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CHA P T E R 2

Euclidean Geometry

In this chapter we start off with a very brief review of basic proper-
ties of angles, lines, and parallels. When presenting such material, one
has to make a choice. One can present the basic results of plane ge-
ometry from first principles, starting with an axiomatic system, such
as Hilbert’s Axioms, carefully laying out such concepts as between-
ness, incidence, congruence, and continuity. This approach has several
virtues. Students see, perhaps for the first time in their mathematical
careers, a logical system built entirely from first principles. They also
can clearly determine what theorems, definitions, and axioms are fair
game to use in their own proofs of results. On the other hand, a thor-
ough and complete development of Hilbert’s axioms would necessarily
take a substantial portion of a semester-long course in geometry, leav-
ing little time for other, equally important topics such as non-euclidean
geometry and transformational geometry.

A second approach is to review, in summary form, some of the
most important logical problems of classical Euclidean geometry that
axiom writers such as Hilbert attempted to fix, and then to move on
to more substantial results in plane geometry. This is the approach
taken in Chapter 2. It has the advantage of exposing students to the
logical issues facing mathematicians over the last several hundred years
and, at the same time, covering significant geometric ideas such as the
definition of area, cevians, and circle inversion. One disadvantage of
this approach is that students may feel unsure of what they can assume
and not assume when working on proofs. In each section of Chapter
2 the author tried to carefully describe what results and assumptions
were made in that section. For example, in section 2.1, students are
instructed to use the notion of betweenness in the way one’s tuition
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12 � Instructor’s Guide for Exploring Geometry, Second Edition

would dictate, while at the same time pointing out that this is one of
those geometric properties that needs an axiomatic base.

If the more rigorous approach to Euclidean Geometry is desired, the
complete foundational development can be found in on-line chapters
at the author’s website: http://www.gac.edu/~hvidsten/geom-text.

SOLUTIONS TO EXERCISES IN CHAPTER 2

2.1 Angles, Lines, and Parallels

This section is perhaps the least satisfying section in the chapter for
students, since many theorems are referenced without proof. It may be
helpful to remind students that these results were no doubt covered
in great detail in their high school geometry course, and that a full
development of such results would entail a “filling in” of many days
(weeks/months) of foundational work based on Hilbert’s axioms.

A significant number of the exercises deal with parallel lines. This
is for two reasons. First of all, historically there was a great effort to
prove Euclid’s fifth Postulate by converting it into a logically equivalent
statement that was hoped to be easier to prove. Thus, many of the
exercises nicely echo this history. Secondly, parallels and the parallel
postulate are at the heart of one of the greatest revolutions in math—
the discovery of non-Euclidean geometry. This section foreshadows that
development, which is covered in Chapters 7 and 8.

2.1.1 It has already been shown that ∠FBG ∼= ∠DAB. Also, by
the vertical angle theorem (Theorem 2.3) we have ∠FBG ∼= ∠EBA
and thus, ∠DAB ∼= ∠EBA.

Now, ∠DAB and ∠CAB are supplementary, thus add to two right
angles. Also, ∠CAB and ∠ABF are congruent by the first part of this
exercise, as these angles are alternate interior angles. Thus, ∠DAB and
∠ABF add to two right angles.

2.1.2 Let ∆ABC be a triangle, and consider the sum of the angles
at A and B. Extend the angle at A to create an exterior angle. Then,
the sum of this exterior angle and the angle at A is 180 degrees, as they
make up a line. However, by the Exterior Angle Theorem we know that
the exterior angle is greater than the angle at B. Thus, the sum of the
angles at A and B is less than the sum of the angle at A and its exterior
angle, which is 180.

2.1.3 a. False, right angles are defined solely in terms of congruent
angles.

b. False, an angle is defined as just the two rays plus the vertex.
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Euclidean Geometry � 13

c. True. This is part of the definition.
d. False. The term “line” is undefined.
2.1.4 a. A point M is the midpoint of segment AB if M is between

A and B and AM ∼= MB.
b. The perpendicular bisector of segment AB is a line through the

midpoint M of AB that is perpendicular to
←→
AB.

c. The triangle defined by three non-collinear points A, B, C is the
union of the line segments AB, AC, BC.

d. An equilateral triangle is a triangle whose sides are congruent.
2.1.5 Proposition I-23 states that angles can be copied. Let A and

B be points on l and n respectively and let m be the line through A
and B. If t = m we are done. Otherwise, let D be a point on t that
is on the same side of n as l. (Assuming the standard properties of
betweenness) Then, ∠BAD is smaller than the angle at A formed by
m and n. By Theorem 2.9 we know that the interior angles at B and
A sum to two right angles, so ∠CBA and ∠BAD sum to less than two
right angles. By Euclid’s fifth postulate t and l must meet.

