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2
Linear Algebra

Vector Spaces—The Basic Concepts

2.1 Concept of a Vector Space

Exercises

Exercise 2.1.1 Let V be an abstract vector space over a field IF . Denote by 0 and 1 the identity elements with

respect to addition and multiplication of scalars, respectively. Let −1 ∈ IF be the element∗ opposite to

1 (with respect to scalar addition). Prove the identities

(i) 0 = 0 x, ∀x ∈ V

(ii) −x = (−1) x, ∀x ∈ V

where 0 ∈ V is the zero vector, i.e., the identity element with respect to vector addition, and −x

denotes the opposite vector to x.

(i) Let x be an arbitrary vector. By the axioms of a vector space, we have

x+ 0 x = 1 x+ 0 x = (1 + 0) x = 1 x = x

Adding to both sides the inverse element −x, we obtain that

0+ 0 x = 0 x = 0

(ii) Using the first result, we obtain

x+ (−1) x = (1 + (−1)) x = 0 x = 0

∗It is unique.
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Exercise 2.1.2 Let IC denote the field of complex numbers. Prove that ICn satisfies the axioms of a vector

space with analogous operations to those in IRn, i.e.,

x+ y = (x1, . . . , xn) + (y1, . . . , yn)
def
= (x1 + y1, . . . , xn + yn)

α x = α (x1, . . . , xn)
def
= (α x1, . . . , α xn)

This is really a trivial exercise. One by one, one has to verify the axioms. For instance, the associa-

tive law for vector addition is a direct consequence of the definition of the vector addition, and the

associative law for the addition of complex numbers, etc.

Exercise 2.1.3 Prove Euler’s theorem on rigid rotations. Consider a rigid body fixed at a point A in an initial

configuration Ω. Suppose the body is carried from the configuration Ω to a new configuration Ω1, by a

rotation about an axis l1, and next, from Ω1 to a configuration Ω2, by a rotation about another axis l2.

Show that there exists a unique axis l, and a corresponding rotation carrying the rigid body from the

initial configuration Ω to the final one, Ω2, directly. Consult any textbook on rigid body dynamics, if

necessary.

This seemingly obvious result is far from trivial. We offer a proof based on the use of matrices, and

you may want to postpone studying the solution after Section 2.7 or even later.

A matrix A = Aij is called orthonormal if its transpose coincides with its inverse, i.e.,

AAT = AT A = I

or, in terms of its components,
�

k

AikAjk =
�

k

AkiAkj = δij (2.1)

The Cauchy theorem for determinants implies that

detA detAT = det2A = detI = 1

Consequently, for an orthonormal matrix A, detA = ±1. It is easy to check that orthonormal matrices

form a (noncommutative) group. Cauchy’s theorem implies that orthonormal matrices with detA = 1

constitute a subgroup of this group.

We shall show now that, for n = 2, 3, orthonormal matrices with detA = 1 represent (rigid body)

rotations.

Case: n = 2. Matrix representation of a rotation by angle θ has the form

A =

�
cos θ sin θ

− sin θ cos θ

�

and it is easy to see that it is an orthonormal matrix with unit determinant. Conversely, let aij satisfy

conditions (2.1). Identities

a211 + a212 = 1 and a221 + a222 = 1
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imply that there exist angles θ1, θ2 ∈ [0, 2π) such that

a11 = cos θ1, a12 = sin θ1, a21 = − sin θ2, a22 = cos θ2

But

a11a21 + a12a22 = sin(θ1 − θ2) = 0

and

a11a22 − a12a21 = cos(θ1 − θ2) = 1

The two equations admit only one solution: θ1 − θ2 = 0.

Case: n = 3. Linear transformation represented by an orthonormal matrix preserves the length of

vectors (it is an isometry). Indeed,

�Ax�2 =
�

i

(
�

j

Aijxj)(
�

k

Aikxk)

=
�

j

�

k

(
�

i

AikAjk)xjxk =
�

j

�

k

δjkxjxk =
�

k

xkxk = �x�2

Consequently, the transformation maps unit ball into itself. By the Schauder Fixed Point Theorem (a

heavy but very convenient argument), there exists a vector x that is mapped into itself. Selecting a

system of coordinates in such a way that vector x coincides with the third axis, we deduce that A has

the following representation 


a11 a12 0
a21 a22 0
a31 a32 1




Orthogonality conditions (2.1) imply that a31 = a32 = 0 and that aij , i, j = 1, 2, is a two-dimensional

orthonormal matrix with unit determinant. Consequently, the transformation represents a rotation about

the axis spanned by the vector x.

Exercise 2.1.4 Construct an example showing that the sum of two finite rotation “vectors” does not need to

lie in a plane generated by those vectors.

Use your textbook to verify that the composition of rotations represented by “vectors” (π, 0, 0) and

(0,−π, 0) is represented with the “vector” (0, 0,−π).

Exercise 2.1.5 Let Pk(Ω) denote the set of all real- or complex-valued polynomials defined on a set Ω ⊂
IRn(ICn) with degree less or equal to k. Show that Pk(Ω) with the standard operations for functions is

a vector space.

It is sufficient only to show that the set is closed with respect to the vector space operations. But this

is immediate: sum of two polynomials of degree ≤ k is a polynomial with degree ≤ k and, upon

multiplying a polynomial from Pk(Ω) with a number, we obtain a polynomial from Pk(Ω) as well.

Exercise 2.1.6 Let Gk(Ω) denote the set of all polynomials of order greater or equal to k. Is Gk(Ω) a vector

space? Why?
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No, it is not. The set is not closed with respect to function addition. Adding polynomial f(x) and

−f(x), we obtain a zero function, i.e., a polynomial of zero degree which is outside of the set.

