Solutions for Batch Distillation Simulation Optimal Design and Control 2nd Edition by Diwekar

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

Basic Modes of Operation

- 2.1 A mixture containing 48.6 percent benzene and 51.4 percent ethylene chloride is to be distilled in a batch distillation column with 20 theoretical plates. The column is operating under the constant reflux mode at a reflux ratio equal to 9.8. Assume the relative volatility of benzene with respect to ethylene chloride is 1.109.
 - a) Find the concentration of the product when 95.4 percent of the total mixture is distilled. Assume that the initial distillate composition is approximately 0.722.
 - b) If the original feed is 100 moles and the vapor boil-up rate is 100 moles/hr, what is the time required to complete the operation?
 - c) Simulate the variable reflux operation assuming the reflux ratio varies from 5.0 to 20.0. Find the end compositions and the total time.
- 2.2 A batch distillation column operating at atmospheric pressure is to be designed to separate a mixture containing 15.67 mole percent CS₂ and 84.33 mole percent CCl₄ into an overhead product containing 91 percent CS₂. Assume the column to be operating in the variable reflux mode with an initial reflux ratio of 3.0.
 - a) How many theoretical plates are required for the process?
 - b) If the distillate is stopped when the reflux ratio is equal to 15.0, what is the amount of distillate obtained?
 - c) What is the heat required per kmole of product?

Latent heat for the CS_2 and CCl_4 mixture is 25,900 kJ/kmol and the data for the equilibrium curve is given below.

```
x_{\rm CS2} .0296 .0615 .1106 .1435 .2585 .3900 .5318 .6630 .7575 .8604 y_{\rm CS2} .0823 .1555 .2660 .3320 .4950 .6340 .7470 .8290 .8780 .9320
```

- 2.3 If the same system is operating with the constant reflux mode of operation, with the initial product composition of 95 percent and with a reflux ratio of 5.0,
 - a) How many theoretical plates are required?
 - b) Simulate the condition and stop the operation when the average distillate composition is 0.90. What is the amount of distillate collected at this stage? What is the batch time if V=100 moles?

CLICK HERE TO ACCESS THE COMPLETE Solutions

Batch Distillation: Simulation, Optimal Design and Control:Solution Manual

- c) Find the heat required per kmole of product.
- 2.4 A multicomponent mixture containing meta, ortho and para mono-nitro-toluene is to be distilled using a distillation column containing eight theoretical plates. The feed composition at the start of operation is 0.6, 0.36, 0.04 of meta, ortho and para-mono-nitro-toluene respectively. The column is operating at a reflux ratio equal to 3.0 and with constant reflux mode of operation. Assume that the product composition varies from 0.94 to 0.85. The relative volatilities of meta, ortho, and para-mono-nitro-toluene can be assumed as 1.7, 1.16 and 1.0 respectively. Use the plate-to-plate calculation method to calculate the relation between the distillate composition and the still composition at any instant.
 - a) Plot the distillate compositions of meta, ortho and para-mono-nitro-toluene versus the still composition of meta-mono-nitro-toluene.
 - b) Plot the still compositions of ortho and para-moono-nitro-toluene versus the still composition of meta-mono-nitro-toluene.
 - c) Find the fraction distilled at the end of the operation.
- 2.5 The same column in Example 2.4 is operated with the variable reflux mode of operation. The distillate purity of the meta-mono-nitro-toluene is to be maintained at 0.98. Assume that the reflux ratio varies from 10 to 80.
 - a) Plot the distillate compositions of ortho and para-mono-nitro-toluene versus the still composition of meta-mono-nitro-toluene.
 - b) Plot the still compositions of ortho and para-mono-nitro-toluene versus the still composition of meta-mono-nitro-toluene.
 - c) Plot reflux ratio versus the still composition of meta-mono-nitro-toluene.s
 - c) Find the fraction distilled at the end of the operation.
- 2.6 Converse and Gross, in 1963, solved the maximum distillate optimal reflux problem given below (Converse and Gross, 1963).

Maximum Distillate Problem – Maximize the amount of distillate of a specified concentration for a specified time.

Use their system to compare the three modes of operation.

- 2.7 Find the heat duty of the reboiler for the minimum time problem solved in the section on optimal reflux (Section 2.4).
- 2.8 Bowman and Cichelli, in 1949, presented a very interesting concept of pole height for a binary batch distillation column. A pole height is defined as the product of the mid-point of the slope of the distillate composition versus material remaining in the still curve and the amount of the material remaining in the still at that time. Figure 2.1 illustrates the concept

FIGURE 2.1

The Pole Height Concept (reproduced from Bowman and Cichelli, 1948)

of pole height. They stated that the pole height is invariant to the initial concentration and provides a good measure for defining sharpness of separation.

Take 100 moles of a binary mixture containing component A & B with a relative volatility 1.5. Use a five theoretical stage batch distillation column and a constant reflux operation with a reflux equal to 5.0. Vary the initial composition from x_A equal to 0.5 to 0.4 and plot the distillate composition versus the amount remaining in the still. Calculate the pole height for each case. Verify the concept.