2.1.6 Given the assumptions stated in the exercise, if we copy
∠CBA to A, creating line n, then by Theorem 2.8 n and l will be
parallel. Also, the sum of the interior angles at B and A for lines l and
n will sum to two right angles. Thus, lines t and n cannot be coincident.
Thus, by Playfair line t cannot be parallel to l.

To show that t and l intersect on the same side of m as D and
C, we assume that they intersect on the other side, at some point E.
Let F be a point on n that is on the other side of m from C, and let
G a point on t on this same side. Then, ∠BAF is less than ∠BAG in
measure, and since ∠BAF ∼= ∠CBA by Theorem 2.9, we have that the
exterior angle ∠CBA to ∆BAE is smaller than an opposite interior
angle (∠BAG), which contradicts the Exterior Angle Theorem.

B C l

A
n

D t

E

F

m
G

FIGURE 2.1:
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14 � Instructor’s Guide for Exploring Geometry, Second Edition

2.1.7 First, assume Playfair’s Postulate, and let lines l and m be
parallel, with line t perpendicular to l at point A. If t does not intersect
m then, t and l are both parallel to m, which contradicts Playfair.
Thus, t intersects m and by Theorem 2.9 t is perpendicular at this
intersection.

Now, assume that whenever a line is perpendicular to one of two
parallel lines, it must be perpendicular to the other. Let l be a line and
P a point not on l. Suppose that m and n are both parallel to l at P .
Let t be a perpendicular from P to l. Then, t is perpendicular to m
and n at P . By Theorem 2.4 it must be that m and n are coincident.

2.1.8 To create a parallel to
←→
BC at A we could just copy ∠CBA

to A and use Theorem 2.8. The three angles defined by the triangle at
A sum to two right angles, and by Theorem 2.9 we have that the sum
of these angles equals the sum of the angles in the triangle.

2.1.9 Assume Playfair and let lines m and n be parallel to line l. If
m �= n and m and n intersect at P , then we would have two different
lines parallel to l through P , contradicting Playfair. Thus, either m
and n are parallel, or are the same line.

Conversely, assume that two lines parallel to the same line are equal
or themselves parallel. Let l be a line and suppose m and n are parallel
to l at a point P not on l. Then, n and m must be equal, as they
intersect at P .

2.1.10 Assume Playfair and let line t intersect one of the parallel
lines m and n, say it intersects m at P . If m did not intersect n, then
t and m would be two different lines both parallel to n at P , which
contradicts Playfair.

Conversely, assume that if a line intersects one of two parallel lines,
it must intersect the other. Let l be a line and suppose m and n are
parallel to l at a point P not on l, with m �= n. Then, m intersects
n, which is parallel to l. By assumption, m must intersect l, and thus
cannot be parallel to l.

2.2 Congruent Triangles and Pasch’s Axiom

This section introduces many results concerning triangles and also dis-
cusses several axiomatic issues that arose from Euclid’s treatment of
triangles.

This may be a good point to review Euclid’s “proof” of SAS congru-
ence. An interesting discussion point would be to have students voice
their opinion as to whether the proof was valid or not.
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Euclidean Geometry � 15

Also, the history of axiom systems would be a good supplemental
activity at this point. Hilbert’s axioms did not arise overnight. He took
the best of those who came before him, including Pasch, and molded
these separate strands into a complete system.

2.2.1 Yes, it could pass through points A and B of ∆ABC. It does
not contradict Pasch’s axiom, as the axiom stipulates that the line
cannot pass through A, B, or C.

2.2.2 Construct the diagonal AC of the rectangle ABCD. Then,
a line passing through a side of the rectangle will be a line passing
through a side of one of the two triangles defined by the diagonal
and the original sides of the rectangle. By Pasch’s axiom, this line will
either pass through one of the other sides of the triangle, which include
the rectangle sides and the diagonal. If it passes through a side of the
rectangle, we are done. If it passes through the diagonal, then using
Pasch’s axiom a second time, we get that it must pass through one of
the other two sides of the other triangle, and thus through a side of
the rectangle.

