

Solutions for Introduction to Recursive Programming 1st
 Edition by Rubio Sanchez

CLICK HERE TO ACCESS COMPLETE Solutions

Solutions

https://testbanks.ac/product/9781498735285-SOLUTIONS-5/
https://testbanks.ac/product/9781498735285-SOLUTIONS-5/
https://testbanks.ac/product/9781498735285-SOLUTIONS-5/
https://testbanks.ac/product/9781498735285-SOLUTIONS-5/

Solutions to Exercises � 9

A.2 CHAPTER 2

Exercise 2.1 — The size of the problem is the total number of bits
of the binary representation of n (regardless of how many are set to 1,
since all of them have to be analyzed by the algorithm). In particular,
the quantity can be expressed formally as:

⌊log2(n)⌋ + 1.

Exercise 2.2 — The more general function is:

S(n) = ⎧⎪⎪⎨⎪⎪⎩
0 if n = 0,

S(n − 1) + n if n > 0.

The base case S(1) = 1 is no longer necessary. The function can be coded
as in Listing 9.

Exercise 2.3 — Possible diagrams are shown in Figure 1. In (a) four
rectangular structures associated with subproblems of size n/2 cover the
area related to a problem of size n. However, since n/2 single square
blocks fall outside of the area, we need to subtract n/2 in the recursive
formula. In (b) four subproblems of size (n − 1)/2 cover the area of the
original problem except for (n + 1)/2 blocks, which need to be added in
the corresponding recursive case.

The more general function is:

S(n) =
⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

1 if n = 1,

4S(n
2
) − n

2
if n > 0 and n even,

4S(n−1
2
) + n+1

2
if n > 0 and n odd.

The function can be coded as shown in Listing 10.

Listing A.9 Sum of the first nonnegative integers.
1 def sum_first_nonnegative_integers(n):

2 if n == 0:

3 return 0

4 else:

5 return sum_first_nonnegative_integers(n - 1) + n

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781498735285-SOLUTIONS-5/

10 � Introduction to Recursive Programming

PSfrag replacements

n even
S(n) = 4S(n

2
) − n

2

n odd
S(n) = 4S(n−1

2
) + n+1

2

(a) (b)

n

2

n

2

n−1

2

n+1

2

Figure A.1 Diagram showing a decomposition of the sum of the first n

positive integers S(n) that uses four subproblems of (roughly) half the
size as the original.

Exercise 2.4 — The size of this problem is the number of digits of n.
The base case occurs when n contains a single digit (n < 10), where the
method simply prints n. The general diagram can be the following:

Inputs Results

n = dm−1 ⋯ d1d0 ÐÐÐÐÐ→
dm−1¶

⋮
d1¶

d0¶

print(d0) (after)

n//10 = dm−1 ⋯ d1 ÐÐÐÐÐ→
dm−1¶

⋮
d1¶

Finally, the recursive procedure can be coded as illustrated in List-
ing 11.

Exercise 2.5 — For a general list a of length n the diagram can be
defined as follows:

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781498735285-SOLUTIONS-5/

Solutions to Exercises � 11

Listing A.10 Sum of the first nonnegative integers, by decomposing the
problem into four subproblems.

1 def sum_first_positives_x4(n):

2 if n == 1:

3 return 1

4 elif n % 2 == 0:

5 return 4 * sum_first_positives_x4(n / 2) - n / 2

6 else:

7 return (4 * sum_first_positives_x4((n - 1) / 2)

8 + (n + 1) / 2)

Listing A.11 Procedure for printing the digits of a number vertically.
1 def print_digits_vertically(n):

2 if n<10:

3 print(n)

4 else:

5 print_digits_vertically(n//10)

6 print(n%10)

Inputs Results

a ÐÐÐÐÐÐÐÐÐ→ max
i=0,...,n−1

{a[i]}

max(m1, m2)

a[0:n//2] ÐÐÐÐÐÐÐÐÐ→ m1 = max
i=0,...,n//2−1

{a[i]}

a[n//2:n] ÐÐÐÐÐÐÐÐÐ→ m2 = max
i=n//2,...,n−1

{a[i]}

Exercise 2.6 — Firstly, the size of this problem is n, and the base
case is reached when the list only contains one element. The proposed
decomposition requires discarding one element of the list, which could
be either the first or the last. The following general diagram considers
the subproblem that does not include the first element of the original
list:

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781498735285-SOLUTIONS-5/

12 � Introduction to Recursive Programming

Listing A.12 Function that computes the maximum element of a
nonempty list.

1 def max_list_length_first(a):

2 if len(a) == 1:

3 return a[0]

4 else:

5 return max(a[0], max_list_length_first(a[1:]))

Inputs Results

a ÐÐÐÐÐÐÐÐÐ→ max
i=0,...,n−1

{a[i]}

max(a[0], m)

a[1 ∶ n] ÐÐÐÐÐÐÐÐÐ→ m = max
i=1,...,n−1

{a[i]}

The recursive case therefore needs to check whether the maximum value
is the individual element (a[0]), or if it is included in the sublist a[1 ∶ n],
or in both (note that the largest value could appear several times in the
list). Finally, the function can be coded as shown in Listing 12.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781498735285-SOLUTIONS-5/