Exercise 2.1.7 The extension f1 in the definition of a function f from class Ck(Ω̄) need not be unique. The

boundary values of f1, however, do not depend upon a particular extension. Explain why.

By definition, function f1 is continuous in the larger set Ω1. Let x ∈ ∂Ω ∈ Ω1, and let Ω � xn → x.

By continuity, f1(x) = limn→∞ f1(xn) = limn→∞ f(xn) since f1 = f in Ω. The same argument

applies to the derivatives of f1.

Exercise 2.1.8 Show that Ck(Ω), k = 0, 1, . . . ,∞, is a vector space.

It is sufficient to notice that all these sets are closed with respect to the function addition and multipli-

cation with a number.

2.2 Subspaces

2.3 Equivalence Relations and Quotient Spaces

Exercises

Exercise 2.3.1 Prove that the operations in the quotient space V/M are well defined, i.e., the equivalence

classes [x+ y] and [αx] do not depend upon the choice of elements x ∈ [x] and y ∈ [y].

Let xi ∈ [x] = x+M, yi ∈ [y] = y +M, i = 1, 2. We need to show that

x1 + y1 +M = x2 + y2 +M

Let z ∈ x1 + y1 +M , i.e., z = x1 + y1 +m, m ∈ M . Then

z = x2 + y2 + (x1 − x2) + (y1 − y2) +m ∈ x2 + y2 +M

since each of vectors x1−x2, y1−y2, m is an element of subspace M , and M is closed with respect

to the vector addition. By the same argument x2 + y2 +M ⊂ x1 + y1 +M .

Similarly, let xi ∈ [x] = x+M, i = 1, 2. We need to show that

αx1 +M = αx2 +M

This is equivalent to show that αx1 − αx2 = α(x1 − x2) is an element of subspace M . But this

follows from the fact that x1 − x2 ∈ M and that M is closed with respect to the multiplication by a

scalar.
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Exercise 2.3.2 Let M be a subspace of a real space V and RM the corresponding equivalence relation.

Together with three equivalence axioms (i) - (iii), relation RM satisfies two extra conditions:

(iv) xRy,uRv ⇔ (x+ u)R(y + v)

(v) xRy ⇔ (αx)R(αy) ∀α ∈ IR

We say that RM is consistent with linear structure on V . Let R be an arbitrary relation satisfying

conditions (i)–(v), i.e., an equivalence relation consistent with linear structure on V . Show that there

exists a unique subspace M of V such that R = RM , i.e., R is generated by the subspace M .

Define M to be the equivalence class of zero vector, M = [0]. Axioms (iv) and (v) imply that M is

closed with respect to vector space operations and, therefore, is a vector subspace of V . Let yRx. Since

xRx, axiom (v) implies −xR−x and, by axiom (iv), (y−x)R0. By definition of M , (y−x) ∈ M .

But this is equivalent to y ∈ x+M = [x]RM
.

Exercise 2.3.3 Another way to see the difference between two equivalence relations discussed in Exam-

ple 2.3.3 is to discuss the equations of rigid body motions. For the sake of simplicity let us consider

the two-dimensional case.

(i) Prove that, under the assumption that the Jacobian of the deformation gradient F is positive,

E(u) = 0 if and only if u takes the form

u1 = c1 + cos θx1 + sin θx2 − x1

u2 = c2 − sin θx1 + cos θx2 − x2

where θ ∈ [0, 2π) is the angle of rotation.

(ii) Prove that εij(u) = 0 if and only if u has the following form

u1 = c1 + θx2

u2 = c2 − θx1

One can see that for small values of angle θ (cos θ ≈ 1, sin θ ≈ θ) the second set of equations can be

obtained by linearizing the first.

(i) Using the notation from Example 2.3.3, we need to show that the right Cauchy-Green tensor

Cij = xk
,ix

k
,j = δij if and only if

x1 = c1 + cos θX1 + sin θX2

x2 = c2 − sin θX1 + cos θX2

A direct computation shows that Cij = δij for the (relative) configuration above. Conversely,

(x1
,1)

2 + (x2
,1)

2 = 1
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implies that there exists an angle θ1 such that

x1
,1 = cos θ1, x2

,1 = sin θ1

Similarly,

(x1
,2)

2 + (x2
,2)

2 = 1

implies that there exists an angle θ2 such that

x1
,2 = − sin θ2, x2

,2 = cos θ2

Finally, condition

x1
,1x

1
,2 + x2

,1x
2
,2 = 0

implies that sin(θ1 − θ2) = 0. Restricting ourselves to angles in [0, 2π), we see that either

θ1 = θ2 + π or θ1 = θ2. In the first case, sin θ1 = − sin θ2 and cos θ1 = − cos θ2 which results

in a deformation gradient with negative Jacobian. Thus θ1 = θ2 =: θ. A direct integration results

then in the final formula. Angle θ is the angle of rotation, and integration constants c1, c2 are the

components of the rigid displacement.

(ii) Integrating u1,1 = 0, we obtain

u1 = c1 + θ1x2

Similarly, u2,2 = 0 implies

u2 = c2 − θ2x2

Finally, u1,2 + u2,1 = 0 results in θ1 = θ2 =: θ.

2.4 Linear Dependence and Independence, Hamel Basis, Dimension

Linear Transformations

2.5 Linear Transformations—The Fundamental Facts
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Exercises

Exercise 2.5.1 Find the matrix representation of rotation R about angle θ in IR2 with respect to basis a1 =

(1, 0), a2 = (1, 1).