The same argument can be used repeatedly to show that a line
passing through a side (but not a vertex) of an arbitrary n-gon (and
not just a regular n-gon) will intersect a side. Just pick a vertex and
construct interior triangles by taking all diagonals from this vertex.

2.2.3 No. Here is a counter-example.

A B

D C

l

FIGURE 2.2:

2.2.4 If A = B, or B = C, or A = C the result follows immediately.
Otherwise, we can assume all three points are distinct.

If they all lie on a line, then, one is between the other two. In every
case, we get that AC cannot intersect l.
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16 � Instructor’s Guide for Exploring Geometry, Second Edition

Assume the points are non-collinear. and that A and C are on
opposite sides of l. Then, l intersects AC and does not pass through A
or C. By Pasch’s axiom, it must intersect AB or BC at a point other
than A, B, or C. Say it intersects AB. This contradicts the assumption
that A and B are on the same side. Likewise, if it intersects BC we get
a contradiction. Thus, A and C are on the same side of l.

2.2.5 If A = C we are done. If A, B, and C are collinear, then
B cannot be between A and C, for then we would have two points
of intersection for two lines. If A is between B and C, then l cannot
intersect AC. Likewise, C cannot be between A and B.

If the points are not collinear, suppose A and C are on opposite
sides. Then l would intersect all three sides of ∆ABC, contradicting
Pasch’s axiom.

2.2.6 A point P is in the interior of a ∆ABC if P is in the interior
of ∠ABC and in the interior of ∠BCA and in the interior of ∠CAB.

2.2.7 Let ∠ABC ∼= ∠ACB in ∆ABC. Let
−−→
AD be the angle bisector

of ∠BAC meeting side BC at D. Then, by AAS, ∆DBA and ∆DCA
are congruent and AB ∼= AC.

2.2.8 Referring to Fig. 2.1, we can use the SSS triangle congruence
theorem on ∆ADE and ∆ABE to show that ∠EAB ∼= ∠BAE.

2.2.9 Suppose that two sides of a triangle are not congruent. Then,
the angles opposite those sides cannot be congruent, as if they were,
then by the previous exercise, the triangle would be isosceles.

Suppose in ∆ABC that AC is greater than AB. On AC we can
find a point D between A and C such that AD ∼= AB. Then, ∠ADB
is an exterior angle to ∆BDC and is thus greater than ∠DCB. But,
∆ABD is isosceles and so ∠ADB ∼= ∠ABD, and ∠ABD is greater
than ∠DCB = ∠ACB.

2.2.10 In the figure accompanying Theorem 2.11, suppose that BC
was greater than Y Z. Then, we could find a point D between B and
C such that BD ∼= Y Z, and by SAS ∆ABD would be congruent to
∆XY Z. This implies that ∠BAD ∼= ∠Y XZ. But, we are given that
∠BAC ∼= ∠Y XZ, and so ∠BAD ∼= ∠BAC. This implies that D lies

on
←→
AC, and that A, B, C are collinear, which is impossible.
2.2.11 Let ∆ABC and ∆XY Z be two right triangles with right

angles at A and X, and suppose BC ∼= Y Z and AC ∼= XZ. Suppose
AB is greater than XY . Then, we can find a point D between A and
B such that AD ∼= XY . By SAS ∆ADC ∼= ∆XY Z. Now, ∠BDC
is exterior to ∆ADC and thus must be greater than 90 degrees. But,
∆CDB is isosceles, and thus ∠DBC must also be greater than 90
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Euclidean Geometry � 17

degrees. This is impossible, as then ∆CDB would have angle sum
greater than 180 degrees.

A C

B

X Z

Y

D

FIGURE 2.3:

2.2.12 Show that ∆ADB and ∆BCA are congruent, and then show
that ∆ADC and ∆BDC are congruent.

2.2.13 We use AAS to show that ∆BFH ∼= ∆AFG and ∆CEI ∼=
∆AEG. Thus BH ∼= AG ∼= CI and BHIC is Saccheri. Also, by adding
congruent angles in the left case we get that the sum of the angles in
the triangle is the same as the sum of the summit angles. In the right
case, we need to re-arrange congruent angles.

