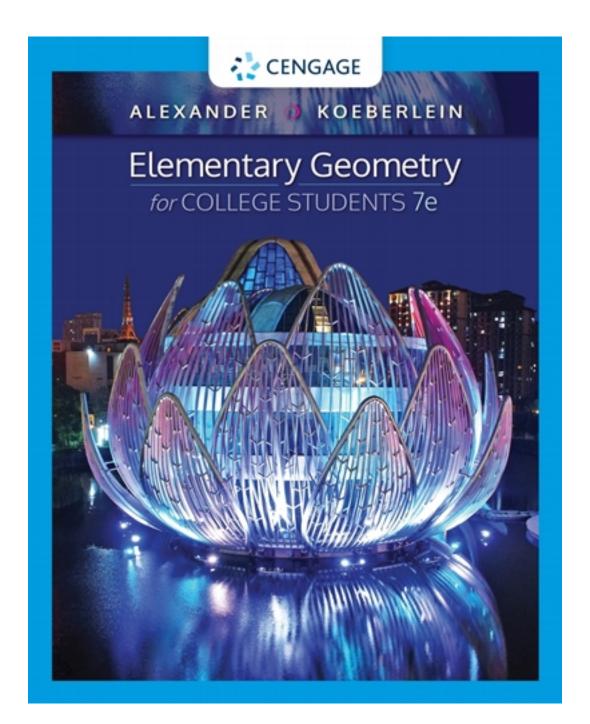
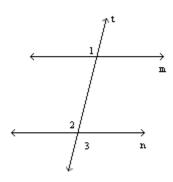
Test Bank for Elementary Geometry for College Students 7th Edition by Alexander

CLICK HERE TO ACCESS COMPLETE Test Bank



Test Bank



1. Supply missing reasons for this proof.

Given: $m \parallel n$ Prove: $\angle 1 \cong \angle 3$

S1. $m \parallel n$ R1.

S2. $\angle 1 \cong \angle 2R2$.

S3. $\angle 2 \cong \angle 3R3$.

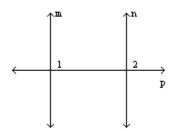
S4. $\angle 1 \cong \angle 3R4$.

ANSWER: R1. Given

R2. If 2 parallel line are cut by a transversal, then corresponding angles are congruent.

R3. If two lines intersect, the vertical angles formed are congruent.

R4. Transitive Property of Congruence



2. Supply missing *statements* and missing *reasons* for the following proof.

Given: $m \parallel n$ and transversal p; $\angle l$ is a right angle

Prove: ∠2is a right angle

S1. $m \parallel n$ and transversal p R1.

S2. $\angle 1 \cong \angle 2R2$.

S3. R3. Congruent measures have equal measures.

 $S4. m \angle 1 = 90R4.$

S5. R5. Substitution Property of Equality

S6. R6. Definition of a right angle

ANSWER: R1. Given

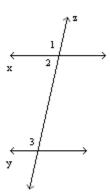
R2. If 2 parallel lines are cut by a trans, corresponding angles are congruent.

S3. $m \angle 1 = m \angle 2$

R4. Given

 $S5. m \angle 2 = 90$

S6. ∠2is a right angle



3. In the figure, $x \parallel y$ and transversal z. Explain why $\angle 2$ and $\angle 3$ must be supplementary.

ANSWER: With $x \parallel y$, corresponding angles 1 and 3 must be congruent. Then $m \angle 1 = m \angle 3$.

But $\angle 1$ and $\angle 2$ are supplementary in that the exterior sides of these adjacent angles form a straight line. Then $m \angle 1 + m \angle 2 = 180$. By substitution, $m \angle 3 + m \angle 2 = 180$. Then $\angle 2$ and $\angle 3$ are supplementary.

4. Use an indirect proof to complete the following problem.

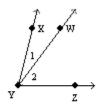
Given: ∠land ∠2are supplementary (no drawing)

Prove: $\angle 1$ and $\angle 2$ are *not* both obtuse angles.

ANSWER: Suppose that $\angle 1$ and $\angle 2$ are both obtuse angles. Then $m \angle 1 > 90$ and $m \angle 2 > 90$.

It follows that $m \angle 1 + m \angle 2 > 180$. But it is given that $\angle 1$ and $\angle 2$ are supplementary, so that $m \angle 1 + m \angle 2 = 180$.

With a contradiction of the known fact, it follows that the supposition must be false; thus, $\triangle 1$ and $\triangle 2$ are *not* both obtuse angles.



5. Use an indirect proof to complete the following problem.

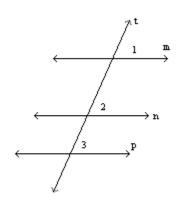
Given: $\angle l$ is not congruent to $\angle 2$ Prove: \overrightarrow{YW} does not bisect $\angle XYZ$

ANSWER: Suppose that \overrightarrow{YW} does bisect $\angle XYZ$. Then $\angle 1 \cong \angle 2$.

But it is given that $\angle l$ is not congruent to $\angle 2$.

