
## Solutions for Introduction to Polymer Chemistry 4th Edition by Carraher Jr

**CLICK HERE TO ACCESS COMPLETE Solutions** 



# Solutions

#### Chapter 2

#### **EXERCISES**

(To answer some of these questions you may need to look at other parts in the book for structures and specific details.)

- 1. Make sketches or diagrams showing (a) a linear polymer, (b) a polymer with pendant groups, (c) a polymer with short branches, (d) a polymer with long branches, and crosslinked polymers with (e) low and (f) high crosslinked density.
- 2. Which has (a) the greater volume for the same weight of material and (b) the lower softening point: HDPEC or LDPE?
- 3. What is the approximate bond length of the carbon atoms in (a) a linear and (b) a crosslinked polymer.
- 4. What is the approximate contour length of a HDPE chain with an average degree of polymerization (chain length) of n = 2000 and of a PVC chain of the same number of repeating units?
- 5. Which of the following are monodisperse polymers with respect to chain length? (A) heva rubber, (b) corn starch, (c) cellulose from cotton, (d) an enzyme, (e) HDPE, (f) PVC, (g) a specific DNA, (h) nylon 66, (i) a specific RNA?
- 6. What is the average degree of polymerization of LDPE having an average molecular weight of 28,000?
- 7. What is the structure of the repeating unit in (a) polypropylene, (b) poly(vinyl chloride, (c) hevea rubber?
- 8. Which of the following is a branched chain polymer: (a) HDPE, (b) Isotactic PP, (c) LDPE, (d) amylose starch?
- 9. Which of the following is a thermoplastic: (a) ebonite, (b) Bakelite, (c) vulcanized rubber, (d) HDPE, (e) celluloid, (f) PVC, (g) LDPE?
- 10. Which has the higher crosslinked density, (a) ebonite or (b) soft vulcanized rubber?
- 11. Do HDPE and LDPE differ in (a) configuration or (b) conformation?
- 12. Which is a trans isomer: (a) gutta percha or (b) hevea rubber?
- 13. Which will have the higher softening point: (a) gutta percha or (b) hevea rubber?
- 14. Show (a) a heat-to-tail, and (b) a head-to-head configuration for PVC.
- 15. Show the structure of a typical portion of the chain of (a) s-PVC, (b) i-PVC.
- 16. Show Newman projections of the gauche forms of HDPE.
- 17. Name polymers whose intermolecular forces are principally (a) London forces, (b) dipole-dipole forces, (c) hydrogen bonding.
- 18. Which will be more flexible: (a) poly(ethylene terephthate), or (b) poly(butylene terephthalate)?
- 19. Which will hve the higher glass transition temperature: (a) poly(methylene methacrylate) or (b) poly(butyl methacrylate)?
- 20. Which will have the higher  $T_g$ : (a) i-PP or (b) a-PP?
- 21. Which will be more permeable to a gas at room temperature: (a) i-PP or (b) a-PP?
- 22. Under what kind of physical conditions are you more apt to form spherulites.
- 23. What is the full contour length of a molecule of HDPE with a DP of 1,500?
- 24. Which would be more flexible: (a) poly(methyl acrylate) or (b) poly(methyl methacrylate?
- 25. Which would you expect to form "better" helical structures (a) i-polypropylene or (b) a-

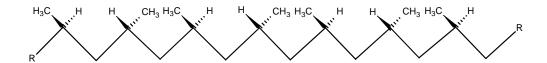
polypropylene?