2.2.14 Assume Playfair and let ABCD be a Saccheri Quadrilateral

with base AB. By Theorem 2.8 we know that
←→
AD is parallel to

←→
BC. By

Theorem 2.9 the summit angles must add to 180 degrees. This, each
angle must be 90 degrees.

Conversely, assume that the summit angles of a Saccheri quadrilat-
eral are always right angles. Let ∆ABC be a triangle. By the previous
exercise, we know that we can construct a Saccheri quadrilateral based
on the triangle whose summit angles add to the angle sum of the tri-
angle. Thus, the sum of the angles in a triangle is always 180 degrees.
By Exercise 2.1.8, this implies Playfair’s axiom is true.

2.2.15 Given quadrilaterals ABCD and WXY Z we say the two
quadrilaterals are congruent if there is some way to match vertices so
that corresponding sides are congruent and corresponding angles are
congruent.

SASAS Theorem: If AB ∼= WX, ∠ABC ∼= ∠WXY , BC ∼= XY ,
∠BCD ∼= ∠XY Z, and CD ∼= Y Z, then quadrilateral ABCD is con-
gruent to quadrilateral WXY Z.
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18 � Instructor’s Guide for Exploring Geometry, Second Edition
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X

Z

Y

FIGURE 2.4:

Proof: ∆ABC and ∆WXY are congruent by SAS. This im-
plies that ∆ACD and ∆WY Z are congruent. This shows that sides
are correspondingly congruent, and two sets of angles are congruent
(∠ABC ∼= ∠WXY and ∠CDA ∼= ∠Y ZW ). Since ∠BAC ∼= ∠XWY
and ∠CAD ∼= ∠YWZ, then by angle addition ∠BAD ∼= ∠XWZ.
Similarly, ∠BCD ∼= ∠XY Z. �

2.3 Project 3 - Special Points of a Triangle

Students should be encouraged to explore and experiment in this lab
project. Ask them if there are any other sets of intersecting lines that
one could construct. Or, are there interesting properties of constructed
intersecting lines in other polygons?

Some of the students in the class will be future secondary math
teachers. This project is one that could be easily transferred to the
high school setting. Students could have as an extra credit exercise the
task of preparing a similar project for a high school class.

2.3.1 ∆DGB and ∆DGA are congruent by SAS, as are ∆EGB
and ∆EGC. Thus, AG ∼= BG ∼= CG. By SSS ∆AFG ∼= ∆CFG and
since the angles at F must add to 180 degrees, the angles at F must
be congruent right angles.

2.3.2 We proved in the previous exercise that, if G is the circum-
center, then AG ∼= BG ∼= CG. Thus, the circle centered at G with
radius AG must pass through the other two vertices.

2.3.3 The angle pairs in question are all pairs of an exterior angle
and an interior angle on the same side for a line falling on two parallel
lines. These are congruent by Theorem 2.9.

Since ∠DAB, ∠BAC, and ∠CAE sum to 180 degrees, and ∠BDA,
∠BAD, and ∠ABD sum to 180 then, using the congruences shown
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Euclidean Geometry � 19

in the diagram, we get that ∠DBA ∼= ∠BAC. Likewise, ∠BAD ∼=
∠ABC. By ASA we get that ∆ABC ∼= ∆BAD. Similarly, ∆ABC ∼=
∆CEA and ∆ABC ∼= ∆FCB.

2.3.4 An altitude of ∆ABC will meet a side at right angles. Thus,
the altitude meets the side of the associated triangle at right angles,
as this side is parallel to the side of ∆ABC. Also, by the triangle
congruence result of the previous exercise, the altitude bisects the side
of the associated triangle.

2.3.5 Let
−−→
AB and

−→
AC define an angle and let

−−→
AD be the bisector.

Drop perpendiculars fromD to
−−→
AB and

−→
AC, and assume these intersect

at B and C. Then, by AAS, ∆ABD and ∆ACD are congruent, and
BD ∼= CD.

Conversely, suppose D is interior to ∠BAC with BD perpendicular

to
−−→
AB and CD perpendicular to

−→
AC. Also, suppose that BD ∼= CD.

Then, by the Pythagorean Theorem AB2 + BD2 = AD2 and AC2 +
CD2 = AD2. Thus, AB ∼= AC and by SSS ∆ABD ∼= ∆ACD. This
implies that ∠BAD ∼= ∠CAD.