PROBLEM &LICK HERE TO ACCESS THE COMPLETE Solutions

Sheet1

PROBLEM		2,1			
	ATIO = 9.8				
	OF PLATES				
TOMBLIT	<u> </u>	PARTS	,A}	AND	8)
RESULTS	FROM	BATCH-DI		7140	
NO	TIME		:XB1	XB2	
1		100	0.486	0.514	
2	0.4104	96.2		0.5232	·····
3	0,8208	92,4	0.4671	0.5329	
4	1.2312	88.6	0.457	0.543	
5	1.6416	84.8	0,4465	0.5535	l I
6	2.052	81,0001	0.4355	0.5645	
7	2,4624	77,2001	0.424	0.576	
B	2,8728		0.4118	0.5882	
9	3.2832	69.6001	0.3991	0.6009	
10	3.6936	65.8001	0.3858	0.6142	
	4,104	62.0001	0.3717	0,6283	·
12	4,5144	58,2001	0,3569	0.6431	
13	4.9248		0.3413		
14	5.3352		0,3249		
15	5.7456		0.3074	0.6926	
16	6,156		0.3074	0,711	
17	6,5664		0.2695	0,7305	
18	6.9768	35.4001	0.2489	0.7511	
19	7.3872	31.6001	0.227	0.7311	
20	7.7976	27.8001	0.2038	0.7962	
21	8.208	24.0001	0.1793	0.8207	
22	8.6184	20.2001		0.8467	
23		16.4001	0.1359	0.8741	
24	9.4392	12.6001	0.0971	0.9029	
25	9.8496	8.8001	0.0672	0.9328	
26	10.26	5.0001	0,0367	0.9633	
27	10.26	5	0.0366	0.9634	
	וטגטו		0,0300	0.5054	
NO	TIME	D	XD1	XD2	.,
1) IIVIE	0	0.7241	0.2759i	
2	0.4104	3.8	0.7157	0.2843	
3	0.8208	7.6	0.7067	0.2933	
4	1.2312	11.4	0.6971	0.3029	
5	1,8416	15.2	0.6868	0.3132	
<u>6</u>	2.052	18.9999	0.6758	0.3242	
7	2.4624	22.7999	0,664		
8	2,8728	26,5999	0,6513		
9	3,2832	30.3999	0,6377	0.3623	
10	3,6936	34,1999	0,6229	0.3771	
11	4.104	37.9999	0.6069	0.3931	
12	4.5144	41.7999	0.5896	0.4104	
13	4.9248	45.5999	0.5708	0.4104	
14	5.3352	49.3999	0.5503	0.4497	
15	5.7456	53.1999	0.5279	0.4721	
16	6.156	56.9999	0.5033	0.4721	
	0.156	20.8888	0.5033	U.490/	

INSTAL DISTRIBLATE COMPOSITION 0.7241

17	6,5664	60.7999	0.4764	0.5236	•
18	6.9768	64,5999	0.4469	0.5531	
19	7.3872	68.3999	0.4143	0.5857	
20	7.7976	72.1999	0.3784	0.6216	
21	8.208	75.9999	0.3389	0.6611	
22	8.6184	79.7999	0.2952	0.7048	
23	9.0288	83.5999	0.2472	0.7528	
24	9.4392	87.3999	0.1945	0.8055	
25	9.8496	91.1999	0.1374	0.8626	
26	10.26	94.9999	0.0767	0.9233	
27	10,26	95	0,0767	0.9233	,
		·		_	

Q)
$$\frac{X_8 = 0.0366}{D = 95}$$
 $X_{DQN} = \frac{(100)(0.986) - (-5)(0.0866)}{95}$
 $B = 5.$ $Y_{DQN} = 0.51$
 $X_{DQN} = 0.186$

н

Sheet1

fancourse	 -	n 4	PART	c)	
PROBLEM	RESULTS		BATCH-DI		
			PLATES		20
	NUMBER	OF	PLATES		20
<u> </u>		DATIO .		00.0400	 .
<u> </u>	REFLUX	RATIO	=	20.6463	
		_		VDA	
NO	TIME	<u>B</u>	XB1	XB2	<u> P</u>
1	0	100	0.486	0.514	5
2	0.22	96,4033	0.4803	0.5197	5,2432
3	0.44	92.9513		0,5255	5.5073
4	0.66	89.6403		0.5315	5.7855
5	98.0	86.4664	0.4623	0,5377	6.0817
6	1.1	83.4262	0.4559	0.5441	6.3964
7	1.32		0.4493	0,5507	6.7309
8	1.54	L · —	0.4426	0.5574	7.0869
9	1.76	75.0743	0.4357	0.5643	7.4664
10	1.98	72,5354	0.4286	0.5714	
11	2.2	70.1133	0.4214	0.5786	8,3026
12	2.42	67,8048	0.4141	0.5859	8,7659
13	2.64	65,6068	0.4066	0.5934	9,2625
14	2.86	63.5163	0.399	0.601	9,7954
15	3.08	61.5299	0,3913	0.6087	10.368
16	3.3	59.6447	0.3835	0.6165	10.9838
17	3.52	57.8573		0.6244	11,647
18	3.74	56.1645		0,6322	12.362
19	3.96	54,5633		0.6402	13.1337
20	4.18	53,0503	0.3519	0.6481	13,9674
21	4.4	51,6225		0.656	14.8692
22	4.62	50.2766	0.3362	0.6638	15.8453
23	4.84	49.0094	0.3284	0.6718	16.9029
24	5.06	47,8178	0.3207	0.6793	18.0498
25	5.28	46,6987	0.3131	0.6869	19.2945
26	5.5	45,6487	0.3056	0.6944	20.6463

$$\frac{2.1}{X_0} = \frac{5.5}{1.356}$$

$$\frac{X_0}{X_0} = \frac{0.3056}{1.356}$$

$$\frac{X_0}{X_0} = \frac{45.6187}{1.356}$$

$$\frac{X_0}{X_0} = \frac{5.5}{1.6375}$$

$$\frac{X_0}{X_0} = \frac{5.5}{1.6375}$$

$$\frac{X_0}{X_0} = \frac{5.5}{1.6375}$$

22.285 TO ACCESS THE COMPLETE Solutions -aw 0 50 .::=[] 17 Ø Ø 06 21 (TIL 1 1 1.17 +-|-|-Squares to the Inch

14

CLICK HERE TO ACCESS THE COMPLETE Solutions 1.1.. ø ОЬ 02 03 αs 04 06 07 0 8 10 o i

Data from "Untitled Data #1"

Distillate amt.