- 26. Which would you expect to have a higher melting point (a) nylon-66, or (b) an aramide?
- 27. What type of hydrogen bonds are present in the internal structure of a globular protein?
- 28. Which would have the greater tendency to "cold flow" at room temperature: (a) poly(vinyl acetate) ( $T_g = 301 \text{ K}$ ) or (b) polystyrene ( $T_g = 375 \text{ K}$ )?
- 29. Which would be least transparent: (a) combination of amorphous and crystalline PS, (b) entirely crystalline PS, or (c) entirely amorphous PS?
- 30. Which would be more apt to produce crystallites: (a) HDPE or (b) poly(butyl methacrylate)?
- 31. Which of the following would you expect to provide strong fibers (a) nylon-66, (b) apolypropylene, (c) wool.
- 32. Which would tend to be more crystalline when stretched: (a) unvulcanized rubber or (b) ebonite?
- 33. Which would be more apt to exhibit side chain crystallization (a) poly(metnyl methacrylate) or (b) poly(dodecyl methacrylate)?

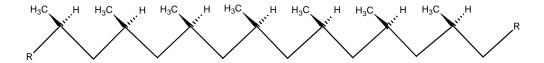
#### **ANSWERS**

1. (a) -MMMMMMMMMMMMM-, (b) -CCCCCCCCCCC-, (c) -CCCCCCCCC-

(f)


- 2. (a) LDPE, (b) LDPE.
- 3. (a) about 109.5; (b) about 109.5; zigzag chains characteristic of alkanes
- 4. Contour length are both about the same since the backbone for each is composed entirely of carbon atoms. Given a C-C bond length of 0.126 nm this means the effective length for each unit is  $2 \times 0.126$  nm = 0.252 nm. Thus the contour length is 0.252 nm times 2000 units = 504 nm.
- 5. d,g,i.
- 6. 1,000

#### CLICK HERE TO ACCESS THE COMPLETE Solutions


- 7. (a) -CH<sub>2</sub>-CH(CH<sub>3</sub>)-,
- (b) -CH<sub>2</sub>-CHCl-,
- (c)  $-CH_2-CH(CH_3)=CH-CH_2-$
- 8. c.
- 9. d,e,f,g.
- 10. a.
- 11. a.
- 12. a.
- 13. a.
- 14. (a) -CH<sub>2</sub>-CH(OH)-CH<sub>2</sub>-CH(OH)-,
- (b) -CH<sub>2</sub>-CH(OH)-CH(OH)-CH<sub>2</sub>-

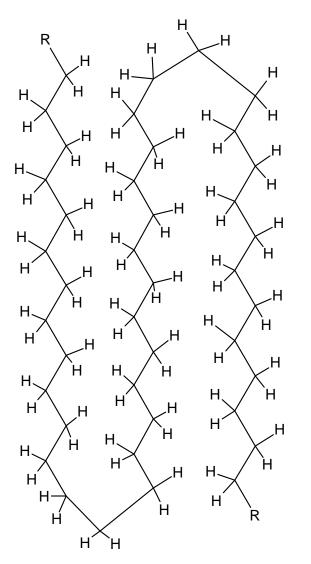
15.

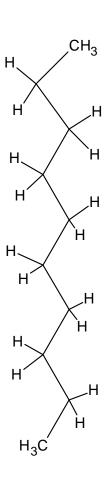
(a) syndiotactic-polypropylene or simply sPP.



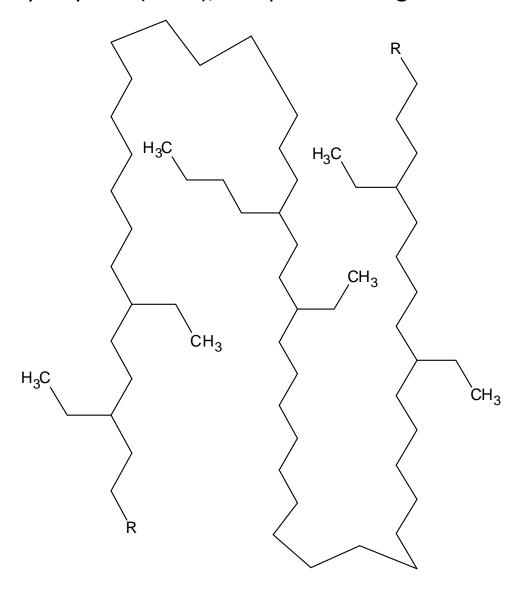
(b) isotactic-polypropylene or simply iPP.