2.4.1 Mini-Project:Area in Euclidean Geometry

This section includes the first “mini-project” for the course. These
projects are designed to be done in the classroom, in groups of three
or four students. Each group should elect a Recorder. The Recorder’s
sole job is to outline the group’s solutions to exercises. The summary
should not be a formal write-up of the project, but should give enough
a brief synopsis of the group’s reasoning process.

The main goal for the mini-projects is to have students discuss
geometric ideas with one another. Through the group process, students
clarify their own understanding of concepts, and help each other better
grasp abstract ways of thinking. There is no better way to conceptualize
an idea than to have to explain it to another person.

In this mini-project, students are asked to grapple with the notion
of “area”. You may want to precede the project by a general discussion
of how to best define area. Students will quickly find that it is not such
an obvious notion as they once thought. For example, what does it
mean for two figures to have the same area?

2.4.1 Construct a diagonal and use the fact that alternate interior
angles of a line falling on parallel lines are congruent to generate an
ASA congruence for the two sub-triangles created in the parallelogram.

2.4.2 We know that AD ∼= EF . Thus, AE ∼= DF , as the length of
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20 � Instructor’s Guide for Exploring Geometry, Second Edition

either of these differ by the length of DE. Also, ∠AEB ∼= ∠DFC, by
Theorem 2.9. By SAS we get that ∆AEB ∼= ∆DFC. Thus, parallelo-
gram ABCD can be split into ∆AEB and EBCD and parallelogram
EBCF can be split into ∆DFC and EBCD. Clearly, these are two
pairs of congruent polygons.

2.4.3 We have that AE ∼= DF . Theorem 2.9 says that ∠AEB ∼=
∠DFC. So, by SAS ∆AEB ∼= ∆DFC. Let G be the point where
CD intersects BE. (Such a point exists by Pasch’s axiom applied to
∆AEB) Now, parallelogram ABCD can be split into ∆AEB plus
∆BGC minus ∆DGE. Also, parallelogram EBCF can be split into
∆DFC plus ∆BGC minus ∆DGE.

2.4.4 Use Theorem 2.8 and Exercise 2.4.1.
2.4.5 By Theorem 2.9 we know that ∠BAE and ∠FBA are right

angles, and thus ABFE is a rectangle. By Theorem 2.9 we have

that ∠DAB ∼= ∠CBG, where G is a point on
−−→
AB to the right of

B. Subtracting the right angles, we get ∠DAE ∼= ∠CBF . By SAS,
∆DAE ∼= ∆CBF . Then rectangle AEFB can be split into AECB
and ∆CBF and parallelogram DABC can be split into AECB and
∆DAE and the figures are equivalent.

Hidden Assumptions? One hidden assumption is the notion that
areas are additive. That is, if we have two figures that are not overlap-
ping, then the area of the union is the sum of the separate areas.

2.4.2 Cevians and Area

2.4.6 Since a median is a cevian to a midpoint, then the fractions in
the ratio product of Theorem 2.24 are all equal to 1.

2.4.7 Let the triangle and medians be labeled as in Theorem 2.24.
The area of ∆AY B will be equal to AY h, where h is the length of

a perpendicular dropped from B to
←→
AC. The area of ∆CY B will be

equal to CY h, Since AY ∼= CY , these areas will be the same and

∆ABC will balance along
←→
BY . A similar argument shows that ∆ABC

balances along each median, and thus the centroid is a balance point
for the triangle.

2.4.8 Refer to the figure below. By the previous exercise we know
that 1+ 2+3 = 4+5+6 (in terms of areas). Also, since 1 and 2 share
the same base and height we have 3 = 4. Similarly, 1 = 2 and 5 = 6.
Thus, 1 = 6.

Similarly, 2+3+4 = 1+5+6 will yield 4 = 5, and 3+4+5 = 1+5+5
yields 2 = 3. Thus, all 6 have the same area.
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1

2

3 4

5

6

FIGURE 2.5:

2.4.9 Consider median BD in ∆ABC, with E the centroid. Let
a = BE and b = DE. Then, the area of ∆DBC is (a+b)h

2 where h is
the height of the triangle. This is 3 times the area of ∆DEC by the
previous exercise. Thus, (a+b)h

2 = 3 bh
2 , or a = 2b.