Start by representing basis a1,a2 in terms of canonical basis e1 = (1, 0), e2 = (0, 1),

a1 = e1
a2 = e1 + e2

⇒ e1 = a1

e2 = a2 − a1

Then,

Ra1 = Re1 = cos θe1 + sin θe2 = cos θa1 + sin θ(a2 − a1) = (cos θ − sin θ)a1 + sin θe2

Similarly,

Ra2 =
√
2 cos(θ+

π

4
)e1+

√
2 sin(θ+

π

4
)e2 =

√
2(cos(θ+

π

4
)− sin(θ+

π

4
))a1+

√
2 sin(θ+

π

4
)a2

or,

Ra2 = R(e1 + e2) = (cos θ − sin θ)e1 + (sin θ + cos θ)e2 = −2 sin θa1 + (sin θ + cos θ)a2

Therefore, the matrix representation is:


(cos θ − sin θ)

√
2(cos(θ + π

4 )− sin(θ + π
4 ))

sin θ
√
2 sin(θ + π

4 )




or, equivalently, 

cos θ − sin θ −2 sin θ

sin θ cos θ + sin θ




Exercise 2.5.2 Let V = X ⊕ Y , and dimX = n, dimY = m. Prove that dimV = n+m.

Let e1, . . . , en be a basis for X , and let g1, . . . , gm be a basis for Y . It is sufficient to show that

e1, . . . , en, g1, . . . , gm is a basis for V . Let v ∈ V . Then v = x + y with x ∈ X , y ∈ Y , and

x =
�

i xiei, y =
�

j yjgj , so v =
�

i xiei +
�

j yjgj which proves the span condition. To prove

linear independence, assume that �

i

αiei +
�

j

βjgj = 0

From the fact that X ∩ Y = {0} follows that
�

i

αiei = 0 and
�

j

βjgj = 0

which in turn implies that α1 = . . . = αn = 0, and β1 = . . . = βm = 0, since each of the two sets of

vectors is separately linearly independent.
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2.6 Isomorphic Vector Spaces

2.7 More About Linear Transformations

Exercises

Exercise 2.7.1 Let V be a vector space and idV the identity transformation on V . Prove that a linear trans-

formation T : V → V is a projection if and only if idV − T is a projection.

Assume T is a projection, i.e., T 2 = T . Then

(idV − T )2 = (idV − T ) (idV − T )

= idV − T − T + T 2

= idV − T − T + T

= idV − T

The converse follows from the first step and T = idV − (idV − T ).

2.8 Linear Transformations and Matrices

2.9 Solvability of Linear Equations

Exercises

Exercise 2.9.1 Equivalent and Similar Matrices. Given matrices A and B, when nonsingular matrices P

and Q exist such that

B = P−1AQ

we say that the matrices A and B are equivalent. If B = P−1AP , we say A and B are similar.

Let A and B be similar n× n matrices. Prove that detA = detB, r(A) = r(B), n(A) = n(B).
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The first assertion follows immediately from the Cauchy’s Theorem for Determinants. Indeed, PA =

BP implies

detP detA = detB detP

and, consequently, detA = detB.

Let A : X → X be a linear map. Recall that the rank of A equals the maximum number of linearly

independent vectors Aej where ej , j = 1, . . . , n is an arbitrary basis in X . Let P : X → X be now an

isomorphism. Consider a basis ej , j = 1, . . . , n in space X . Then Pej is another basis in X , and the

rank of A equals the maximum number of linearly independent vectors APej which is also the rank

of AP . The Rank and Nullity Theorem implies then that nullity of AP equals nullity of A.

Similarly, nullity of A is the maximum number of linearly independent vectors ej such that Aej = 0.

But

Aej = 0 ⇔ PAej = 0

so the nullity of A is equal to the nullity of PA. The Rank and Nullity Theorem implies then that rank

of PA equals nullity of A.

Consequently, for similar transformations (matrices) rank and nullity are the same.

Exercise 2.9.2 Let T1 and T2 be two different linear transformations from an n-dimensional linear vector

space V into itself. Prove that T1 and T2 are represented relative to two different bases by the same

matrix if and only if there exists a nonsingular transformation Q on V such that T2 = Q−1T1Q.

Let T1gj =
�

i Tijgi and T2ej =
�

i Tijei where gj , ej are two bases in V . Define a nonsingular

transformation Q mapping basis ej into basis gj . Then

T1Qej =
�

i

TijQei = Q
�

i

Tijei

which implies

Q−1T1Qej =
�

i

Tijei = T2ej

Conversely, if T2 = Q−1T1Q and Q maps basis ej into basis gj , then matrix representation of T2 with

respect to ej equals the matrix representation of T1 with respect basis gj .

Exercise 2.9.3 Let T be a linear transformation represented by the matrix

A =

�
1 −1 4

0 3 2

�

relative to bases {a1,a2} of IR2 and {b1, b2, b3} of IR3. Compute the matrix representing T relative to

the new bases:

α1 = 4a1 − a2 β1 = 2b1 −b2 +b3

α2 = a1 + a2 β2 = b1 −b3

β3 = b1 +2b2
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We have
Tb1 = a1

Tb2 = −a1 +3a2

Tb3 = 4a1 +2a2

Inverting the formulas for ai, we get

a1 = 1
5α1 + 1

5α2

a2 = − 1
5α1 + 4

5α2

We have now,
Tβ1 = T (2b1 − b2 + b3)

= 2Tb1 − Tb2 + Tb3

= 2a1 + a1 − 3a2 + 4a1 + 2a2

= 7a1 − a2

= 7( 15α1 +
1
5α2)− (− 1

5α1 +
4
5α2)