Hence, we have:

Reflux Ratio (R)	2 ₁ 5	_D_
3. ∩ \$. p	0.1567 0.098	T-23
₹.0	0.080	11-17
9.0	0.087	12-141
11.0	0.040	15.41
13.0	ర.037s-	15.66
15.0	ంచికాం	13.91

The Dostillate amount, when xg = 0.0350 is :-

$$D = F\left(1 - \frac{x_{D} - x_{D}}{x_{0} - x_{D}}\right)$$

$$= 100\left(1 - \frac{0.91 - 0.035}{0.91 - 0.035}\right)$$

$$= 13.91 \text{ Moles}.$$

(c) The Heat required per Kinnole of product is: - $Q = \int_{0}^{D} R dD = \lambda \int_{0}^{D} R dD$ $(R_{VS} D)$

The area under the ource, is obtained from graphical extegration to yield:

Average heat required per levol of distillate:

$$A = (\frac{2045-582}{13.91}) \frac{kF}{mol} = 146.95 \frac{kF}{mol}$$

PROB 2.3

COD The mumber of theoritical stages as obtained storm a grapphical construction is: - 7.

to from natural tollance calculations:

The amount of distribute escented at this stage = 8.32 molThe borton time assuming a varpor tool - up rate of 100 molosum. is: $\frac{(R+1)}{V}D$. = $\frac{(6\times8.32)}{(180)}$ = 0.5 hrs

CO The heat required per Knol of prodeut;

$$\frac{Q = \frac{\lambda RD}{D} = (25.900 \text{ MAR} \times 50)}{\text{MAR}}$$

= 129.5 Kg.

Solutions HERE TO ACCESS THE COMPLETE (0.90,090) (XD,XD)

CLICK HERE TO ACCESS THE COMPLETE Solutions 0 0.4

*γ*2η

PRUTER 2.4

Sheet1

PROBLEM	0.4	I			. .
		DATOUR			
RESULTS	FHOM	BATCH-DI	31		
SEMI-RIGO	DROUS SIN	MULATION	(CONSTAN	TREFLUX)
		<u></u>			<u> </u>
THE COMP	PONENTS	AND RELAT	LIVE AOTV	FILITIES AF	3E
1	XDA(I)		XB(I)	ALPHA(I)	
1	0.8774	0.6		1.7	
2	0.1175	0.36		1,18	
3	0,0051	0.04	0.051	1	
:					
REFLUX	RATIO	=	3		
NUMBER	OF	PLATES	=	8	
NO	TIME	В	XB1	XB2	ХВЗ
1	Ö	100	0.6	0.36	0.04
2	0.0384	99.04	0.5971	0,3625	0.0403
2	0.0768	98.08	0.5942	0,3651	0.0407
4	0.1152			0.3677	0.0411
5	0.1536			0.3704	0.0414
6	0.192		L 6.717	0.3731	0.0418
7	0.2304				0.0422
8	0.2688				
9	0.3072		0.5756		0.043
10	0.3456		0.5724		
11	0.384		0.569		0.0438
12	0.4224		0.5657		0.0442
13	0.4608		0.5623		0.0446
14	0.4992	<u> </u>	0.5588	0.3961	0.0451
15	0.4992		0.5553	0.3992	0.0455
16	0.576		0.5517	0.4024	0.046
17	0.6144	84.6401	0.548	0.4055	0.0464
18	0.8528			0.4088	0.0469
	0.6912			0.4088	
19		82.7202			0.0474
20	0.7296			0,4154	0,0479
21	0.768		· · · · · · · · · · · · · · · · ·	0.4188	0.0484 0.0489
22	0.8064		0.5289	0.4222	
23	0.8448		0.5249	0.4257	0.0494
24	0.8832			0.4293	0.0499
25	0.9216			0.4329	0.0505
26	0.96			0.4366	0.051
27	0.96	76	0.5124	0.4366	0,051
<u></u>			N/B.4		145.4
NO	TIME	ם	XD1	XD2	XD3
1	0	0		0.0972	0.004
2	0.0384		0.8974	0.0985	0,0041
3	0.0768		0.896	0.0998	0.0042
4	0.1152		0.8946		0.0042
5	0.1536		0.8931		0.0043
- 6	0.192	4.8	0.8916		0.0044
7	0,2304	5.7599	0.8901	0.1055	0.0045