A

B C

D

Ea

b

FIGURE 2.6:

2.5 Similar Triangles

As stated in the text, similarity is one of the most useful tools in the
geometer’s toolkit. Several of the exercises could be jumping off points
for further discussion—the definition of the trigonometric functions,
the Pythagorean Theorem (this could be a place to review some of
the myriad of ways that this theorem has been proved), and Pascal’s
Theorem and its use in Hilbert’s development of arithmetic.

2.5.1 Since
←→
DE cuts two sides of triangle at the midpoints, then

by Theorem 2.27, this line must be parallel to the third side BC. Thus
∠ADE ∼= ∠ABC and ∠AED ∼= ∠ACB. Since the angle at A is con-
gruent to itself, we have by AAA that ∆ABC and ∆ADE are similar,
with proportionality constant of 1

2 .
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A

B C

D E

FIGURE 2.7:

2.5.2 Since AG ∼= DE then AB
AG = AB

DE and so AB
AG = AC

DF . Since

AH ∼= DF we get AB
AG = AC

AH . By Theorem 2.27,
←→
GH and

←→
BC are

parallel.
2.5.3 Let ∆ABC and ∆DEF have the desired SSS similarity prop-

erty. That is sides AB and DE, sides AC and DF , and sides BC and
EF are proportional. We can assume that AB is at least as large as

DE. Let G be a point on AB such that AG ∼= DE. Let
←→
GH be the

parallel to
←→
BC through G. Then,

←→
GH must intersect

←→
AC, as other-

wise
←→
AC and

←→
BC would be parallel. By the properties of parallels,

∠AGH ∼= ∠ABC and ∠AHG ∼= ∠ACB. Thus, ∆AGH and ∆ABC
are similar.

Therefore, AB
AG = AC

AH . Equivalently, AB
DE = AC

AH . We are given that
AB
DE = AC

DF . Thus, AH ∼= DF .
Also, AB

AG = BC
GH and AB

AG = AB
DE = BC

EF . Thus, GH ∼= EF .
By SSS ∆AGH and ∆DEF are congruent, and thus ∆ABC and

∆DEF are similar.

A

B C

D

E F

G H

FIGURE 2.8:

2.5.4 Since ∠ACD and ∠DCB have measures summing to 90
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Euclidean Geometry � 23

degrees, and since ∠DAC and ∠ACD sum to 90, then ∠DCB ∼=
∠CAD(∼= ∠CAB). Likewise, ∠CBD(∼= ∠ABC) ∼= ∠ACD. By AAA
∆DCB and ∆CAB are similar, as are ∆ACD and ∆ABC. Thus,
y
a = a

c and x
b = b

c . Or, y = a2

c and x = b2

c . Thus, c = x + y = a2+b2

c .
The result follows immediately.

2.5.5 Any right triangle constructed so that one angle is congruent
to ∠A must have congruent third angles, and thus the constructed
triangle must be similar to ∆ABC. Since sin and cos are defined in
terms of ratios of sides, then proportional sides will have the same ratio,
and thus it does not matter what triangle one uses for the definition.

2.5.6 Drop a perpendicular from C to
←→
AB intersecting at D. There

are two cases. If D is not between A and B, then it is to to the left
of A or to the right of B. We can assume it is to the left of B. Then,
the angle at A must be obtuse, as ∠BAC is exterior to right triangle
∆ACD. If D is between A and B then we can assume the angles at A
and B are acute, again by an exterior angle argument.

In the first case, sin(∠A) = CD
b and sin(∠B) = CD

a . Then,
sin(∠A)
sin(∠B) =

a
b .

In the second case, sin(∠A) = sin(∠DAC). An exactly analogous
argument to the first case finishes the proof.

A B

C

ab

A B

C

a
b

D

D

FIGURE 2.9:

2.5.7 If the parallel to
←→
AC does not intersect

←→
RP , then it would

be parallel to this line, and since it is already parallel to
←→
AC, then by

Exercise 2.1.9
←→
RP and

←→
AC would be parallel, which is impossible.

By the properties of parallels, ∠RAP ∼= ∠RBS and ∠RPA ∼=
∠RSB. Thus, by AAA ∆RBS and ∆RAP are similar. ∆PCQ and
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∆SBQ are similar by AAA using an analogous argument for two of
the angles and the vertical angles at Q.