- 16. See Figure 2.7; simply extend the end methyl groups making them methylene groups.
- 17. (a) HDPE, LDPE, hevea rubber, etc., (b) PVC, etc., (c) nylon-66, cellulose, silk, etc.
- 18. b.
- 19. a.
- 20. a.
- 21. b.
- 22. Low or no flow; slow cooling rate; linear polymers.
- 23. 378 nm
- 24. a.
- 25. (a) because of a more regular structure.
- 26. b.
- 27. Intramolecular hydrogen bonds.
- 28. a.
- 29. Being transparent depends of having a homogeneous structure so (a) is the least homogeneous and thus has varying refractive indexes causing it to appear hazy.
- 30. a
- 31. a and c.
- 32. a.


## 4<sup>th</sup> Ed Cpt 2 Polymer Structure

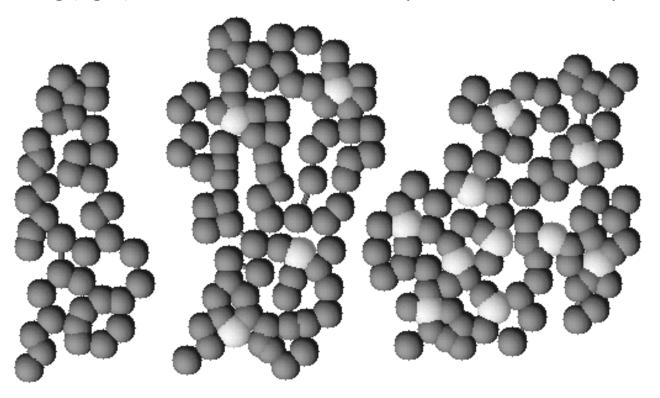
# **Table 2.1** Typical properties of straight chain hydrocarbons.


| • | Average number of carbon atoms | •        | Name        | Physical state at room temp. | Typical<br>uses                                       |
|---|--------------------------------|----------|-------------|------------------------------|-------------------------------------------------------|
| • |                                |          |             |                              |                                                       |
| • | 1-4                            | <30      | Gas         | Gas                          | Heating                                               |
| • | 5-10                           | 30-180   | Gasoline    | Liquid                       | Automotive fuel                                       |
| • | 11-12                          | 180-230  | Kerosene    | Liquid                       | Jet fuel, heating                                     |
| • | 13-17                          | 230-300  | Light gas o | il Liquid                    | Diesel fuel, heating                                  |
| • | 18-25                          | 305-400  | Heavy gas   | oil Viscous liquid           | Heating                                               |
| • | 26-50                          | Decompos | es Wax      | Waxy                         | Wax candles                                           |
| • | 50-1000                        | Decompos | ses         | Tough waxy to solid          | Wax coatings food containers                          |
| • | 1000-5000                      | Decompos | ses Polyet  | hylene Solid                 | Bottles, containers, films                            |
| • | >5000                          | Decompos | ses Polyetl | hylene Solid                 | Waste bags, ballistic wear, fibers, automotive parts, |
| • |                                |          |             |                              | truck liners                                          |

**Figure 2.1** Simulated structure of high-density polyethylene (HDPE), left, contrasted with the structural formula of linear or normal decane, right.