INITIAL XDHETH = 0.8987

CLICK HERE TO ACCESS THE COMPLETE Solutions

Sheet1

8	0.2688	6.7199	0.8885	0.107	0.0045
9	0.3072	7.6799	0.8869	0.1085	0.0046
10	0.3456	8,6399	0.8852	0.1101	0.0047
11	0,384	9.5999	0.8834	0,1118	0.0048
12	0.4224	10.5599	0.8817	0.1135	0.0049
13	0.4608	11.5199	0.8798	0.1152	0.005
14	0.4992	12.4799	0,8779	0.117	0.0051
15	0.5376	13,4399	0.876	0.1189	0.0052
16	0.576	14.3999	0.874	0,1208	0.0053
17	0,6144	15.3599	0.8719	0.1227	0,0054
18	0,6528	16.3199	0.8698	0.1248	0.0055
19	0.6912	17.2798	0.8676	0.1268	0.0056
20	0.7296	18.2398	0.8653	0.129	0.0057
21	0.768	19.1998	0.863	0.1312	0.0058
22	0.8064	20.1598	0.8606	0.1335	0,0059
23	0.8448	21.1198	0.8581	0.1358	0,0061
24	0.8832	22.0798	0.8555	0.1383	0.0062
25	0.9216	23.0398	0.8529	0.1408	
26	0.96	23,9998	0.8501	0.1434	0.0065
27	0.96	24	0.8501	0.1434	0.0065

FINAL X Duets = 0.8501

D= 24

GRAPHS

FROM

BATCH - DIST

4

Problem 2.5 - For the given Specifications N= Nmin so the problem could not be solved.

problem 2.6 - Converse & Bass (1963) have privided a list of table comparing the three modes of operation which is given below.

Table L	Tower Conditions	
ve volatility or of plates		2 4
ion of operatio	n, hour	1

110 0.9

Table (I	Total	Distillate	Accumulation	
I GOLF II		Bel di iliani de	~454III4IHII	***

		(M	oles)		
	Find	values		At	
Gase No.	XB XBIT N Male Fraction	B S(T) , Moles	Using Optimal Policy	Constant Overhead Composi- tion	At Constant Reflux Ratio
4 3 8 2 7	0.303	93.9	13,87	13.22	13,50
3	0.362	78.0	18,01	17,30	17.97
8	0.487	115.1	36,10	35.67	35,63
2	0.498	69.5	29.52	28.46	29.06
	0.545	101.3	41.26	40.72	40.63
12	0.600	133.0	52.97	52.63	52.19
6	0.636	90.3	50.27	49.90	49.19
11	0.646	117.9	57.94	57.55	56.93
16	0.685	148.6	68.63	68.31	67, 50
10	0.713	106.1	66.24	66.18	64,69
1	0.715	74.3	54.33	53,93	53.28
15	0.721	133.0	73.02	· 72,16	72,00
14	0.770	121.9	81.89	81.30	79,87
5	0,772	91.4	71.51	70,73	69.75
5 9	0,809	107,1	87,86	87.21	84,38
13	0,836	120,8	100,75	99,13	98.44