= 8
5α1 +

3
5α2

Similarly,
Tβ2 = Tb1 − Tb3

= −3a1 − 2a2

= − 1
5α1 − 11

5 α2

and
Tβ3 = Tb1 + 2Tb2

= −a1 + 6a2

= − 7
5α1 +

23
5 α2

Thus, the matrix representation of transformation T wrt to new bases is

�
8
5 − 1

5 − 7
5

3
5 − 4

5
23
5

�

Exercise 2.9.4 Let A be an n× n matrix. Show that transformations which

(a) interchange rows or columns of A

(b) multiply any row or column of A by a scalar �= 0

(c) add any multiple of a row or column to a parallel row or column

produce a matrix with the same rank as A.
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Recall that j-th column represents value Aej . All discussed operations on columns redefine the map

but do not change its range. Indeed,

span{Ae1, . . . , Aej , . . . , Aei, . . . , Aen} = span{Ae1, . . . , Aei, . . . , Aej , . . . , Aen}

span{Ae1, . . . , A(αei), . . . , Aej , . . . , Aen} = span{Ae1, . . . , Aei, . . . , Aej , . . . , Aen}

span{Ae1, . . . , A(ei + βej), . . . , Aej , . . . , Aen} = span{Ae1, . . . , Aei, . . . , Aej , . . . , Aen}

The same conclusions apply to the rows of matrix A as they represent vectors ATe∗i , and rank AT =

rank A.

Exercise 2.9.5 Let {a1,a2} and {e1, e2} be two bases for IR2, where a1 = (−1, 2),a2 = (0, 3), and

e1 = (1, 0), e2 = (0, 1). Let T : IR2 → IR2 be given by T (x, y) = (3x− 4y, x+ y). Find the matrices

for T for each choice of basis and show that these matrices are similar.

Matrix representation of T in the canonical basis e1, e2 is:

T =

�
3 −4
1 1

�

We have

aj =

2�

k=1

Pjkek ⇒ el =

2�

i=1

P−1
li ei

where

P =

�−1 2

0 3

� �
−1 2

3

0 1
3

�

Linearity of map T implies the following relations.

Taj = T (

2�

k=1

Pjkek)

=

2�

k=1

PjkTek

=

2�

k=1

Pjk

2�

l=1

Tlkel

=

2�

k=1

Pjk

2�

l=1

Tlk

2�

i=1

P−1
li ei

=

2�

i=1

�
2�

k=1

2�

l=1

P−1
li TlkPjk

�

Consequently, matrix representation T̃ij in basis a1,a2 is:

T̃ij =

2�

k=1

2�

l=1

P−T
li TlkPjk

or, in the matrix form,

T̃ = P−TTP T
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which shows that matrices T̃ and T are similar. Finally, computing the products above, we get

T̃ =

�
−1 0

2
3

1
3

� �
3 −4
1 1

� �
−1 0
2 3

�
=

�
11 12
−7 −7

�

Algebraic Duals

2.10 The Algebraic Dual Space, Dual Basis

Exercises

Exercise 2.10.1 Consider the canonical basis e1 = (1, 0), e2 = (0, 1) for IR2. For x = (x1, x2) ∈ IR2, x1, x2

are the components of x with respect to the canonical basis. The dual basis functional e∗j returns the

j-th component:

e∗j : IR2 � (x1, x2) → xj ∈ IR

Consider now a different basis for IR2, say a1 = (1, 1),a2 = (−1, 1). Write down the explicit formulas

for the dual basis.

We follow the same reasoning. Expanding x in the new basis, x = ξ1a1 + ξ2a2, we apply a∗
j to both

sides to learn that the dual basis functionals a∗
j return the components with respect to basis aj ,

a∗
j : IR2 � (x1, x2) → ξj ∈ IR

The whole issue is thus simply in computing the components ξj . This is done by representing the

canonical basis vectors ei in terms of vectors aj ,

a1 = e1 + e2
a2 = −e1 + e2

=⇒ e1 = 1
2a1 − 1

2a2

e2 = 1
2a1 +

1
2a2

Then,

x = x1e1 + x2e2 = x1(
1

2
a1 −

1

2
a2) + x2(

1

2
a1 +

1

2
a2) =

1

2
(x1 + x2)a1 +

1

2
(x2 − x1)a2

Therefore, ξ1 = 1
2 (x1 + x2) and ξ2 = 1

2 (x2 − x1) are the dual basis functionals.

Exercise 2.10.2 Let V be a finite-dimensional vector space, and V ∗ denote its algebraic dual. Let ei, i =

1, . . . , n be a basis in V , and e∗j , j = 1, . . . , n denote its dual basis. What is the matrix representation

of the duality pairing with respect to these two bases? Does it depend upon whether we define the dual

space as linear or antilinear functionals?
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It follows from the definition of the dual basis that the matrix representation of the duality pairing is

the Kronecker’s delta δij . This is true for both definitions of the dual space.

Exercise 2.10.3 Let V be a complex vector space. Let L(V, IC) denote the space of linear functionals defined

on V , and let L̄(V, IC) denote the space of antilinear functionals defined on V . Define the (complex

conjugate) map C as

C : L(V, IC) � f → f̄ ∈ L̄(V, IC), f̄(v)
def
= f(v)

Show that operator C is well defined, bijective, and antilinear. What is the inverse of C?

Let f be a linear functional defined on V . Then,

f(α1v1 + α2v2) = α1f(v1) + α2f(v2) = α1f(v1) + α2f(v2)

so f̄ is antilinear. Similarly,

(α1f1 + α2f2)(v) = α1f1(v) + α2f2(v) = α1f1(v) + α2f2(v)

so the map C is itself antilinear. Similarly, map

D : L̄(V, IC) � f → f̄ ∈ L(V, IC), f̄(v)
def
= f(v)

is well defined and antilinear. Notice that C and D are defined on different space so you cannot say

that C = D. Obviously, both compositions D ◦ C and C ◦D are identities, so D is the inverse of C,

and both maps are bijective.