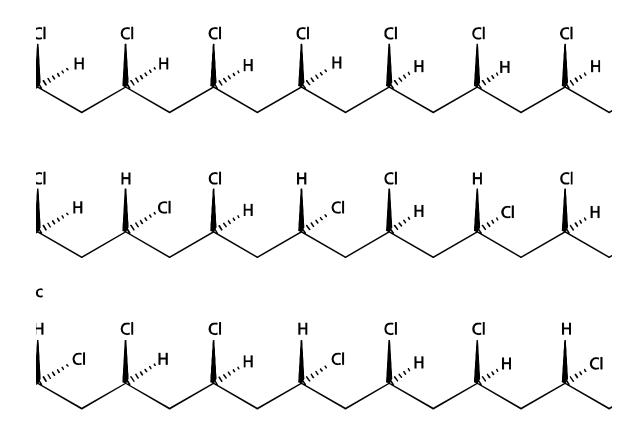


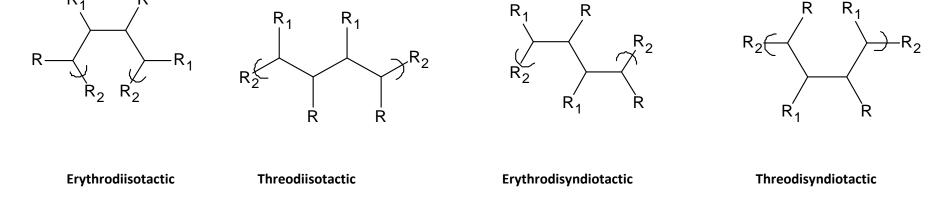

**Figure 2.2** Simulated structural formula for branched low-density polyethylene (LDPE); compare with Figure 2.1 for HDPE.



### **Table 2.2** Types of Commercial Polyethylene

| • | General structure                | %-Crystallinity | Density (g/cc) |
|---|----------------------------------|-----------------|----------------|
| • | LDPE-Linear with branching       | 50              | 0.92-0.94      |
| • | LLDPE-Linear with less branchin  | g 50            | 0.92-0.94      |
| • | HDPE-Linear with little branchir | ng 90           | 0.95           |


**Figure 2.3** Skeletal structural formulas of a linear polymer (left), and a network (crosslinked) polymer with low crosslinking density (middle) and high density crosslinking (right). Cross-link sites are noted by the non-darkened spheres.




**Figure 2.4** Simulated structural formulas showing the usual head-to-tail, middle, and unusual head-to-head, right, configurations of polypropylene.

$$H_2C = CH$$
 $CH_3$ 
 $R$ 
 $CH_3$ 
 $R$ 
 $CH_3$ 
 $R$ 
 $CH_3$ 
 $R$ 
 $CH_3$ 
 $R$ 
 $CH_3$ 
 $R$ 
 $CH_3$ 

Figure 2.5 Skeletal formulas of isotactic (top), syndiotactic (middle), and atactic (bottom) of poly(vinyl chloride), PVC.





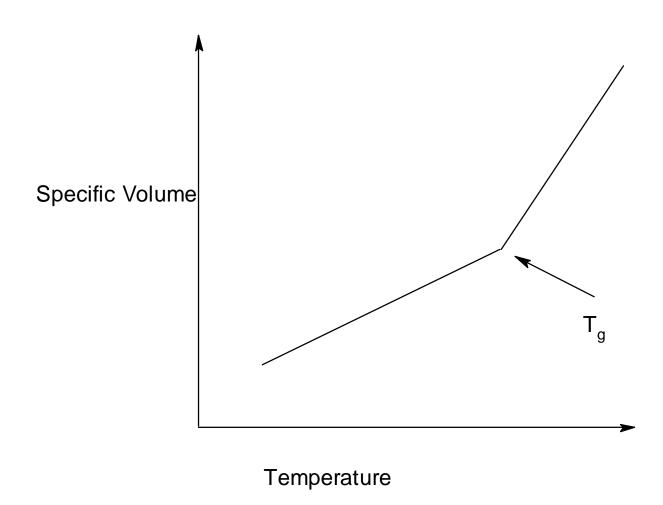
**Figure 2.6** Simulated formulas of ditactic isomers where  $R_2$  are chain extensions and R and  $R_1$  are not hydrogen.