Sheet1

CASE 1 XA = 0.5 SEMI-RIGOROUS SIMULATION (CONSTANT REFLUX) THE COMPONENTS AND RELATIVE VOLATILITIES ARE I XDA(I) XF(I) XB(I) ALPHA(I) 1 0.5549 0.5 0.0059 1.5 2 0.4451 0.5 0.9941 1 REFLUX RATIO = 5 NUMBER OF PLATES = 5 NO TIME B XB1 XB2 1 0 100 0.5 0.5 2 0.216 96.4 0.487 0.513 3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.09 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3352 0.6465 11 2.16 63.9999 0.3092 0.6901 13 2.592 56.7999 0.3032 0.6878 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7933 15 3.024 49.5999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7933 15 3.024 49.5999 0.2861 0.7639 16 3.24 45.9999 0.2861 0.7639 16 3.24 45.9999 0.2966 0.7904 17 3.456 42.3999 0.1826 0.8174 18 3.672 38.7999 0.1554 0.8446 19 3.888 35.1999 0.1927 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0769 0.9211 22 4.536 24.3999 0.0769 0.9211 22 4.536 24.3999 0.0769 0.9911 22 4.536 24.3999 0.0057 0.99426 23 4.752 20.7999 0.0069 0.9941	PROBLEM	2.8			1	
SEMI-RIGOROUS SIMULATION (CONSTANT REFLUX) THE COMPONENTS AND RELATIVE VOLATILITIES ARE I XDA(I) XF(I) XB(I) ALPHA(I) 1 0.5549 0.5 0.0059 1.5 2 0.4451 0.5 0.9941 1 REFLUX RATIO = 5 NUMBER OF PLATES = 5 NO TIME B XB1 XB2 1 0 100 0.5 0.5 2 0.216 96.4 0.487 0.513 3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6878 12 2.376 60.3999 0.3322 0.6878 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2861 0.7639 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2361 0.7639 17 3.456 42.3999 0.2066 0.7904 17 3.456 42.3999 0.1554 0.8446 19 3.888 35.1999 0.1029 0.8971 21 4.32 27.9999 0.1554 0.8446 19 3.888 35.1999 0.1029 0.8971 21 4.32 27.9999 0.039 0.991 22 4.536 24.3999 0.1029 0.9961 23 4.752 20.7999 0.039 0.9961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941						
THE COMPONENTS AND RELATIVE VOLATILITIES ARE I XDA(I)	CASE 1 X	A = 0.5		.		
THE COMPONENTS AND RELATIVE VOLATILITIES ARE I XDA(I)				l		
XDA(I) XF(I) XB(I) ALPHA(I) 1 0.5549 0.5 0.0059 1.5 2 0.4451 0.5 0.9941 1 REFLUX RATIO = 5	SEMI-RIGO	DROUS SIN	MULATION	(CONSTAN	T REFLUX	1
XDA(I) XF(I) XB(I) ALPHA(I) 1 0.5549 0.5 0.0059 1.5 2 0.4451 0.5 0.9941 1 REFLUX RATIO = 5						
1 0.5549 0.5 0.0059 1.5 2 0.4451 0.5 0.9941 1 REFLUX RATIO = 5 NUMBER OF PLATES = 5 NO TIME B XB1 XB2 1 0 100 0.5 0.5 2 0.216 96.4 0.467 0.513 3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6678 12 2.376 60.3999 0.3029 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2863 0.8174 18 3.672 38.7999 0.1826 0.8174 18 3.672 38.7999 0.1826 0.8174 19 3.888 35.1999 0.1297 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0769 0.9211 22 4.536 24.3999 0.00574 0.9426 23 4.752 20.7999 0.0039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941	THE COM	PONENTS /	AND RELAT	FIVE VOLAT	TILITIES AF	3E
1 0.5549 0.5 0.0059 1.5 2 0.4451 0.5 0.9941 1 REFLUX RATIO = 5 NUMBER OF PLATES = 5 NO TIME B XB1 XB2 1 0 100 0.5 0.5 2 0.216 96.4 0.467 0.513 3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6678 12 2.376 60.3999 0.3029 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2863 0.8174 18 3.672 38.7999 0.1826 0.8174 18 3.672 38.7999 0.1826 0.8174 19 3.888 35.1999 0.1297 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0769 0.9211 22 4.536 24.3999 0.00574 0.9426 23 4.752 20.7999 0.0039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941						
2 0.4451 0.5 0.9941 1 REFLUX RATIO = 5 NUMBER OF PLATES = 5 NO TIME B XB1 XB2 1 0 100 0.5 0.5 2 0.216 96.4 0.487 0.513 3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.9926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6678 12 2.376 60.3999 0.3022 0.6678 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2361 0.7639 16 3.24 45.9999 0.2066 0.7804 17 3.456 42.3999 0.1826 0.8174 18 3.672 38.7999 0.1826 0.8174 19 3.888 35.1999 0.1554 0.8446 19 3.888 35.1999 0.1029 0.8971 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0759 0.9211 22 4.536 24.3999 0.0759 0.9211 22 4.536 24.3999 0.0039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941					1-1-	
REFLUX RATIO = 5 NUMBER OF PLATES = 5 NO TIME B XB1 XB2 1 0 100 0.5 0.5 2 0.216 96.4 0.487 0.513 3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.9926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6878 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.26617 0.7383 16 3.24 45.9999 0.2096 0.7804 17 3.456 42.3999 0.1826 0.8174 18 3.672 38.7999 0.1826 0.8174 19 3.888 35.1999 0.1287 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.039 0.961 22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.032 0.9868 26 5.4 10 0.0059 0.9941					1.5	
NUMBER OF PLATES = 5 NO TIME B XB1 XB2 1 0 100 0.5 0.5 2 0.216 96.4 0.487 0.513 3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6678 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2361 0.7639 16 3.24 45.9999 0.1826 0.8174 18 3.672 38.7999 0.1554 0.8446 19 3.888 35.1999 0.1029 0.8971 21 4.32 27.9999 0.1029 0.8971 21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0792 0.9961 24 4.968 17.1999 0.0059 0.9961 24 4.968 17.1999 0.0059 0.9961 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941			0,5	0,9941	1	
NO TIME B XB1 XB2 1 0 100 0.5 0.5 2 0.216 96.4 0.487 0.513 3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3322 0.6878 11 2.16 63.9999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7983 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 <						
1 0 100 0.5 0.5 2 0.216 96.4 0.487 0.513 3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3322 0.6878 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2361 0.7639 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2096 0.7904 17 3.456 42.3999<	NUMBER (OF PLATES	= 5			
1 0 100 0.5 0.5 2 0.216 96.4 0.487 0.513 3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3322 0.6878 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2361 0.7639 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2096 0.7904 17 3.456 42.3999<						
2 0.216 96.4 0.487 0.513 3 0.432 92.8 0.4793 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1,08 82 0.4276 0.5724 7 1,296 78.4 0.4106 0.5894 8 1,512 74.8 0.9926 0.6074 9 1,728 71.2 0.3736 0.6264 10 1,944 67.5999 0.3535 0.6465 11 2,16 63.9999 0.3099 0.6901 13 2,592 56,7999 0.2863 0.7137 14 2,808 53,1999 0.2617 0.7383 15 3,024 49,5999 0.2361 0.7639 16 3,24 45,9999 0.2096 0.7904 17 3,456 42,3999 0,1554 0.8446 19 3,888						
3 0.432 92.8 0.4733 0.5267 4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1,08 82 0.4276 0.5724 7 1,296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1,728 71.2 0.3736 0.6264 10 1,944 67.5999 0.3535 0.6465 11 2,16 63.9999 0.3322 0.6678 12 2,376 60.3999 0.3099 0.6901 13 2,592 56,7999 0.2863 0.7137 14 2,808 53.1999 0.2617 0.7383 15 3,024 49.5999 0.2361 0.7639 16 3,24 45,9999 0.2096 0.7904 17 3,456 42,3999 0.1826 0.8174 18 3,672 38,7999 0.1554 0.8446 19 3,888 35,1999 0.1287 0.8713 20 4,104 31,5999 0.1029 0.8971 21 4,32 27,9999 0.0769 0.9211 22 4,536 24,3999 0.0769 0.9211 22 4,536 24,3999 0.039 0.961 24 4,968 17,1999 0.0242 0.9758 25 5,184 13,5999 0.0132 0.9868 26 5,4 10 0.0059 0.9941		_				