Thus, CP
BS = CQ

BQ = PQ
QS , and AP

BS = AR
BR = PR

SR . So, CP
AP

BQ
QC =

CP
AP

BS
CP = BS

AP And, CP
AP

BQ
QC

AR
RB = BS

AP
AR
RB = BS

AP
AP
BS = 1.

2.5.8 By Theorem 2.25 applied to ∆ADE and ∆ABC we get AD
AB =

AE
AC . Again, using Theorem 2.25 on ∆AFE and ∆ABG we get AF

AB =
AE
AG . Thus, AD

AF = AG
AC .

2.5.1 Mini-Project: Finding Heights

This mini-project is a good example of an activity future high school
geometry teachers could incorporate into their courses. It is a very
practical application of the notion of similarity. The mathematics in the
first example for finding height is extremely easy, but the interesting
part is the data collection. Students need to determine how to get the
most accurate measurements using the materials they have on hand.

The second method of finding height is again a simple calculation
using two similar triangles, but the students may not see this at first.
The interesting part of the project is having them see the connection
between the mirror reflection and the calculation they made in part I.

Again, have the students work in small groups with a Recorder, but
make sure the Recorder position gets shifted around from project to
project.

2.6 Circle Geometry

This section introduces students to the basic geometry of the circle.
The properties of inscribed angles and tangents are the most important
properties to focus on in this section.

2.6.1 Case 2: A is on the diameter through OP . Let α = m∠PBO
and β = m∠POB. Then, β = 180−2α. Also,m∠AOB = 180−β = 2α.

Case 3: A and B are on the same side of
←→
PO. We can assume that

m∠OPB > m∠OPA. Let m∠OPB = α and m∠OPA = β. Then, we
can argue in a similar fashion to the proof of the Theorem using α− β
instead of α+ β.

2.6.2 Let quadrilateral ABCD be inscribed in the circle, with cen-
ter O. Then, by Theorem 2.31 a = ∠OAB = 1

2∠EOB, where E is

the point of intersection of
−→
AO with the circle. Also, b = ∠OAD =

1
2∠EOD.
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O
C

B
A

D

a

2a

b

2b

E

FIGURE 2.10:

Likewise, we would have this relationship for angles generated by−−→
CO.

O
C

B
A

D

c2c

d2d

FIGURE 2.11:

Clearly, the sum of the angles at O (2a+ 2b+ 2c+ 2d) is 360, and
so the sum of the angles at A and C is 180.

2.6.3 Consider ∠AQP . This must be a right angle by Corol-
lary 2.33. Similarly, ∠BQP must be a right angle. Thus, A, Q, and
B are collinear.

2.6.4 By Theorem 2.31 we know that m∠AOP = 2m∠ABP and

m∠POC = 2m∠PBC. But,
−−→
BP bisects ∠ABC and so ∠AOP ∼=

∠POC. Let Q be the point of intersection of OP and AC. Then,
∆OQA ∼= ∆OQC by SAS. The result follows.

2.6.5 Let AB be the chord, O the center, and M the midpoint of
AB. Then ∆AOM ∼= ∆BOM by SSS and the result follows.
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2.6.6 ∠BAD ∼= ∠BCD by Corollary 2.32. Likewise, ∠CBA ∼=
∠CDA. Thus, ∆ABP and ∆CDP are similar. The result follows im-
mediately.

2.6.7 Consider a triangle on the diagonal of the rectangle. This has
a right angle, and thus we can construct the circle on this angle. Since
the other triangle in the rectangle also has a right angle on the same
side (the diameter of the circle) then it is also inscribed in the same
circle.

2.6.8 First, m∠BDA + m∠CAD = 180 − m∠DPA = m∠CPD.
Then, by Theorem 2.31, we have m∠BDA+m∠CAD = 1

2(m∠BOA+
m∠COD). Since m∠CPD = m∠BPA (Vertical angles), the result
follows.

2.6.9 If point P is inside the circle c, then Theorem 2.41 applies.
But, this theorem says that m∠BPA = 1

2(m∠BOA+m∠COD), where

C and D are the other points of intersections of
←→
PA and

←→
PB with

the circle. If P is inside c, then C and D are different points. The
assumption of Theorem 2.42 says that m∠BPA = 1

2m∠BOA. But,
m∠BPA = 1

2(m∠BOA+m∠COD) would then imply thatm∠COD =
0, which is impossible as C and D are not collinear with O.