Figure 2.7 Newman projections of designated conformers of n-butane- Anti (left), Eclipsed (middle) and Gauche (right).

**Figure 2.8** Representation of a crystalline portion from isotactic polypropylene, left, and an amorphous portion from atactic polypropylene, right.

Table 2.2b. General classes of secondary forces.

Type Relative Strength


- Ion-dipole Strongest
- Dipole-dipole
- Dipole-induced dipole
- Induces dipole-induced dipole
   Weakest

**Figure 2.9** Typical hydrogen-bonding (shown as "-" between hydrogen on nitrogen and oxygen for nylon 66.

Table 2.3 Critical chain lengths for some common polymers.

|   | Polymer                                                     | Critical Chain Length (Number of repeat units)    |
|---|-------------------------------------------------------------|---------------------------------------------------|
| • | Polycarbonate                                               | 20                                                |
| • | 1,4-Polybutadiene                                           | 110                                               |
| • | Poly(decamethylene adipate)                                 | 11                                                |
| • | Polydimethylsiloxane                                        | 450                                               |
| • | Polyethylene                                                | 150                                               |
| • | Poly(ethylene oxide)                                        | 100                                               |
| • | Poly(methyl methacrylate)                                   | 160                                               |
| • | Polypropylene                                               | 170                                               |
| • | Poly(propylene oxide)                                       | 100                                               |
| • | Polystyrene                                                 | 300                                               |
| • | Poly(vinyl acetate)                                         | 250                                               |
| • | Poly(vinyl alcohol)                                         | 170                                               |
| • | Poly(vinyl chloride)                                        | 175                                               |
| • | modified from L. H. Sperling, Introd<br>Wiley, Hoboken, NJ, | duction to Physical Polymer Science, 4th Edition, |

Figure 2.10 Determination of  $T_{\rm g}$  by noting the abrupt change in specific volume.



**Table 2.4** Approximate Glass Transition Temperatures  $(T_g)$  for Selected Polymers

|    | Polymer                       | T <sub>g</sub> (K) | Polymer                        | T <sub>g</sub> (K) |
|----|-------------------------------|--------------------|--------------------------------|--------------------|
| •  | Cellulose acetate butyrate    | 323                | Cellulose triacetate           | 430                |
| •  | Polyethylene (LDPE)           | 148                | Polytetrafluoroethylene        | 160,400°           |
| •  | a-Polypropylene               | 253                | Poly(ethyl acrylate)           | 249                |
| •  | i-Polypropylene               | 373                | Poly(methyl acrylate)          | 279                |
| •  | Polyacrylonitrile             | 378                | alpha-Poly(butyl methacrylate) | 339                |
| •  | Poly(vinyl acetate)           | 301                | alpha-Poly(methyl acrylate)    | 378                |
| •  | Poly(vinyl alcohol)           | 358                | Poly(vinyl chloride)           | 354                |
| •  | cis-Poly-1,3-butadiene        | 165                | Nylon-66                       | 330                |
| •  | trans-Poly-1,3-butadiene      | 255                | Poly(ethylene adipate)         | 223                |
| •  | Polydimethylsiloxane          | 150                | Poly(ethylene terephthalate)   | 342                |
| •  | Polystyrene                   | 373                |                                |                    |
| a. | Two major transitions observe | d.                 |                                |                    |

Figure 2.11 Typical DSC thermogram of a polymer.

