^6 - 2 \times 10^7) / (-12 \times 10^7 + 7 \times 10^6)$$

- a. 7.1×10^{-2}
- b. 7.0×10^6
- c. 2.0×10^{-8}
- d. -7.1×10^{-2}
- e. 2×10^{5}

ANSWER: a

31. The SI unit for temperature is

- a. Celsius [°C]
- b. Fahrenheit [°F]
- c. Kelvin [K]
- d. Rankine [°R]
- e. Newton [°N]

ANSWER: c

32. List the unit prefixes from the largest to the smallest.

- a. milli micro nano femto pico
- b. milli micro femto pico nano
- c. milli micro pico nano femto
- d. micro milli nano pico femto
- e. milli micro nano pico femto

ANSWER: e

33. Table below shows fundamental quantities, their SI units and unit abbreviations. Fill in the missing entries.

Fundamental Quantities and Their SI Units

Quantity	Unit	Abbreviation
	second	

CLICK HERE TO ACCESS THE COMPLETE Test Bank

Name:		Class:	Date:
Chapter 01: Introduction	to Physics		
		m	
mass			
temperature			
	ampere		
		mol	
			kilogram, kg; kelvin, K; (electric)
34. Which of the following a	does not result in a rat	tio of 1.0×10^6 ?	
a. 1.0 mm			
1.0 nm			
b. 10 hm 1.0 mm			
c. 1.0 <i>Ym</i>			
$\frac{1.0 Tm}{1.0 Em}$			
d. 100 km			
$\overline{1.0 \ dm}$			
e. 1.0 <i>μm</i>			
1.0 fm			
ANSWER: e			
35. The number of femtosec	conds in a millisecond	is	
a. 10^3 .			
b. 10^6 .			
c. 10^9 .			
d. 10 ¹² .			
e. 10 ¹⁵ .			
ANSWER: d			
36. The prefix "M" means			
a. micro.			
b. milli.			
c. mega.			

d. mole.

	Name:	Class:	Date:
--	-------	--------	-------

e. multi.

ANSWER: c

- 37. Basketball player Stephen Curry is 1.90 m tall. When converted to feet (1 ft = 0.3048 m) and inches (1 in. = 0.0254 m), his height is closest to
 - a. 6 ft 3 in.
 - b. 6 ft 2 in.
 - c. 6 ft 23 in.
 - d. 7 ft 5 in.
 - e. 6 ft ¹/₄ in.

ANSWER: a

- 38. Lebron James' height is 6' 8" (1' = 0.3048 m, 1'' = 0.0254 m). Tallest player to ever play in NBA was Gheorghe Muresan, who is 231 cm tall. Determine the absolute difference between players height rounded to three significant figures.
 - a. 26.7 cm
 - b. 16.7 cm
 - c. 17.8 cm
 - d. 27.8 cm
 - e. 11.9 cm

ANSWER: d

- 39. When driving on a highway at 100 km/h, the distance the distracted driver covers during the 5 s it takes to read a text message is closest to
 - a. 5 m.
 - b. 10 m.
 - c. 50 m.
 - d. 100 m.
 - e. 500 m.

ANSWER: d

40. Average acceleration due to gravity is $g = 9.81 \frac{m}{s^2}$. What is the value of the acceleration due to gravity in $\frac{km}{h^2}$?

a.
$$1.27 \times 10^5 \frac{km}{h^2}$$

b.
$$7.60 \times 10^{-10} \frac{km}{h^2}$$

c.
$$2.72 \frac{km}{h^2}$$

d.
$$7.60 \times 10^{-7} \frac{km}{h^2}$$

e.
$$35.3 \frac{km}{h^2}$$

Name: Class: Date:

ANSWER: a

- 41. In 1849 Fizeau measured the speed of light to be 313,000 km/s with the error of 5000 km/s. The relative uncertainty (ratio of the error to the value) is
 - a. 0.01.
 - b. 0.02.
 - c. 0.0160.
 - d. 0.016.
 - e. 60.

ANSWER: b

42. The spectrum of visible light covers wavelength between 450 nm and 700 nm. Which of the following properly expresses the wavelength range in proper scientific notation?

a.
$$(450 \times 10^{-9} - 700 \times 10^{-9})$$
 m

b.
$$(4.50 \times 10^{-7} - 7.00 \times 10^{-7})$$
 m

c.
$$(0.450 \times 10^{-9} - 7.00 \times 10^{-9})$$
 m

d.
$$(0.450 \times 10^{-6} - 0.700 \times 10^{-6})$$
 m

e.
$$(450 - 700)$$
 nm

ANSWER: b

- 43. The measurement 5.130×10^{-4} has _____ significant figures.
 - a. two
 - b. three
 - c. one
 - d. seven
 - e. four

ANSWER: e

- 44. The measurement 23.0040 has _____ significant figures.
 - a. six
 - b. three
 - c. five
 - d. four
 - e. two

ANSWER: a

45. The momentum of a body is defined to be the product of its mass and its velocity. If the mass of an air-track glider is known to be 225 g and its velocity is measured to be 3.1 cm/s, its momentum should be reported as

Name:	Class:	Date:
-------	--------	-------

- c. $7.0 \times 10^2 \,\mathrm{g \cdot cm/s}$.
- d. 6.98×10^2 g · cm/s.
- e. $6.975 \times 10^2 \text{ g} \cdot \text{cm/s}$.