2.6.10 By Theorem 2.36 m∠PTA = 90−m∠ATO. Since triangle
OAT is isosceles (OA and OT are radii of c), then ∠ATO ∼= ∠OAT .
Since m∠TOA = 180− (m∠ATO+m∠OAT = 180− 2m∠ATO, then
m∠ATO = 1

2(180−m∠TOA = 90− 1
2m∠TOA).

So, m∠PTA = 90−m∠ATO = 90−(90− 1
2m∠TOA) = 1

2m∠TOA.
2.6.11 The angle made by BT and l must be a right angle by

Theorem 2.36. Likewise, the angle made by AT and l is a right angle.
Thus, A, T , and B are collinear.

2.6.12 Suppose they intersected at another point P . Then, ∆TBP
and ∆TAP are both isosceles triangles. But, this would imply, by the
previous exercise, that there is a triangle with two angles greater than
a right angle, which is impossible.

2.6.13 Suppose one of the circles had points A and B on opposite
sides of the tangent line l. Then AB would intersect l at some point
P which is interior to the circle. But, then l would pass through an
interior point of the circle and by continuity must intersect the circle
in two points which is impossible. Thus, either all points of one circle
are on opposite sides of l from the other circle or are on the same side.

2.6.14 Let P and Q be points on the tangent, as shown. Then,
∠BDT ∼= ∠BTP , as both are inscribed angles on the same arc. Like-
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wise, ∠ACT ∼= ∠ATQ. Since, ∠BTP ∼= ∠ATQ (vertical angles), then

∠BDT ∼= ∠ACT and the lines
←→
AC and

←→
BD are parallel.

T

c2

c1

A

C

B

D

P

Q

FIGURE 2.12:

2.6.15 By Theorem 2.36, we have that ∠OAP is a right angle, as
is ∠OBP . Since the hypotenuse (OP ) and leg (OA) of right triangle
∆OAP are congruent to the hypotenuse (OP ) and leg (OB) of right
triangle ∆OBP , then by Exercise 2.2.10 the two triangles are congru-
ent. Thus ∠OPA ∼= ∠OPB.

2.6.16 Suppose that the bisector did not pass through the center.
Then, construct a segment from the center to the outside point. By the
previous theorem, the line continued from this segment must bisect the
angle made by the tangents. But, the bisector is unique, and thus the
original bisector must pass through the center.

2.6.17 Let A and B be the centers of the two circles. Construct
the two perpendiculars at A and B to

←→
AB and let C and D be the

intersections with the circles on one side of
←→
AB.

If
←→
CD does not intersect

←→
AB, then these lines are parallel, and the

angles made by
←→
CD and the radii of the circles will be right angles.

Thus, this line will be a common tangent.

Otherwise,
←→
CD intersects

←→
AB at some point P . Let

←→
PE be a tangent

to the circle with center A. Then, since ∆PAC and ∆PBD are similar,

we have AP
BP = AC

BD . Let
←→
BF be parallel to

←→
AE with F the intersection

of the parallel with the circle centered at B. Then, AC
BD = AE

BF . So,
AP
BP = AE

BF . By SAS similarity, ∆PAE and ∆PBF are similar, and so

F is on
←→
PE and ∠PFB is a right angle. Thus,

←→
PE is a tangent to the

circle centered at B.
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A T B

C

D

P

E

F

FIGURE 2.13:

2.7 Project 4 - Circle Inversion and Orthogonality

This section is crucial for the later development of the Poincaré model
of non-Euclidean (hyperbolic) geometry. It is also has some of the most
elegant mathematical results found in the course.

2.7.1 By Theorem 2.31, ∠Q2P1P2
∼= ∠Q2Q1P2. Thus, ∠PP1Q2

∼=
∠PQ1P2. Since triangles ∆PP1Q2 and ∆PQ1P2 share the angle at
P , then they are similar. Thus, PP1

PQ1
= PQ2

PP2
, or (PP1)(PP2) =

(PQ1)(PQ2).
2.7.2 Choose a line from P passing through the center. Then,

PP1PP2 = (PO −OP1)(PO +OP1) = PO2 − r2.
2.7.3 By similar triangles OP

OT = OT
OP ′ . Since OT = r the result

follows.
2.7.4 As P approaches O, the distance OP goes to zero, so the

distance OP ′ must get larger without bound, for the product to remain
equal to r2. Thus, the orthogonal circle radius grows larger without
bound as well.
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