4 0.648 89.2 0.4589 0.5411 5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6878 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2066 0.7904 17 3.456 42.3999 0.1828 0.8174 18 3.672 38.7999 0.1287 0.8713 20 4.104 </td <td></td> <td> ,</td> <td></td> <td></td> <td></td> <td></td>		,				
5 0.864 85.6 0.4437 0.5563 6 1.08 82 0.4276 0.5724 7 1.296 78.4 0.4106 0.5894 8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6678 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2096 0.7904 17 3.456 42.3999 0.1826 0.8174 18 3.672 38,7999 0.1554 0.8446 19 3.888 35.1999 0.1287 0.8713 20 4.1						
6 1,08 82 0.4276 0.5724! 7 1,296 78.4 0.4106 0.5894! 8 1,512 74.8 0.3926 0.6074 9 1,728 71.2 0.3736 0.6264 10 1,944 67,5999 0.3535 0.6465 11 2,16 63,9999 0.3099 0.6901 12 2,376 60,3999 0.3099 0.6901 13 2,592 56,7999 0.2863 0,7137 14 2,808 53,1999 0.2617 0.7383 15 3,024 49,5999 0.2361 0.7639 16 3,24 45,9999 0.2096 0.7904 17 3,456 42,3999 0.1826 0.8174 18 3,672 38,7999 0.1287 0.8713 20 4,104 31,5999 0.1029 0.8971 21 4,32 27,9999 0.0574 0.9426 23 <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td></t<>						
7 1,296 78,4 0,4106 0,5894; 8 1,512 74,8 0,3926 0,6074 9 1,728 71,2 0,3736 0,6264 10 1,944 67,5999 0,3535 0,6465 11 2,16 63,9999 0,3322 0,6878 12 2,376 60,3999 0,3099 0,6901 13 2,592 56,7999 0,2863 0,7137 14 2,808 53,1999 0,2617 0,7383 15 3,024 49,5999 0,2361 0,7639 16 3,24 45,9999 0,2361 0,7639 17 3,456 42,3999 0,1826 0,8174 18 3,672 38,7999 0,1554 0,8446 19 3,888 35,1999 0,1554 0,8446 19 3,888 35,1999 0,1029 0,8713 20 4,104 31,5999 0,1029 0,8971 21 4,32 27,9999 0,0769 0,9211 22 4,536 24,3999 0,0769 0,9211 22 4,536 24,3999 0,039 0,961 24 4,968 17,1999 0,0242 0,9758 25 5,184 13,5999 0,0132 0,9868 26 5,4 10 0,0059 0,9941						
8 1.512 74.8 0.3926 0.6074 9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6878 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2096 0.7904 17 3.456 42.3999 0.1826 0.8174 18 3.672 38.7999 0.1554 0.8446 19 3.888 35.1999 0.1287 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0769 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.0039 0.961 24 4.968 <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>						
9 1.728 71.2 0.3736 0.6264 10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6678 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2096 0.7904 17 3.456 42.3999 0.1826 0.8174 18 3.672 38.7999 0.1554 0.8446 19 3.888 35.1999 0.1287 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941				1421		<u></u>
10 1.944 67.5999 0.3535 0.6465 11 2.16 63.9999 0.3322 0.6678 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2096 0.7904 17 3.456 42.3999 0.1826 0.8174 18 3.672 38.7999 0.1554 0.8446 19 3.868 35.1999 0.1287 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.039 0.961 24 4.968 17.1999 0.0132 0.9868 25 5.184 13.5999 0.0132 0.9868 26 5.				l		
11 2.16 63.9999 0.3322 0.6878 12 2.376 60.3999 0.3099 0.6901 13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2096 0.7904 17 3.456 42.3999 0.1826 0.8174 18 3.672 38.7999 0.1554 0.8446 19 3.868 35.1999 0.1287 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20,7999 0.039 0.961 24 4.968 17.1999 0.0132 0.9868 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0069 0.9941					-	
12 2.376 60.3999 0.3099 0.6901 13 2.592 56,7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49,5999 0.2361 0.7639 16 3.24 45,9999 0.2096 0.7904 17 3.456 42,3999 0.1826 0.8174 18 3.672 38,7999 0.1554 0.8446 19 3.888 35,1999 0.1287 0.8713 20 4.104 31,5999 0.1029 0.8971 21 4.32 27,9999 0.0789 0.9211 22 4,536 24,3999 0.0574 0.9426 23 4,752 20,7999 0.039 0.961 24 4,968 17,1999 0.0132 0.9868 25 5,184 13,5999 0.0132 0.9868 26 5,4 10 0.0069 0.9941						
13 2.592 56.7999 0.2863 0.7137 14 2.808 53.1999 0.2617 0.7383 15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2096 0.7904 17 3.456 42.3999 0.1826 0.8174 18 3.672 38.7999 0.1554 0.8446 19 3.868 35.1999 0.1287 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0069 0.9941						
14 2,808 53,1999 0,2617 0,7383 15 3,024 49,5999 0,2361 0,7639 16 3,24 45,9999 0,2096 0,7904 17 3,456 42,3999 0,1826 0,8174 18 3,672 38,7999 0,1554 0,8446 19 3,888 35,1999 0,1287 0,8713 20 4,104 31,5999 0,1029 0,8971 21 4,32 27,9999 0,0789 0,9211 22 4,536 24,3999 0,0574 0,9426 23 4,752 20,7999 0,039 0,961 24 4,968 17,1999 0,0242 0,9758 25 5,184 13,5999 0,0132 0,9868 26 5,4 10 0,0059 0,9941						
15 3.024 49.5999 0.2361 0.7639 16 3.24 45.9999 0.2096 0.7904 17 3.456 42.3999 0.1826 0.8174 18 3.672 38.7999 0.1554 0.8446 19 3.888 35.1999 0.1287 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0069 0.9941						
16 3,24 45,9999 0.2096 0.7904 17 3,456 42,3999 0.1826 0.8174 18 3,672 38,7999 0,1554 0.8446 19 3,868 35,1999 0,1287 0,8713 20 4,104 31,5999 0,1029 0,8971 21 4,32 27,9999 0,0789 0,9211 22 4,536 24,3999 0,0574 0,9426 23 4,752 20,7999 0,039 0,961 24 4,968 17,1999 0,0132 0,9868 25 5,184 13,5999 0,0132 0,9868 26 5,4 10 0,0069 0,9941						
17 3.456 42.3999 0.1826 0.8174 18 3.672 38,7999 0.1554 0.8446 19 3.888 35.1999 0.1287 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20,7999 0.039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0069 0.9941			., —			
18 3.672 38.7999 0.1554 0.8446 19 3.868 35.1999 0.1287 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941						
19 3.868 35.1999 0.1287 0.8713 20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941						
20 4.104 31.5999 0.1029 0.8971 21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941						
21 4.32 27.9999 0.0789 0.9211 22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0069 0.9941						/
22 4.536 24.3999 0.0574 0.9426 23 4.752 20.7999 0.039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0069 0.9941						
23 4.752 20.7999 0.039 0.961 24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941						
24 4.968 17.1999 0.0242 0.9758 25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0059 0.9941						
25 5.184 13.5999 0.0132 0.9868 26 5.4 10 0.0069 0.9941						
26 5.4 10 0.0059 0.9941						
NO TIME D XD1 XD2		5.4	10	0.0009	0.3341	
NO TIME D XD1 XD2						
NO TIME D XD1 XD2					·	
NO TIME D XD1 XD2	-					
		TIME	ח	XD1	XD2	
1 0 0 0.8512 0.1488						
2 0.216 3.6 0.8437 0.1563						·
3 0.432 7.2 0.8354 0.1646	3					
4 0.648 10.8 0.8261 0.1739						
5 0.864 14.4 0.8159 0.1841						i
8 1.08 18 0.8044 0.1956						

