Solutions for Introduction to Analysis 1st Edition by Dunn

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

$\mathbf{2}$

The Real Numbers

CONTENTS

Chapter 2

Section 2.1: The Real and Extended Real Number System.

- 2.1.1. (a) If $\frac{1}{0} = x$, then by multiplying by x, we have $1 = x \cdot 0 = 0$. (b) If $\frac{0}{0} = x$, then again, $0 = x \cdot 0 = y \cdot 0$, so $\frac{0}{0} = y$ as well.
- 2.1.2. Since $x \cdot \frac{1}{x} = 1 \neq 0$, and $x \neq 0$, it must be the case that $\frac{1}{x} \neq 0$. If x > 0 but $\frac{1}{x} < 0$, then $1 = x \cdot \frac{1}{x} < 0$, in contradiction to Proposition 2.6, part (4).
- 2.1.3. Suppose without loss of generality that x < y. Then

$$x = \frac{x+x}{2} < \frac{x+y}{2} < \frac{y+y}{2} = y.$$

- 2.1.4. (a) In the proof of part (3) of Proposition 2.8, replace < and > with \le and \ge . (b) In the proof of part (4) of Proposition 2.8, replace < and > with \le and \ge .
- 2.1.6. If $x, y \ge 0$, then $xy \ge 0$ and |xy| = xy = |x||y|. If x, y < 0, then again xy > 0, and so |xy| = xy. Since x, y < 0, |x| = -x, and |y| = -y, so |x||y| = (-x)(-y) = xy, and again the result holds. Suppose exactly one of x or y is negative, and the other is nonnegative; without loss of generality, suppose x < 0 and $y \ge 0$. Then $xy \le 0$, so |xy| = -xy (or 0), while |x| = -x and |y| = y (or 0), so that |x||y| = (-x)y = -xy (or 0).
- 2.1.7. If $x \ge 0$, then |x| = x and the result is true. If x < 0 then |x| = -x and x < 0 < -x, and so x < |x| in that case.
- 2.1.8. We must have a and b to have the same sign.
- 2.1.9. (a) Following the hint, replacing b=c-a we have $|a+b| \le |a|+|b| \Leftrightarrow |a+(c-a)| = |c| \le |a|+|c-a|$, so $|c|-|a| \le |c-a|$.
 - (b) Following the hint, replacing $\tilde{b} = a c$ we have

$$|c+\tilde{b}| < |c|+|\tilde{b}| \Leftrightarrow |c+(a-c)| = |a| < |c|+|a-c|$$
, so $|a|-|c| < |a-c| = |c-a|$.

- 8
- (c) This follows directly from the previous parts and Assertion (3) of Proposition 2.8.
- 2.1.10. Writing 0 = 1 1, we would have $\infty \cdot 0 = \infty(1 1) = \infty \infty$, the latter cannot be defined.
- 2.1.11. If $x = \frac{\infty}{\infty}$, then

$$x = \frac{\infty}{\infty} = \frac{\infty + \infty}{\infty} = \frac{\infty}{\infty} + \frac{\infty}{\infty} = x + x = 2x.$$

So x = 0. But if $x = 0 = \frac{\infty}{\infty}$, it must be the case that $0 \cdot \infty = \infty$, and the former cannot be defined.

2.1.12. Let $x, y \in \mathbb{R}^{\sharp}$, we construct a neighborhood U of x and a neighborhood V of y so that $U \cap V = \emptyset$. If x and y are both real, then the proof of Theorem 2.14. Suppose then that one of x or y is infinite, suppose without loss of generality that it is x. If y is finite, then choose our neighborhood of y to have radius 1, so that V = (y-1,y+1). If $x = \infty$, then choose $U = (y+2,\infty)$. If $x = -\infty$, choose $U = (-\infty, y-2)$. If x and y are both infinite, say $x = -\infty$ and $y = \infty$, then choose $U = (-\infty, 0, 0)$, and $V = (0, \infty)$.

Section 2.2: The Supremum and Infimum.

- 2.2.1. (a) $\sup(S) = 4, \inf(S) = -7$. (b) $\sup(S) = \infty, \inf(S) = 0$. (c) $\sup(S) = \infty, \inf(S) = -\infty$.
- 2.2.2. Suppose S is bounded, and that M is an upper bound for S, and m is a lower bound for S. Let $N = \max\{|m|, |M|\}$. Then $N \geq |M|$, and $N \geq |m|$, so that $-N \leq M \leq N$ and $-N \leq m \leq N$. So, for every $s \in S$, we have

$$-N \le m \le s \le M \le N$$
, so $0 \le |s| \le N$.

Conversely, suppose N is an upper bound for |S|. Then, for every $|s| \in |S|$, we have $|s| \leq N$. But this means that $-N \leq s \leq N$, and so N and -N are upper and lower bounds for S, respectively.