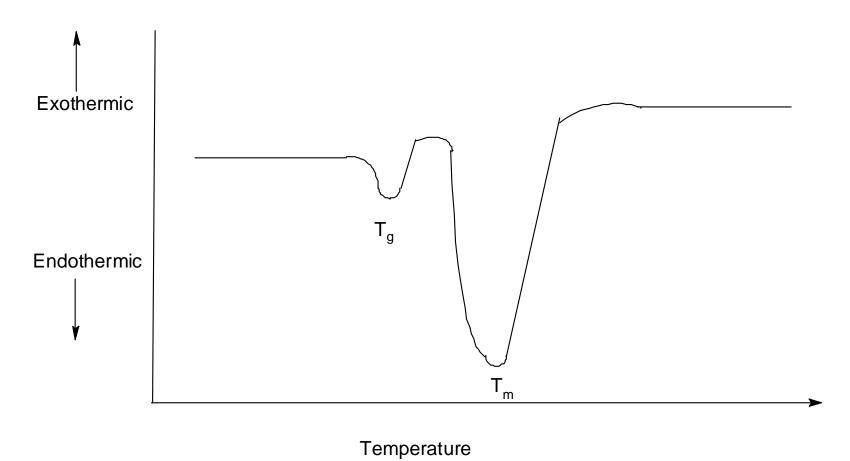
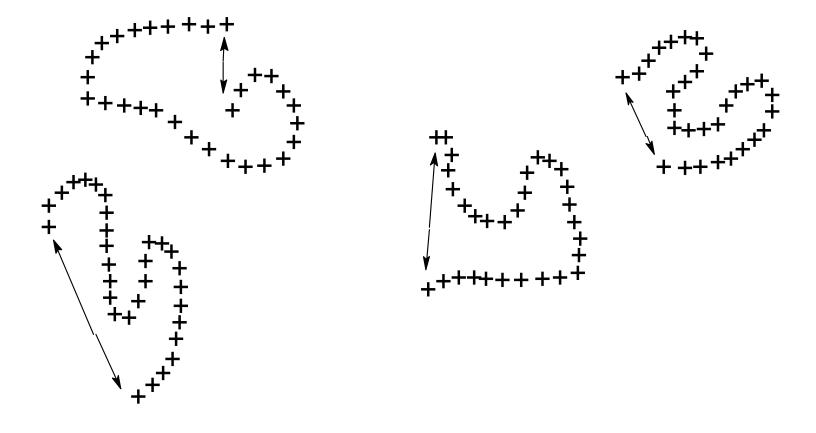
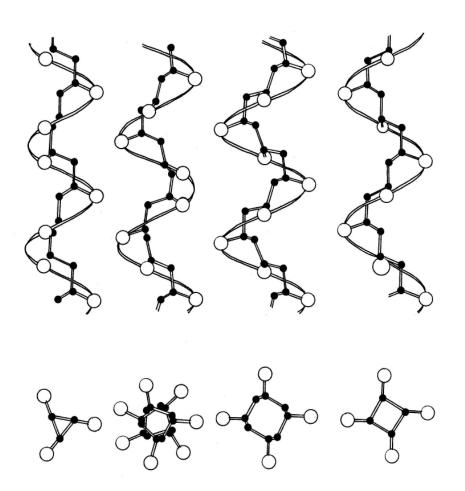