Exercise 2.10.4 Let V be a finite-dimensional vector space. Consider the map ι from V into its bidual space

V ∗∗, prescribing for each v ∈ V the evaluation at v, and establishing the canonical isomorphism

between space V and its bidual V ∗∗. Let e1, . . . , en be a basis for V , and let e∗1, . . . , e
∗
n be the

corresponding dual basis. Consider the bidual basis, i.e., the basis e∗∗i , i = 1, . . . , n in the bidual

space, dual to the dual basis, and prove that

ι(ei) = e∗∗i

This is simple. Definition of map ι implies that

< ι(v), f >V ∗∗×V ∗=< f, v >V ∗×V

Thus,

δij =< e∗∗i , e∗j >V ∗∗×V ∗ and < ι(ei), e
∗
j >V ∗∗×V ∗=< e∗j , ei >V ∗×V = δji = δij

The relation follows then form the uniqueness of the (bi)dual basis.
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2.11 Transpose of a Linear Transformation

Exercises

Exercise 2.11.1 The following is a “sanity check” of your understanding of concepts discussed in the last

two sections. Consider IR2.

(a) Prove that a1 = (1, 0), a2 = (1, 1) is a basis in IR2.

It is sufficient to show linear independence. Any n linearly independent vectors in a n-dimensional

vector space provide a basis for the space. The vectors are clearly not collinear, so they are lin-

early independent. Formally, α1a1 + α2a2 = (α1 + α2, α2) = (0, 0) implies α1 = α2 = 0, so

the vectors are linearly independent.

(b) Consider a functional f : IR2 → IR, f(x1, x2) = 2x1 + 3x2. Prove that the functional is linear,

and determine its components in the dual basis a∗1, a
∗
2.

Linearity is trivial. Dual basis functionals return components with respect to the original basis,

a∗j (ξ1a1 + ξ2a2) = ξj

It is, therefore, sufficient to determine ξ1, ξ2. We have,

ξ1a1 + ξ2a2 = ξ1e1 + ξ2(e1 + e2) = (ξ1 + ξ2)e1 + ξ2e2

so x1 = ξ1 + ξ2 and x2 = ξ2. Inverting, we get, ξ1 = x1 − x2, ξ2 = x2. These are the dual basis

functionals. Consequently,

f(x1, x2) = 2x1 + 3x2 = 2(ξ1 + ξ2) + 3ξ2 = 2ξ1 + 5ξ2 = (2a∗1 + 5a∗2)(x1, x2)

Using the argumentless notation,

f = 2a∗1 + 5a∗2

If you are not interested in the form of the dual basis functionals, you get compute the components

of f with respect to the dual basis faster. Assume α1a
∗
1 + α2a

∗
2 = f . Evaluating both sides at

x = a1 we get,

(α1a
∗
1 + α2a

∗
2)(a1) = α1 = f(a1) = f(1, 0) = 2

Similarly, evaluating at x = a2, we get α2 = 5.

(c) Consider a linear map A : IR2 → IR2 whose matrix representation in basis a1, a2 is
�
1 0
1 2

�
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Compute the matrix representation of the transpose operator with respect to the dual basis.

Nothing to compute. Matrix representation of the transpose operator with respect to the dual basis

is equal of the transpose of the original matrix,
�
1 1
0 2

�

Exercise 2.11.2 Prove Proposition 2.11.3.

All five properties of the matrices are directly related to the properties of linear transformations dis-

cussed in Proposition 2.11.1 and Proposition 2.11.2. They can also be easily verified directly.

(i)

(αAij + βBij)
T = αAji + βBji = α(Aij)

T + β(βij)
T

(ii) �
n�

l=1

BilAlj

�T

=

n�

l=1

BjlAli =

n�

l=1

AliBjl =

n�

l=1

(Ail)
T (Blj)

T

(iii) (δij)
T = δji = δij .

(iv) Follow the reasoning for linear transformations:

AA−1 = I ⇒ (A−1)TAT = IT = I

A−1A = I ⇒ AT (A−1)T = IT = I

Consequently, matrix AT is invertible, and (AT )−1 = (A−1)T .

(v) Conclude this from Proposition 2.11.2. Given a matrix Aij , ij,= 1, . . . , n, we can interpret it as

the matrix representation of map A : IRn → IRn defined as:

y = Ax where yi =

n�

j=1

Aijxj

with respect to the canonical basis ei, i = 1, . . . , n. The transpose matrix AT can then be

interpreted as the matrix of the transpose transformation:

AT : (IRn)∗ → (IRn)∗

The conclusion follows then from the facts that rank A = rank A, rank AT = rank AT , and

Proposition 2.11.2.

Exercise 2.11.3 Construct an example of square matrices A and B such that

(a) AB �= BA

A =

�
1 0
1 1

�
B =

�
1 1
0 1

�

Then

AB =

�
1 1
1 2

�
and BA =

�
2 1
1 1

�

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781498761147-SOLUTIONS-5/


70 APPLIED FUNCTIONAL ANALYSIS SOLUTION MANUAL

(b) AB = 0, but neither A = 0 nor B = 0

A =

�
1 0
0 0

�
B =

�
0 0
0 1

�

(c) AB = AC, but B �= C

Take A,B from (b) and C = 0.

Exercise 2.11.4 If A = [Aij ] is an m × n rectangular matrix and its transpose AT is the n × m matrix,

AT
n×m = [Aji]. Prove that

(i) (AT )T = A.

�
(Aij)

T
�T

= (Aji)
T = Aij

(ii) (A+B)T = AT +BT .

Particular case of Proposition 2.11.3(i).

(iii) (ABC · · ·XY Z)T = ZTY TXT · · ·CTBTAT .