ANSWER: c

- 46. The net force acting on a body is defined to be the product of the mass of the body and its resultant acceleration. If the mass of a body is known to be 184 kg and its acceleration is measured to be 2.4 m/s^2 , the resultant force should be reported as
 - a. $4.4 \times 10^2 \text{ kg} \cdot \text{m/s}^2$.
 - b. $441.6 \text{ kg} \cdot \text{m/s}^2$.
 - c. $442 \text{ kg} \cdot \text{m/s}^2$.
 - d. $4.416 \text{ kg} \cdot \text{m/s}^2$.
 - e. $4.42 \times 10^2 \text{ kg} \cdot \text{m/s}^2$.

ANSWER: a

- 47. Which of the following represents a value of current measured to at least five significant figures?
 - a. 2.375×10^4 A
 - b. 0.00347 A
 - c. 3.0×10^5 A
 - d. $23.75 \times 10^1 \text{ A}$
 - e. 50.300 A

ANSWER: e

- 48. The number of seconds in a month is of the order of
 - a. 10^3 .
 - b. 10^8 .
 - c. 10^5 .
 - d. 10¹⁰
 - e. 10^6

ANSWER: e

- 49. Earth's population, expressed as an order of magnitude, is closest to
 - a. 10^6 .
 - b. 10¹⁰.
 - c. 10^5 .
 - $d. 10^8$.

Name:	Class:	Date:
Chapter 01: Introduction to Physics		
e. 10^7 .		
ANSWER: b		
50. The chemical agent dioxin can be too billion. If I am testing a soil sample that to label it toxic or hazardous? a. a picogram b. a kilogram c. a microgram d. a milligram		
e. a nanogram ANSWER: c		
51. An impurity in a manufacturing proc million. What is the maximum amount o product? a. 100 micrograms b. 100 nanograms c. 100 grams		
d. 100 megagrams e. 100 milligrams ANSWER: e		
52. What is the order of magnitude of the a. 10^8 m b. 10^4 m c. 10^6 m d. 10^3 m e. 10^5 m <i>ANSWER</i> : b	e height of Earth's tallest mountain?	
53. One of the longest bridges on Earth is the order of a. 10 ³ m. b. 10 ⁴ m. c. 10 ⁵ m. d. 10 ⁶ m. e. 10 ⁷ m.	s the Danyang-Kunshan Grand Bric	lge. The length of the bridge is on

ANSWER: c

	Name:	Class:	Date:
--	-------	--------	-------

- 54. A person inhales about 1 L of air per breathe. Estimate the number of air molecules inhaled.
 - a. 10^{10} .
 - b. 10¹⁴.
 - c. 10¹⁸.
 - d. 10²².
 - e. 10^{26} .

ANSWER: d

- 55. Estimate the number of raindrops needed to fill a volume of $1m \times 1m \times 1cm$.
 - a. 10^3
 - b. 10^5
 - c. 10⁷
 - $d. 10^9$
 - e. 10¹¹

ANSWER: c

- 56. Light travels at 3×10^8 m/s, and it takes about 8 min for light from the sun to travel to Earth. Based on this, the order of magnitude of the distance from the sun to Earth is
 - a. 10¹⁰ m.
 - b. 10^8 m.
 - c. 10⁹ m.
 - d. 10^6 m.
 - e. 10¹¹ m.

ANSWER: e

- 57. The length of a proton is of the order of 10^{-15} m and the length of the visible universe is of the order of 10^{26} m. From this information you can conclude that
 - a. the length of the universe is 26 orders of magnitude greater than that of the proton.
 - b. the length of the universe is 41 orders of magnitude greater than that of the proton.
 - c. the length of the proton is 11 orders of magnitude greater than that of the universe.
 - d. the length of the universe is 15 orders of magnitude greater than that of the proton.
 - e. the length of the proton is 15 orders of magnitude greater than that of the universe.