- 2.2.3. b is an upper bound for S since $S \subseteq [a,b]$ and b is an upper bound for [a,b]. Thus $\sup(S) \leq b$. Since S is nonempty, there exists an $x \in S$, so since $S \subseteq [a,b], \ a \leq x \leq b$. So, $\sup(S) \geq x \geq a$. So, $\sup(S) \in [a,b]$.
- 2.2.4. (a) Let $\alpha = \sup(S)$ for convenience. Notice that for every $s \in S$, $s \leq \alpha$, and so since a > 0, $as \leq a\alpha$. So, $a\alpha$ is an upper bound for aS. Now suppose $b < a\alpha$. Then $\frac{b}{a} < \alpha$, and so $\frac{b}{a}$ is not an upper bound for S. Therefore there exists an $s \in S$ with $\frac{b}{a} < s$, so b < as. So, b is not an upper bound for aS. (b) Let $\beta = \inf(S)$ for convenience. Notice for every $s \in S$, we have $s \geq \beta$. Since a > 0, we have $as \geq a\beta$. So, $a\beta$ is a lower bound for S. Now suppose $b > a\beta$.

The Real Numbers 9

Then $\frac{b}{a} > \beta$, and so $\frac{b}{a}$ is not a lower bound for S. Therefore there exists an $s \in S$ so that $\frac{b}{a} > s$, so b > as. So, b is not a lower bound for S.

- 2.2.5. Let $\alpha = \sup(S)$, and let $s \in S$. Then $s \le \alpha$ and so since a < 0 we have $as \ge a\alpha$. So, $a\alpha$ is a lower bound for aS. Now let $b > a\alpha$. Then $\frac{b}{a} < \alpha$, and so there exists an $s \in S$ with $\frac{b}{a} < s$, so that b > as, so that b is not a lower bound for aS. To prove the next assertion, let a = -1.
- 2.2.6. Suppose, without loss of generality, that $\alpha = \sup(A) = \max\{\sup(A), \sup(B)\}$. Let $x \in A \cup B$, then $x \in A$ or $x \in B$. If $x \in A$, then $x \leq \alpha$. If $x \in B$, then $x \leq \sup(B) \leq \alpha$. So α is an upper bound for $A \cup B$. Now suppose $b < \alpha$. Since $\alpha = \sup(A)$, and $b < \alpha$, there exists an element $a \in A$ with b < a. Therefore, b is not an upper bound for $A \cup B$ since $a \in A \subseteq A \cup B$, and b < a.
- 2.2.7. Suppose, without loss of generality, that $\beta = \inf(A) = \min\{\inf(A), \inf(B)\}$. Let $x \in A \cup B$. Then $x \in A$ or $x \in B$. If $x \in A$, then $x \ge \inf(A) = \beta$. If $x \in B$, then $x \ge \inf(B) \ge \inf(A) = \beta$. So, β is a lower bound for $A \cup B$. Now let $b > \beta$. Since $\beta = \inf(A)$, there exists an $a \in A$ so that b > a. So, b is not a lower bound for $A \cup B$, since $a \in A \subseteq A \cup B$, and b > a.
- 2.2.8. (a) Since A and B are each bounded, there exists upper bounds M_A and M_B for A and B, respectively. In addition, there exists lower bounds m_A and m_B for A and B, respectively. For each $a \in A$ and $b \in B$, we have

$$m_A + m_B \le a + b \le M_A + M_B$$
.

Therefore, A+B is bounded. (b) Let $\alpha=\sup(A)$ and $\beta=\sup(B)$, both real numbers. Let $a\in A$, and $b\in B$. Then $a+b\leq \alpha+\beta$, so $\alpha+\beta$ is an upper bound for A+B. Since $\alpha+\beta$ is an upper bound for A+B, $\alpha+\beta$ is either the $\sup(A+B)$, or, $\sup(A+B)<\alpha+\beta$. If the latter were true, there would exist $a+b\in A+B$ with $\alpha+\beta< a+b$. But for this to be true, one of a or b must be greater than α or β , respectively. Either possibility is a contradiction, so $\alpha+\beta=\sup(A+B)$.

- 2.2.9. Let $A = \{1, -1\}$, and $B = \{-2, 1\}$. Then $\sup(A) = 1, \sup(B) = 1$, but $AB = \{-2, -1, 1, 2\}$, so $\sup(AB) = 2 \neq 1 \cdot 1 = 1$.
- 2.2.10. (a) Let $\epsilon > 0$. Notice that $\sup(S) \epsilon$ is not an upper bound for S since it is strictly less than $\sup(S)$, the smallest upper bound. So, there exists an $s \in S$ with $\sup(S) \epsilon < s$. That $s \leq \sup(S)$ follows from the fact that $\sup(S)$ is an upper bound for S. (b) Let $\epsilon > 0$. Notice that $\inf(S) + \epsilon$ is not a lower bound for S since it is strictly greater than $\inf(S)$, the largest upper bound. So, there exists an