Use Proposition 2.11.3(ii) and recursion,

(ABC . . .XY Z)T = (BC . . .XY Z)TAT

= (C . . .XY Z)TBTAT

...

= ZTY TXT . . .CTBTAT

(iv) (qA)T = qAT .

Particular case of Proposition 2.11.3(i).

Exercise 2.11.5 In this exercise, we develop a classical formula for the inverse of a square matrix. Let

A = [aij ] be a matrix of order n. We define the cofactor Aij of the element aij of the i-th column of

A as the determinant of the matrix obtained by deleting the i-th row and j-th column of A, multiplied

by (−1)i+j :

Aij = cofactor aij
def
= (−1)i+j

������������

a11 a12 · · · a1,j−1 a1,j+1 · · · a1n
· · · · · ·

ai−1,1 ai−1,2 · · · ai−1,j−1 ai−1,j+1 · · · ai−1,n

ai+1,1 ai+1,2 · · · ai+1,j−1 ai+1,j+1 · · · ai+1,n

· · · · · ·
an1 an2 · · · an,j−1 an,j+1 · · · ann

������������

(a) Show that

δij detA =

n�

k=1

aikAjk, 1 ≤ i, j ≤ n
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where δij is the Kronecker delta.

Hint: Compare Exercise 2.13.4.

For i = j, the formula reduces to the Laplace Expansion Formula for determinants discussed in

Exercise 2.13.4. For i �= j, the right-hand side represents the Laplace expansion of the determi-

nant of an array where two rows are identical. Antilinearity of determinant (comp. Section 2.13)

implies then that the value must be zero.

(b) Using the result in (a), conclude that

A−1 =
1

detA
[Aij ]

T

Divide both sides by detA.

(c) Use (b) to compute the inverse of

A =



1 2 2
1 −1 0
2 1 3




and verify your answer by showing that

A−1A = AA−1 = I

A−1 =




1 4
3 − 2

3

1 1
3 − 2

3

−1 −1 1




Exercise 2.11.6 Consider the matrices

A =

�
1 0 4 1
2 −1 3 0

�
, B =



−1 4
12 0
0 1


 , C = [1,−1, 4,−3]

and

D =

�
2
3

�
, E =




1 0 2 3
−1 4 0 1
1 0 2 4
0 1 −1 2




If possible, compute the following:

(a) AAT + 4DTD +ET

The expression is ill-defined, AAT ∈ Matr(2, 2) and ET ∈ Matr(4, 4), so the two matrices

cannot be added to each other.

(b) CTC +E −E2

=




−1 −4 3 −17
−7 −12 −1 1
−2 −8 16 −27
−1 −2 −9 10



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(c) BTD

Ill-defined, mismatched dimensions.

(d) BTBD −D

=

�
276
36

�

(e) EC −ATA

EC is not computable.

(f) ATDC(E − 2I)

=




32 −40 40 144
−12 15 −15 −54
68 −85 85 306
8 −10 10 36




Exercise 2.11.7 Do the following vectors provide a basis for IR4?

a = (1, 0,−1, 1), b = (0, 1, 0, 22)

c = (3, 3,−3, 9), d = (0, 0, 0, 1)

It is sufficient to check linear independence,

αa+ βb+ γc+ δd = 0
?⇒ α = β = γ = δ = 0

Computing

αa+ βb+ γc+ δd = (α+ 3γ, β + 3γ,−α− 3γ, α+ 22β + 9γ + δ)

we arrive at the homogeneous system of equations



1 0 3 0
0 1 3 0

−1 0 −3 0
1 22 9 1







α
β
γ
δ


 =




0
0
0
0




The system has a nontrivial solution iff the matrix is singular, i.e., detA = 0. By inspection, the third

row equals minus the first one, so the determinant is zero. Vectors a, b, c,d are linearly dependent and,

therefore, do not provide a basis for IR4.

Exercise 2.11.8 Evaluate the determinant of the matrix

A =




1 −1 0 4
1 0 2 1
4 7 1 −1
1 0 1 2



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Use e.g. the Laplace expansion with respect to the last row and Sarrus’ formulas,
��������

1 −1 0 4
1 0 2 1
4 7 1 −1
1 0 1 2

��������
= −(−1)

������

−1 0 4
0 2 1
7 1 −1

������
− 1

������

1 0 4
1 2 1
4 1 −1

������
+ 2

������

−1 −1 0
1 0 2
4 7 1

������

= 2− 56 + 1− (−2 + 4− 32− 1) + 2(−8− 14 + 1) = −53− (−31)− 42 = −64

Exercise 2.11.9 Invert the following matrices (see Exercise 2.11.5).

A =

�
1 −1
1 2

�
, B =



4 2 1
2 4 2
1 2 2




A−1 =




2
3

1
3

− 1
3

1
3


 B−1 =




4
12 − 2

12 0

− 2
12

7
12 − 6

12

0 − 6
12 1




Exercise 2.11.10 Prove that if A is symmetric and nonsingular, so is A−1.

Use Proposition 2.11.3(iv).

(A−1)T = (AT )−1 = A−1

Exercise 2.11.11 Prove that if A,B,C, and D are nonsingular matrices of the same order then

(ABCD)−1 = D−1C−1B−1A−1

Use the fact that matrix product is associative,

(ABCD)(D−1C−1B−1A−1) = ABC(DD−1)C−1B−1A−1

= ABC I C−1B−1A−1 = . . . = I

In the same way,

(D−1C−1B−1A−1)(ABCD) = I

So, (ABCD)−1 = D−1C−1B−1A−1.