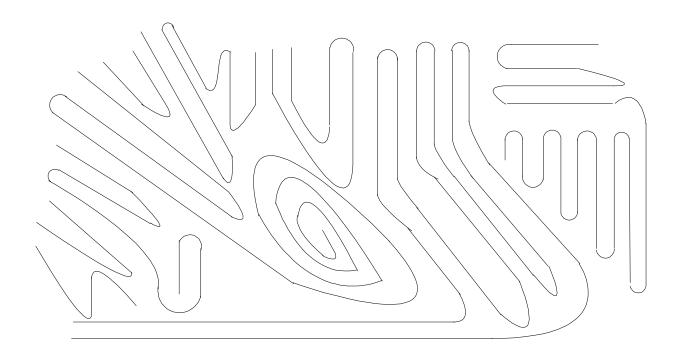
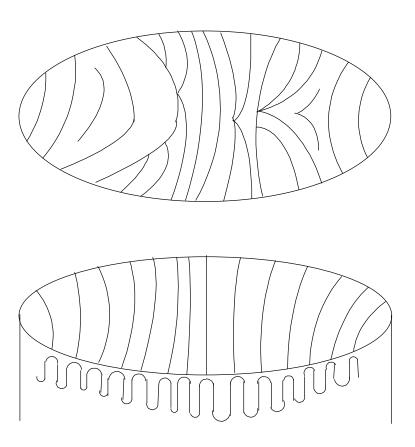
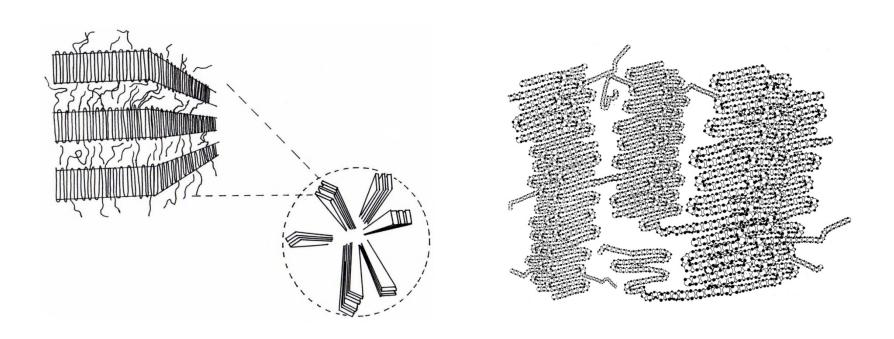

Figure 2.12 End-to-end distances for four 30-unit chains.

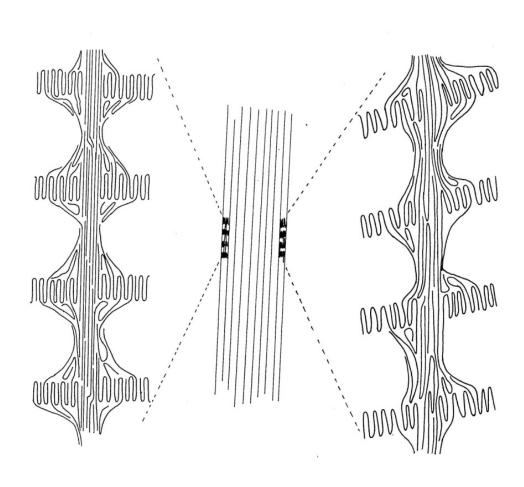


**Figure 2.13** Helical conformation of isotactic vinyl polymers. (From N. Gaylord, in Linear and Steroregular Addition Polymers (N. Gaylord and H. Mark, eds.), Wiley, NY, 1959.

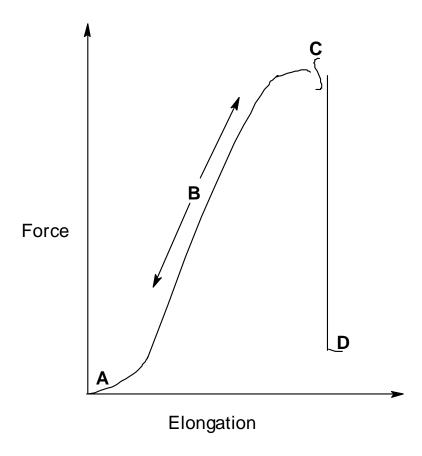


**Figure 2.14** Schematic two-dimensional representation of a modified micelle model of the crystalline-amorphous structure of polymers.