CLICK HERE TO ACCESS THE COMPLETE Solutions

Sheet1

7	1,296	21.6	0.7914	0,2086	
₿	1.512	25.2	0.7768	0.2232	
9	1.728	28.8	0.7603	0.2397	
10	1.944	32,4001	0.7414	0.2586	
11	2.16	36.0001	0,7199	0.2801	
12	2.376	39,6001	0.695	0.305	
13	2.592	43,2001	0,6664	0.3336	
14	2.808	46.8001	0.6335	0,3665	
15	3.024	50.4001	0.5955	0.4045	
16	3.24	54.0001	0.5519	0.4481	
17	3.456	57.6001	0.5024	0.4976	
18	3.672	61.2001	0.4471	0.5529	
19	3,888	64.8001	0.3865	0.6135	
20	4.104	68.4001	0.3223	0.6777	
21	4,32	72.0001	0.2568	0.7432	
22	4.536	75.6001	0.1933	0.8067	
23	4.752	79.2001	0.1355	0.8645	
24	4.968	82.8001	0.086	0.914	
25	5.184	86.4001	0.0477	0,9523	
26	5.4	90	i 0,0216	0.9784	

o S

X Ty = 0.+6

X F2 =0.54

X7, =0.44 X5, =0.56

XF, =0.48 XF2 =0.4

. 33

MARCIANT

đ

ţ

inital concentration

×

3

co∪} d

see, the

pole height

S= 0.6

ï

Batch Distillation: Simulation, Optimal Design and Control:Solution Manual

- 2.9 Problem 2.8 described the pole height concept proposed by Bowman and Cichelli. Use the above definition to prove that:
 - a) At a total reflux condition (minimum number of plates), the pole height S is related to the number of plates N by the following relation.

$$S = \frac{\alpha^N}{8F(1 - x_F)}$$

b) At an infinite number of plates (minimum reflux condition) and moderately good separation, the reflux can be expressed as:

$$R = \frac{2S - \alpha}{\alpha - 1}$$

Assume that at moderate separation the quantity of x_B is extremely small.