- $s \in S$ with $s < \inf(S) + \epsilon$. That $\inf(S) \le s$ follows from the fact that $\inf(S)$ is a lower bound for S.
- 2.2.11. We determine whether or not $\inf(U)$ is greater or less than $\sup(S)$. Suppose $\inf(U) < \sup(S)$. Then $\inf(U)$ is not an upper bound for S, and so there exists an $s \in S$ with $\inf(U) < s$. Consider the number $\frac{1}{2}(\inf(U) + s)$: this is larger than $\inf(U)$, and so there exists a $u \in U$ with $u < \frac{1}{2}(\inf(U) + s) < s$. This contradicts the fact that every element in U is an upper bound for s. The argument that $\inf(U)$ is not greater than $\sup(S)$ is similar.
- 2.2.12. Let $x \in A$. Then $f(x) + g(x) \le \sup(f(A)) + \sup(g(A))$. Therefore, $\sup(f(A)) + \sup(g(A))$ is an upper bound for (f+g)(A), and the result follows, since $\sup((f+g)(A))$ is the smallest upper bound of (f+g)(A). An example that illustrates inequality is A = [-1,1], f(x) = x, and g(x) = -x. We have (f+g)(x) = 0 for all x, but $\sup(f(A)) = \sup(g(A)) = 1$.
- 2.2.13. We use Mathematical Induction on the cardinality of S. Suppose $S = \{x_1\}$ contains one element, then $\sup(S) = x_1 \in S$. Now suppose $S = \{x_1, \ldots, x_n, x_{n+1}\}$, and any finite set containing n or fewer elements has a supremum within the set. Consider $S \{x_{n+1}\}$. This set has n elements, and therefore $\sup(S \{x_{n+1}\}) = x_i \in S$ for some $i = 1, \ldots, n$. Now $S = (S \{x_{n+1}\}) \cup \{x_{n+1}\}$, and so by exercise 6, $\sup(S)$ is either x_i or x_{n+1} , whichever is larger.

Section 2.3: The Completeness Axiom.

- 2.3.1. (a) The inf is 0. This is clearly a lower bound, and if $0 < \epsilon$, the Archimedean Property asserts the existence of $N \in \mathbb{N}$ for which $\frac{1}{N} < \epsilon$, so ϵ is not a lower bound for this set. (b) The sup is 1. This is clearly an upper bound, and if b < 1, then 0 < 1 b, and so $0 < \sqrt{1 b}$, so again by the Archimedean Property, there exists an $N \in \mathbb{N}$ for which $\frac{1}{N} < \sqrt{1 b}$, so that $b < 1 \frac{1}{N^2}$. (c) The sup is 1. This is clearly an upper bound, and if b < 1 there exists a rational number between them, since \mathbb{Q} is dense in \mathbb{R} .
- 2.3.2. The inf exists in \mathbb{R}^{\sharp} . Suppose that $\inf(S) = \gamma$, and $\inf(S) = \delta$, with $\gamma < \delta$. Both are greatest lower bounds. Since γ is such, and $\delta > \gamma$, δ must not be a lower bound, which is a contradiction to it being an infimum of this set.
- 2.3.3. Suppose that \mathbb{N} were bounded above by M. Then consider applying the Archimedean Property to $\epsilon = \frac{1}{M}$. There exists an $N \in \mathbb{N}$ for which $\frac{1}{N} < \frac{1}{M}$, or, M < N, contradicting M being an upper bound for \mathbb{N} .
- 2.3.4. Let $\epsilon > 0$ be given. Since S is not bounded above, there exists an $s \in S$ for which $\frac{1}{\epsilon} < s$. Or rather, $\frac{1}{s} < \epsilon$.

The Real Numbers 11

2.3.5. Let $s \in \mathbb{S}$ be the largest element in S, and consider x = s + 1 and y = s + 2. Every element in s is strictly smaller than x (which is the smaller of x and y), and so there is no element of S between x and y. Thus, S is not dense in \mathbb{R} .

- 2.3.6. An example is \mathbb{N} , which is countably dense, but there is no natural number between $\frac{1}{4}$ and $\frac{1}{2}$.
- 2.3.7. Let α be given. For any $n \in \mathbb{N}$, $\alpha \frac{1}{n} < \alpha$, so by the denseness of \mathbb{Q} in \mathbb{R} , there exists an $r_n \in \mathbb{Q}$ so that $\alpha \frac{1}{n} < r_n < \alpha$. Since $\frac{1}{n}$ can be arbitrarily close to 0 by the Archimedean Property, $\alpha \frac{1}{n}$ can be made arbitrarily close to α , and so r_n can be found arbitrarily close to α
- 2.3.8. Let a < b be given, and suppose there were only finitely many rational numbers between a and b, and that r is the largest of these. Then r < b and so there exists a rational number q so that r < q < b. This q is also between a and b and contradicts the assumption that r was the largest of the rational numbers between a and b.
- 2.3.9. We first claim that if q is rational, then $\sqrt{2}q$ is not rational. If $\sqrt{2}q = r \in \mathbb{Q}$, then $\sqrt{2} = \frac{r}{q}$. But $\frac{r}{q}$ is rational since both r and q are, but $\sqrt{2}$ is not rational. Now let a < b be given. Since \mathbb{Q} is dense in \mathbb{R} , there exists a $q \in \mathbb{Q}$ for which $\frac{a}{\sqrt{2}} < q < \frac{b}{\sqrt{2}}$. So, $\sqrt{2}q$ is an irrational number, and $a < \sqrt{2}q < b$.

Introduction to Analysis: Solutions Manual

12