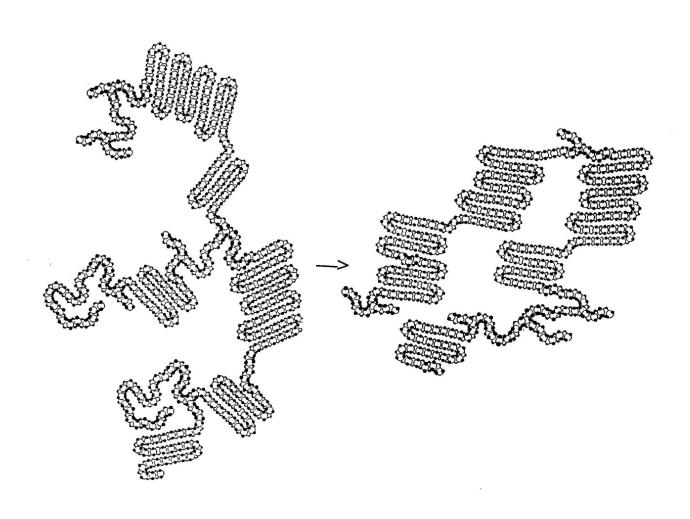






Figure 2.15 Structure of a spherulite from the bulk. Bottom shows a slice of a simple spherulite. As further growth occurs, filling in, branch points, etc. occur as shown above (top). The contour lines are simply the hairpin turning points for the folded chains.




**Figure 2.16** Spherulite structure showing the molecular-level lamellar chain-folded platelets and tie and frayed chain arrangements, left, and a more complete model of two sets of three lamellar chain-folded platelets formed from polyethylene, right. Each platelet contains about 850 ethylene units as shown here.




**Figure 2.17** Crystalline polymer structures formed under applied tension including flow conditions. Middle shows the tertiary mono-fibrilar structure including platelets and at the left shows these mono-fibrilar structures bundled together forming a quaternary structure fibril. Right shows the distorted shish kebab formed with more rapid flow.




**Figure 2.18** Elongation of an elastomer as a function of applied force, stress, where A is the original "relaxed" state, B represents movement to full extension, C is the point at which the elastomer "breaks", and D represents force necessary to pull two separate pieces of elastomer apart.



**Figure 2.19** Idealized structure illustrating crystalline (ordered) and amorphous (nonordered) regions of lightly branched polyethylene chains for a prestressed and stressed orientation.



**Figure 2.20** General physical states of materials as a function of crystallinity and molecular weight.



### **Table 2.6.** General property correlations with $T_{g.}$

Cross-linked elastomers

Above T<sub>g</sub>

• Linear (or branched) amorphous adhesives

Above T<sub>g</sub>

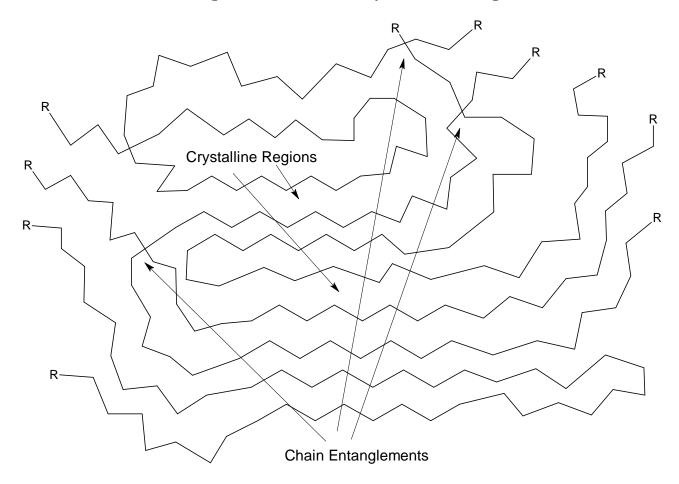
Amorphous plastics

Generally above T<sub>g</sub>

Largely crystalline plastics

Generally above T<sub>g</sub>, Below T<sub>m</sub>

Crystalline fibers


Below T<sub>m</sub>

Coatings

At or near T<sub>g</sub>

**Figure 2.21** Chemical cross-linking of cis-1,4-butadiene through reaction with sulfur.

**Figure 2.22** Illustration of two types of physical cross-linking-chain entanglement and crystalline regions.