Exercise 2.11.12 Consider the linear problem

T =



0 1 3 −2
2 1 −4 3
2 3 2 −1


 , y =



1
5
7




(i) Determine the rank of T .
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Multiplication of columns (rows) with non-zero factor, addition of columns (rows), and inter-

change of columns (rows), do not change the rank of a matrix. We may use those operations and

mimic Gaussian elimination to compute the rank of matrices.

rank



0 1 3 −2
2 1 −4 3
2 3 2 −1




= rank



1 3 −2 0
1 −4 3 2
3 2 −1 2


 switch columns 1 and 4

= rank



1 3 −2 0
1 −4 3 2
1 2

3 − 1
3

2
3


 divide row 3 by 3

= rank



1 3 −2 0
0 −7 5 2
0 − 7

3
5
3

2
3


 subtract row 1 from rows 2 and 3

= rank



1 0 0 0
0 −7 5 2
0 − 7

3
5
3

2
3


 manipulate the same way columns to zero out the first row

= rank



1 0 0 0
0 1 − 5

7 − 2
7

0 0 0 0




= rank



1 0 0 0
0 1 0 0
0 0 0 0




= 2

(ii) Determine the null space of T .

Set x3 = α and x4 = β and solve for x1, x2 to obtain

N (T ) = {(7
2
α− 5

2
β,−3α+ 2β, α, β)T : α, β ∈ IR}

(iii) Obtain a particular solution and the general solution.

Check that the rank of the augmented matrix is also equal 2. Set x3 = x4 = 0 to obtain a

particular solution

x = (2, 1, 0, 0)T

The general solution is then

x = (2 +
7

2
α− 5

2
β, 1− 3α+ 2β, α, β)T , α, β ∈ IR

(iv) Determine the range space of T .

As rank T = 2, we know that the range of T is two-dimensional. It is sufficient thus to find two

linearly independent vectors that are in the range, e.g. we can take Te1, Te2 represented by the

first two columns of the matrix,

R(T ) = span{(0, 2, 2)T , (1, 1, 3)T }
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Exercise 2.11.13 Construct examples of linear systems of equations having (1) no solutions, (2) infinitely

many solutions, (3) if possible, unique solutions for the following cases:

(a) 3 equations, 4 unknowns

(1)

T =



1 0 0 0
1 0 0 0
0 1 1 1


 y =



0
1
0




(2)

T =



1 1 1 1
1 1 1 1
1 1 1 1


 y =



0
0
0




(3) Unique solution is not possible.

(b) 3 equations, 3 unknowns

(1)

T =



1 0 0
1 0 0
0 1 1


 y =



0
1
0




(2)

T =



1 0 0
2 0 0
1 1 1


 y =



1
2
1




(3)

T =



1 0 0
0 1 0
0 0 1


 y =



1
1
1




Exercise 2.11.14 Determine the rank of the following matrices:

T =




2 1 4 7
0 1 2 1
2 2 6 8
4 4 14 10


 , T 2 =



1 2 1 3 4 4
2 0 3 2 1 5
1 1 1 2 1 3


 , T 3 =



2 −1 1
2 0 1
0 1 1




In all three cases, the rank is equal 3.

Exercise 2.11.15 Solve, if possible, the following systems:

(a)
4x1 + 3x3 − x4 + 2x5 = 2

x1 − x2 + x3 − x4 + x5 = 1

x1 + x2 + x3 − x4 + x5 = 1

x1 + 2x2 + x3 + x5 = 0

x =




t+ 3
0

−2t− 3
−1
t



, t ∈ IR
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(b)
− 4x1 − 8x2 + 5x3 = 1

2x1 − 2x2 + 3x3 = 2

5x1 + x2 + 2x3 = 4

x =

�
19

120
,− 47

120
,
3

10

�T

(c)
2x1 + 3x2 + 4x3 + 3x4 = 0

x1 + 2x2 + 3x3 + 2x4 = 0

x1 + x2 + x3 + x4 = 0

x =




α+ β
−2α− β

α
β


 , α, β ∈ IR

2.12 Tensor Products, Covariant and Contravariant Tensors

2.13 Elements of Multilinear Algebra

Exercises

Exercise 2.13.1 Let X be a finite-dimensional space of dimension n. Prove that the dimension of the space

Ms
m(X) of all m-linear symmetric functionals defined on X is given by the formula

dimMs
m(X) =

n(n+ 1) . . . (n+m− 1)

1 · 2 · . . . ·m =
(n+m− 1)!

m! (n− 1)!
=

�
n+m− 1

m

�

Proceed along the following steps.

(a) Let Pi,m denote the number of increasing sequences of m natural numbers ending with i,

1 ≤ a1 ≤ a2 ≤ . . . ≤ am = i

Argue that

dimMs
m(X) =

n�

i=1

Pi,m
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Let a be a general m-linear functional defined on X . Let e1, . . . , en be a basis for X , and let

vj , j = 1, . . . , n, denote components of a vector v with respect to the basis. The multilinearity of

a implies the representation formula,

a(v1, . . . , vm) =

n�

j1=1

n�

j2=1

. . .

n�

jm=1

a(ej1 , ej2 , . . . , ejm) vj11 vj22 . . . vjmm

On the other side, if the form a is symmetric, we can interchange any two arguments in the coeffi-

cient a(ej1 , ej2 , . . . , ejm) without changing the value. The form is thus determined by coefficients

a(ej1 , ej2 , . . . , ejm) where

1 ≤ j1 ≤ . . . ≤ jm ≤ n

The number of such increasing sequences equals the dimension of space Ms
m(X). Obviously, we

can partition the set of such sequences into subsets that contain sequences ending at particular

indices 1, 2, . . . , n, from which the identity above follows.

(b) Argue that

Pi,m+1 =

i�

j=1

Pj,m

The first m elements of an increasing sequence of m+ 1 integers ending at i, form an increasing

sequence of m integers ending at j ≤ i.

