### Test Bank for Introduction to Polymer Chemistry 4th Edition by Carraher Jr

CLICK HERE TO ACCESS COMPLETE Test Bank



## Test Bank

### 1. DEFINITIONS

| Match the following                      |
|------------------------------------------|
| Amorphous                                |
| Atactic                                  |
| Backbone                                 |
| Copolymer                                |
| Crystalline                              |
| Crosslinks                               |
| Degree of polymerization                 |
| DSC (Differential scanning calorimetry)  |
| Entropy of mixing                        |
| Glass transition temperature             |
| Helix and pleated                        |
| Hilderband's equation                    |
| Homopolymer                              |
| Mark-Houwink equation                    |
| Melting point or range                   |
| Mer                                      |
| Plasticizer                              |
| Polymer or macromolecule                 |
| Protein                                  |
| TGA OR TG (Thermal gravimetric analysis) |
| Vinyl polymer                            |
| Young's modules                          |
|                                          |

- A. A compound that "solubilizes" only a portion of a polymer chain; added to give flexibility.
- B. Repeat unit in a polymer chain.
- C. Polymer derived from the polymerization of vinyl monomers.
- D. Temperature range or poliont where a polymer achieves full chain mobility.
- E. Temperature range where only local, gegmental mobility occurs; where only relatively small portions of the polymer can move.
- F. Polymer where there is a random arrangement of pendant groups on each side of the polymer backbone.
- G. Polymer portion with a highly ordered structure
- H. Polymer portion with a (highly) disorganized structure
- I. Molecule composed of many mers or repeat units; a very large molecule.
- J. Number of units within a polymer.

- K. Covalent or physical bonds between two or more linear polyer chains.
- L. Polymer composed of only one repeat unit.
- M. Polymer composed of more than one repeat unit; usually employed to describe a vinyl polymer derived from two different vinyl molecules
- N. Principal chain in a polymer molecule.
- O. Describes the forces holding a material together; CED; used to help predict solubility
- P. Major force that encourages (drives) solubility
- Q. Viscosity = KM<sup>a</sup>
- R. Stress/Strain
- S. Measures energy (heat) changes typically as a function of temperature
- T. Measures weight changes changes typically as a function of temperature
- U. Most common shapes of polymers
- V. Natural "nylon"; composed of amino acid units
- 2. For the following polymer chain circle only a branch point; draw a dotted line abount the two end groups; and indicated by a two headed line (<--->) the end-to-end distance.



3. Underline only which would be more likely to soften and melt if heated.

### A. UNCROSSLINKED POLYETHYLENE OR HIGHLY CROSSLINKED RUBBER

4. Underline only those polymers where hydrogen bonding occurs within and/or between polymer chains.

NYLON/PROTEIN POLYETHYLENE CELLULOSE
POLYBUTYLENE POLYESTER

- 5. A. What is the molecular weight of polyethylene, -(-CH<sub>2</sub>CH<sub>2</sub>-)-, which has a DP of 100?
  - B. What is the DP of a polyethylene which has a molecular weight of 56,000 Da?

6. Underline only those groups that are apt to <u>add flexibility</u> to a polymer chain.

-CH<sub>2</sub>- AMIDE-C--N- -CH<sub>2</sub>-O- 1,4-PHENYLENE 
$$\parallel \ \mid$$
 O H

- 7. A. An elastomer (rubber) is flexible **above** or **below** (underline only the correct answer) its glass transition temperature.
  - B. Underline only those properties/conditions that (generally) describe an elastomer (rubber).

# WELL ORDERED HIGHLY DISORIENTED CHAINS IN UNSTRETCHED FORM LARGELY HYDROCARBON MINIMAL INTERACTION BETWEEN CHAINS ORIGINALLY A LOT OF ELONGATION FOR A LITTLE STRAIN

- 8. For polyethylene, as visualized below, underline the correct answer.
- A. The polyethylene chain, below, that should have the lower glass transition temperature is a or b.
- B. The polyethylene that should be stronger is a or b.
- C. The polyethylene that should be more porous and susceptible to ultraviolet degradation is a or b.
- D. The polyethylene that should be denser is a or b.



9. Compute the following average distances for a polyethylene chain of 100 units where each ethylene unit is 0.25 nm (for a zigzag structure). Contour length is 0.25 nm/ethylene unit x 100 units = 25 nm.

Root-mean-squared average end-to-end distance = \_\_\_\_\_.

10. Underline which of the following represents a head-to-tail polystyrene structure.



- 11. Underline only the correct answer for each.
- a. Which, a, b, or c, is a Maxwell Model?
- b. Which, a, b, or c, is a "Hookean" spring model?
- c. Which, a, b, or c, is a Voigt-Kelvin model.



- 12. Viscosity relationships.
- A. Give an equation that describes the relative viscosity or viscosity ratio.
- B. Give an equation that describes the intrinsic viscosity or limiting viscosity number.

| C. Give an equation that describes the reduced viscosity or viscosity number.                                                                                                 |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 13. A. Give the relationship between number of chains and the molecular weight for each in terms of number of each chain, $N_i$ , and molecular weight of each chain, $M_i$ . |
| Weight-average molecular weight =                                                                                                                                             |
| Number-average molecular weight =                                                                                                                                             |
| B. Give one technique that will generally give you a weight average molecular weight.                                                                                         |
| C. Give one technique that will generally give you number average molecular weight.                                                                                           |
| D. For the following molecular weight distribution plot identify "A" and "B" as to type of molecular weight-either number or weight average.                                  |
|                                                                                                                                                                               |
|                                                                                                                                                                               |