Solution: A Pole height for binary mixture is defined as

$$S = \frac{dx_D}{dx_B} |_{x_D = 0.5} \tag{2.1}$$

a Rayleigh equation gives

$$B\frac{dx_D}{dx_B} = x_D - x_B \tag{2.2}$$

At total reflux

$$N = N_{min} = \frac{1}{\ln \alpha} \frac{x_D (1 - x_B)}{x_B (1 - x_D)}$$
 (2.3)

At $x_D = 0.5 \ \alpha^N = \frac{1-x_B}{x_B}$; Hence,

$$x_B = 1/(\alpha^N + 1) \tag{2.4}$$

$$\frac{dx_B}{dB} = \frac{dx_B}{dx_D} \frac{dx_D}{dB} \tag{2.5}$$

From Equations 2.2 and 2.5

$$B\frac{dx_D}{dx_B}\frac{dx_B}{dB} = (x_D - x_B)\frac{dx_D}{dx_B}$$
 (2.6)

From Equation 2.3

$$\frac{dx_B}{dx_D} = \frac{d}{dx_D} \left[\frac{x_D}{\alpha^N - (\alpha^N - 1)x_D} \right]$$
 (2.7)

$$= \frac{\alpha^N}{(\alpha^N - (\alpha^N - 1)x_D)^2} \tag{2.8}$$

$$\frac{dx_D}{dx_R} = \frac{(\alpha^N - (\alpha^N - 1)x_D)^2}{\alpha^N}$$
 (2.9)

BASIC MODES OF OPERATION

From Equations 2.4, 2.6, and 2.9

$$B\frac{dx_D}{dx_B}\frac{dx_B}{dB} = \frac{(\alpha^N - (\alpha^N - 1)0.5)2}{\alpha^N}(0.5 - \frac{1}{\alpha^N + 1})(2.10)$$

$$B \times S = \frac{\alpha^{2N} - 1}{8\alpha^N} \tag{2.11}$$

$$S = \frac{\alpha^{2N} - 1}{8B\alpha^N} \tag{2.12}$$

For sharp separations α^N is large, resulting in $\alpha^{2N} - 1 = \alpha^{2N}$. Further, for sharp separations, one can assume that amount of material remaining in the pot is equal to amount of heavy component in the original charge. Therefore,

$$B = F(1 - x_F) (2.13)$$

Combining Equations 2.12 and pole-8 results in

$$S = \frac{\alpha^N}{8F(1 - x_F)}$$

b At minimum reflux (infinite number of plates), Underwood's equations for binary separation with relative volatility α are given by

$$\sum_{i=1}^{n} \frac{\alpha_i x_B^{(i)}}{\alpha_i - \phi} = 0 \tag{2.14}$$

$$R_{min} + 1 = R + 1 = \sum_{i=1}^{n} \frac{\alpha_i x_D^{(i)}}{\alpha_i - \phi}$$
 (2.15)

For binary component, from Equation 2.14

$$-\alpha\phi x_B + \alpha - \phi + \phi x_B = 0 \tag{2.16}$$

Therefore;

$$x_B = \frac{-(\alpha - \phi)}{(1 - \alpha)\phi} \tag{2.17}$$

$$\phi = \frac{\alpha}{1 - (\alpha - 1)x_B} \tag{2.18}$$

$$1 - \phi = \frac{(\alpha - 1)(1 - x_B)}{1 - (\alpha - 1)x_B}$$
 (2.19)

Simplifying Equation 2.15 results in

$$x_D = \frac{-R(\alpha - \phi)}{(\alpha - 1)\phi} + (R + 1)\frac{\phi(\alpha - \phi)}{\alpha - 1}$$
 (2.20)

CLICK HERE TO ACCESS THE COMPLETE Solutions

Batch Distillation: Simulation, Optimal Design and Control:Solution Manual Substituting value of x_B

$$x_D = Rx_B + (R+1)\phi x_B \tag{2.21}$$

Replacing ϕ in terms of x_B

$$x_D = -Rx_B + \frac{(R+1)\alpha x_B}{1 + (\alpha - 1)x_B}$$
 (2.22)

Rayleigh equation in terms of pole height as shown in (a).

$$S = \frac{dx_D}{dx_B} \mid_{x_D = 0.5} (x_D - x_B)$$
 (2.23)

From Equation 2.22

$$\frac{dx_D}{dx_B} = -R + \frac{(R+1)\alpha}{(1+(\alpha-1)x_B)^2}$$
 (2.24)

At $x_D = 0.5$., $x_B \ll x_D$, Hence $x_D - x_B = x_D$. Also, since x_B is small $(1 + (\alpha - 1)x_B) = 1$. Therefore,

$$S = 0.5[-R + (R+1)\alpha] \tag{2.25}$$

Simplifying,

$$R = \frac{2S - \alpha}{\alpha - 1}$$

FIGURE 2.1
Schematic of a Batch Distillation Column

FIGURE 2.2

McCabe—Thiele Method for Plate-to-Plate Calculations

 $\boldsymbol{\mathcal{X}}$

FIGURE 2.3

McCabe—Thiele Method for the Constant Reflux Mode

FIGURE 2.4Graphical Integration for Example 2.1

FIGURE 2.5

McCabe—Thiele Method for the Variable Reflux Mode

 $\begin{tabular}{l} FIGURE~2.6 \\ \hline \end{tabular}$ Graphical Integration for Calculation of Batch Time for Example 2.2

 ${\bf FIGURE~2.7}$ Graphical Integration for Calculation of Reboiler Heat Duty for Example 2.2

FIGURE 2.8

McCabe—Thiele Procedure for the Third Mode of Operation

FIGURE 2.9

Graphical Integration for the Rayleigh Equation for the Third Mode of Operation

 ${\bf FIGURE~2.10}$ Graphical Integration for Calculation of Batch Time for the Third Mode of Operation

FIGURE 2.11
The Pole Height Concept (Reproduced from Bowman and Cichelli, 1948)

CLICK HERE TO ACCESS THE COMPLETE Solutions