ANSWER: b

58. The mass of an electron is of the order of 10^{-30} kg and the mass of the universe is believed to be of the order of 10^{52} kg. From this information you can conclude that

CLICK HERE TO ACCESS	S THE COMPLETE	Test Bank
Name:	_ Class:	Date:
Chapter 01: Introduction to Physics		
a. the mass of Earth is 52 orders of magnitude groups. the mass of Earth is 30 orders of magnitude groups. the mass of the electron is 82 orders of magnitude. The mass of Earth is 82 orders of magnitude groups. The mass of the electron is 30 orders of magnitude. The mass of the electron is 30 orders of magnitude.	eater than that of the e ude greater than that o eater than that of the e	lectron. f Earth. lectron.
59. Light travels at 3×10^8 m/s, and the size of a protime taken for light to pass across a proton. a. 10^{-7} s b. 10^{-8} s c. 10^{-22} s d. 10^{-24} s e. 10^{+23} s	on is about 1 fm. Calc	culate the order of magnitude for the
50. If Earth is approximately 4.5 billion years old, est has rotated about its own axis. (Assume a constant rat a. 10 ⁹ b. 10 ¹⁰ c. 10 ¹¹ d. 10 ¹² e. 10 ¹⁴		gnitude for the number of times it
ANSWER: d 61. If you have a music CD collection of about 150 d neartbeats you would have if you listened all the way a. 10 ⁶ b. 10 ⁸ c. 10 ¹⁰ d. 10 ⁴ e. 10 ³ ANSWER: a		

62. A diehard music lover still prefers to listen to his vinyl records, which rotate at 33.33 revolutions per minute. If he listens for an average of three hours per day, estimate the order of magnitude for the number of revolutions his turntable makes in a year.

a. 10^7

Name:	Class:	Date:
Chapter 01: Introduction to Physics		
b. 10^2		
c. 10 ⁶		
d. 10 ⁵		
e. 10 ⁴		
ANSWER: c		
63. The second is defined to be the amountation waves. The number of significant of a. 3.	-	om to emit 9,192,631,770 cycles of
b. 6.		
c. 9.		
d. 10.		
ANSWER: d		
64. Density of styrofoam is $0.0320 \frac{g}{cm^3}$.	This number has	
a. 1 significant digit.		
b. 2 significant digits.		
c. 3 significant digits.		
d. 4 significant digits.		
e. 5 significant digits.		
ANSWER: c		
65. When writing a number, all zeros to a. True	the right of the decimal point are sig	gnificant figures.
b. False		
ANSWER: b		
66. When multiplying or dividing number number with fewest significant figures. a. True	ers, the result has the same numbers	of significant figures as the input
b. False		
ANSWER: a		
67. When adding or subtracting numbers decimal point as the input number with the a. True		
b. False		
ANSWER: b		
68. The dimensions of mass density are _	·	

Name:	Class:	Date:
Chapter 01: Introduction to Physics		
a. mass × distance		
time		
b. mass \times (distance) ³		
c. mass × (distance) ²		
d. mass		
distance		
e. <u>mass</u>		
(distance) ³		
ANSWER: e		
69. The dimensions of two quantities MUS quantities.	ST be identical if you are either	or the
a. adding; multiplying		
b. subtracting; dividing		
c. multiplying; dividing		
d. adding; subtracting		
ANSWER: d		
70. In the expression $F_{\text{net}} = ma$, m must hat a. $\frac{\text{mass} \times \text{distance}}{(\text{time})^2}$ b. $\frac{\text{mass}}{\text{c.}} \frac{\text{distance}}{\text{distance}}$	eve the dimensions	
(time) ²		
d. distance time		
e. $\frac{\text{mass} \times (\text{distance})^2}{(\text{time})^2}$		
ANSWER: b		
71. If <i>K</i> has dimensions of $\frac{\text{mass} \times (\text{distant})^2}{(\text{time})^2}$	$\frac{(\alpha - \alpha)^2}{(\alpha - \alpha)^2}$, the α in $K = \alpha mv^2$ must	
a. have the dimensions $\frac{\text{mass} \times \text{distar}}{(\text{time})^2}$	<u>nce</u>	

c. have the dimensions $\frac{\text{distance}}{(\text{time})^2}$.

b. have the dimension mass.

Name: Class: Date:

Chapter 01: Introduction to Physics

- d. have the dimensions $\frac{(\text{distance})^2}{(\text{time})^2}$
- e. be dimensionless.

ANSWER: e

- 72. If x and t represent distance and time, respectively, the C in $x = \frac{1}{2}Ct^2$ must
 - a. have the dimensions $\frac{\text{mass} \times \text{distance}}{(\text{time})^2}$.
 - b. have the dimensions mass.
 - c. have the dimensions $\frac{\text{distance}}{(\text{time})^2}$
 - d. have the dimensions $\frac{(\text{distance})^2}{(\text{time})^2}$.
 - e. be dimensionless.