Thus, the supposition must be false and it follows that

₩ does not bisect ∠XYZ



6. Supply missing *statements* in the following proof.

Given: $m \parallel n_{\text{and }} n \parallel p$

Prove: $m \parallel p$

S1. R1. Given

S2. R2. If 2 parallel lines are cut by a transversal, corr. angles are congruent.

S3. R3. Given

S4. R4. Same as #2.

S5. R5. Transitive Property of Congruence

S6. R6. If 2 lines are cut by a transversal so that corresponding angles

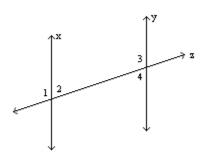
are congruent, then these lines are parallel.

ANSWER: S1. $m \parallel n$

S2.
$$\angle 1 \cong \angle 2$$

S3. $n \parallel p$

S6.
$$m \parallel p$$



7. Supply missing *statements* and *reasons* for the following proof.

Given: ∠lis supplementary to ∠4

Prove: $x \parallel y$

S1 R1

S2. $\angle 3$ is supp. to $\angle 4$ R2. If the ext. sides of 2 adj. angles form a line, the angles are supp.

S3. R3. Angles supp. to the same angle are congruent.

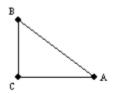
S4. R4.

ANSWER: S1. ∠lis supplementary to ∠4

R1. Given

$$S4. x \parallel y$$

R4. If 2 lines are cut by a trans. so that corr. angles are congruent, these lines are parallel.



8. In the triangle shown, $\angle C$ is a right angle. Explain why $\angle A$ and $\angle B$ are complementary.

ANSWER: The sum of the angles of a triangle is 180. With $\angle C$ being a right angle. $m \angle C = 90$.

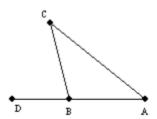
Then $m \angle A + m \angle B + 90 = 180$. By subtraction, $m \angle A + m \angle B = 90$.

Thus, $\angle A$ and $\angle B$ are complementary.

9. Explain the following statement.

The measure of each interior angle of an equiangular triangle is 60.

ANSWER: The sum of the three angles of a triangle is 180. Let x represent the measure of each angle of the equiangular triangle. Then x + x + x = 180, so 3x = 180. Dividing by 3, x = 60. That is, the measure of each interior angle of an equiangular triangle is 60.



10. Supply missing *reasons* for the following proof.

Given: $\triangle ABC_{\text{with D-B-A}}$ Prove: $m \angle 1 = m \angle A + m \angle C$

S1. $\triangle ABC$ with D-B-A R1.

 $S2. m \angle A + m \angle C + m \angle CBA = 180 R2.$

S3. $\angle l_{and} \angle CBA_{are}$ supp. R3. S4. $m \angle l + m \angle CBA = 180_{R4}$.

 $S5. m \angle 1 + m \angle CBA = m \angle A + m \angle C + m \angle CBAR5.$

 $S6. m \angle 1 = m \angle A + m \angle CR6.$

ANSWER: R1. Given

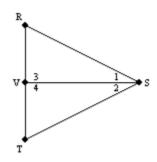
R2. The sum of the interior angles of a triangle is 180.

R3. If the exterior sides of 2 adjacent agles form a line, these angles are supplementary.

R4. Definition of supplementary angles

R5. Substitution Property of Equality

R6. Subtraction Property of Equality



11. Supply missing *statements* and missing *reasons* for the following proof.

Given: $\Delta RST_{so that} \overline{VS}_{bisects} \angle RST$;

also, $\angle 3 \cong \angle 4$ Prove: $\angle R \cong \angle T$

S1. $\triangle RST_{so}$ that $\overline{VS}_{bisects} \angle RST_{R1}$.

S2. R2.

S3. R3. Given

S4. R4. If 2 angles of one triangle are congruent to 2 angles of a second triangle, then the third angles

of these triangles are also congruent.

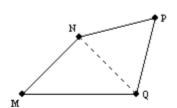
ANSWER: R1. Given

S2. $\angle 1 \cong \angle 2$

R2. Definition of angle-bisector

S3. ∠3 ≅ ∠4

S4. $\angle R \cong \angle T$



12. Using the drawing provided, explain the following statement.

The sum of the interior angles of a quadrilateral is 360.

ANSWER: In $\triangle MNQ$, $m \angle M + m \angle 1 + m \angle 3 = 180$. Similarly, $m \angle P + m \angle 2 + m \angle 4 = 180$.

By the Addition Property of Equality, $m \angle M + (m \angle 1 + m \angle 2) + m \angle P + (m \angle 3 + m \angle 4) = 360$. That is, $m \angle M + m \angle MNP + m \angle P + m \angle PQM = 360$.

13. Use an indirect proof to complete the following problem.

Given: $\triangle ABC$ (not shown)

Prove: $\angle A$ and $\angle B$ cannot both be right angles.

ANSWER: Suppose that $\angle A$ and $\angle B$ are both be right angles. Then $m \angle A = 90$ and $m \angle B = 90$. By the Protractor Postulate, $m \angle C > 0$. Then $m \angle A + m \angle B + m \angle C > 180$. But this last

statement contradicts the fact that the sum of teh three interior angles of a triangle is exactly 180. Thus, the

supposition must be false and it follows that $\angle A$ and $\angle B$ cannot both be right angles.