ANSWER: c

- 73. If v and t represent velocity and time, respectively, C_1 in $v = C_1 e^{-C_2 t}$ must
 - a. have the dimensions $\frac{\text{distance}}{\text{time}}$.
 - b. have the dimensions mass.
 - c. have the dimensions $\frac{\text{distance}}{(\text{time})^2}$
 - d. have the dimensions $\frac{(\text{distance})^2}{(\text{time})^2}$
 - e. be dimensionless.

ANSWER: a

- 74. If v and t represent velocity and time, respectively, C_2 in $v = C_1 e^{-C_2 t}$ must
 - a. have the dimensions $\frac{\text{mass} \times \text{distance}}{(\text{time})^2}$
 - b. have the dimension $(time)^{-1}$.
 - c. have the dimensions $\frac{\text{distance}}{(\text{time})^2}$
 - d. have the dimensions $\frac{(\text{distance})^2}{(\text{time})^2}$.
 - e. be dimensionless.

	Name:	Class:	Date:
--	-------	--------	-------

ANSWER: b

- 75. If x and t represent position and time, respectively, the A in $x = A \cos(Bt)$ must
 - a. have the dimensions $\frac{\text{mass} \times \text{distance}}{(\text{time})^2}$
 - b. have the dimensions mass.
 - c. have the dimensions distance.
 - d. have the dimensions $\frac{(\text{distance})^2}{(\text{time})^2}$
 - e. be dimensionless.

ANSWER: c

- 76. If x and t represent position and time, respectively, the B in $x = A \cos(Bt)$ must
 - a. have the dimensions $\frac{\text{mass} \times \text{distance}}{(\text{time})^2}$
 - b. have the dimensions $(time)^{-1}$.
 - c. have the dimensions $\frac{\text{distance}}{(\text{time})^2}$
 - d. have the dimensions $\frac{(\text{distance})^2}{(\text{time})^2}$
 - e. be dimensionless.

ANSWER: b

- 77. In Newton's law of gravity the universal gravitational constant is $G = Fr^2/m_1m_2$, where F is the gravitational force between the two masses, m_1 and m_2 , and r is the distance between them. What are the dimensions of G?
 - a. (distance)² × (time)²
 mass
 - b. $\frac{(\text{mass})^3 \times (\text{distance})^3}{(\text{time})^2}$
 - c. $\frac{\text{(distance)}^2}{\text{(mass)}^2 \times \text{(time)}^2}$
 - d. $\frac{\text{(distance)}^3}{\text{mass} \times (\text{time)}^2}$
 - e. $\frac{\text{mass} \times (\text{time})^3}{(\text{distance})^3}$

ANSWER: b

Name:	Class:	Date:
-------	--------	-------

78. The dimensions of energy, E, are $\frac{\text{mass} \times (\text{distance})^2}{(\text{time})^2}$. Using dimensional analyzes, E is the product of

which two quantities?

- a. Mass divided by time squared
- b. Force times acceleration
- c. Mass times acceleration
- d. Force times distance
- e. Force times time

ANSWER: d

79. Speed of sound in solids can be calculated using equation $v = \sqrt{\frac{Y}{\rho}}$. If ρ stands for density (with units of

 kg/m^3 , constant Y must have dimensions of _____.

- a. mass × (time)²
- b. $\frac{\text{mass} \times \text{time}}{(\text{distance})^2}$
- c. $\frac{\text{mass}}{\text{time} \times (\text{distance})^2}$
- d. mass × distance
 - (time)²
- e. mass distance × (time)²

ANSWER: e

- 80. Electric current is defined as the amount of electric charge passing through a point in one second. Based on that definition, one can conclude that the units of the electric charge, coulomb, are equal to
 - a. 4
 - b. $\frac{s}{A}$
 - c. A · s
 - d. $A \cdot s^2$
 - e. $A^2 \cdot s$

ANSWER: c

81. The amount of heat (Q) transferred during the thermal process can be calculated using equation $Q = MC_V\Delta T$. If m is the amount of the substance, ΔT is the change in temperature and Q has dimensions of

Name: Class: Date:

 $\frac{\text{mass} \times (\text{distance})^2}{(\text{time})^2}$, the units of the constant C_v are

- a. $\frac{m^2}{K s^2}$.
- $^{b.} \, \frac{\text{kg m}^2}{\text{mol K s}^2} \, .$
- $^{C.} \; \frac{\text{mol m}^2}{\text{kg K s}^2}.$
- $^{d.} \frac{\text{kg m}}{\text{mol K s}^2}.$
- $^{e.} \ \frac{\text{mol m}^2}{\text{kg K m}^2}.$

ANSWER: b