(c) Use the identity above and mathematical induction to prove that

Pi,m =
i(i+ 1) . . . (i+m− 2)

(m− 1)!

For m = 1, Pi,1 = 1. For m = 2,

Pi,2 =

i�

j=1

1 = i

For m = 3,

Pi,3 =

i�

j=1

j =
i(i+ 1)

2

Assume the formula is true for a particular m. Then

Pi,m+1 =

i�

j=1

j(j + 1) . . . (j +m− 2)

(m− 1)!

We shall use induction in i to prove that

i�

j=1

j(j + 1) . . . (j +m− 2)

(m− 1)!
=

i(i+ 1) . . . (i+m− 1)

m!
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The case i = 1 is obvious. Suppose the formula is true for a particular value of i. Then,

i+1�

j=1

j(j + 1) . . . (j +m− 2)

(m− 1)!
=

i�

j=1

j(j + 1) . . . (j +m− 2)

(m− 1)!
+

(i+ 1)(i+ 2) . . . (i+m− 1)

(m− 1)!

=
i(i+ 1) . . . (i+m− 1)

m!
+

m(i+ 1)(i+ 2) . . . (i+m− 1)

m!

=
(i+ 1)(i+ 2) . . . (i+m− 1)(i+m)

m!

=
(i+ 1)(i+ 2) . . . (i+m− 1)((i+ 1) +m− 1)

m!

(d) Conclude the final formula.

Just use the formula above.

Exercise 2.13.2 Prove that any bilinear functional can be decomposed into a unique way into the sum of a

symmetric functional and an antisymmetric functional. In other words,

M2(V ) = Ms
2 (V )⊕Ma

2 (V )

Does this result hold for a general m-linear functional with m > 2 ?

The result follows from the simple decomposition,

a(u, v) =
1

2
(a(u, v) + a(v, u)) +

1

2
(a(u, v)− a(v, u))

Unfortunately, it does not generalize to m > 2. This can for instance be seen from the simple compar-

ison of dimensions of the involved spaces in the finite-dimensional case,

nm >

�
n+m− 1

m

�
+

�
n
m

�

for 2 < m ≤ n.

Exercise 2.13.3 Antisymmetric linear functionals are a great tool to check for linear independence of vectors.

Let a be an m-linear antisymmetric functional defined on a vector space V . Let v1, . . . , vm be m

vectors in space V such that a(v1, . . . , vm) �= 0. Prove that vectors v1, . . . , vn are linearly independent.

Is the converse true? In other words, if vectors v1, . . . , vn are linearly independent, and a is a nontrivial

m-linear antisymmetric form, is a(v1, . . . , vm) �= 0?

Assume in contrary that there exists an index i such that

vi =
�

j �=i

βjvj

for some constants βj , j �= i. Substituting into the functional a, we get,

a(v1, . . . , vi, . . . , vm) = a(v1, . . . ,
�

j �=i

βjvj , . . . , vm) =
�

j �=i

βja(v1, . . . , vj , . . . , vm) = 0

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781498761147-SOLUTIONS-5/


Linear Algebra 79

since in each of the terms a(v1, . . . , vj , . . . , vm), two arguments are the same.

The converse is not true. Consider for instance a bilinear, antisymmetric form defined on a three-

dimensional space. Let e1, e2, e3 be a basis for the space. As discussed in the text, the form is uniquely

determined by its values on pairs of basis vectors: a(e1, e2), a(e1, e3), a(e2, e3). It is sufficient for one

of these numbers to be non-zero in order to have a nontrivial form. Thus we may have a(e1, e2) = 0

for the linearly independent vectors e1, e2, and a nontrivial form a. The discussed criterion is only a

sufficient condition for the linear independence but not necessary.

Exercise 2.13.4 Use the fact that the determinant of matrix A is a multilinear antisymmetric functional of

matrix columns and rows to prove the Laplace Expansion Formula. Select a particular column of

matrix Aij , say the j-th column. Let Aij denote the submatrix of A obtained by removing i-th row

and j-th column (do not confuse it with a matrix representation). Prove that

detA =

n�

i=1

(−1)i+jAij detA
ij

Formulate and prove an analogous expansion formula with respect to an i-th row.

It follows from the linearity of the determinant with respect to the j-th column that,

det



. . . A1j . . .
...

...
...

. . . Anj . . .


 = A1j det



. . . 1 . . .
...

...
...

. . . 0 . . .


+ . . .+Anj det



. . . 0 . . .
...

...
...

. . . 1 . . .




On the other side, the determinant of matrix,



(j)
. . . 0 . . .

(i)
... 1

...
. . . 0 . . .




is a multilinear functional of the remaining columns (and rows) and, for Aij = I (The I denote here

the identity matrix in IRn−1), its value reduces to (−1)i+j . Hence,

det




(j)
. . . 0 . . .

(i)
... 1

...
. . . 0 . . .


 = (−1)i+j detAi+j

The reasoning follows identical lines for the expansion with respect to the i-th column.

Exercise 2.13.5 Prove the Kramer’s formulas for the solution of a nonsingular system of n equations with n

unknowns, 

a11 . . . a1n

...
...

...
an1 . . . ann






x1

...
xn


 =



b1
...
bn



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Hint: In order to develop the formula for the j-th unknown, rewrite the system in the form:




a11 . . . a1n
...

...
...

an1 . . . ann







1 . . . x1 . . . 0
...

...
0 . . . xn

(j)

. . . 1


 =




a11 . . . b1 . . . a1n
...

...
an1 . . . bn

(j)

. . . ann




Compute the determinant of both sides of the identity, and use Cauchy’s Theorem for Determinants for

the left-hand side.

Exercise 2.13.6 Explain why the rank of a (not necessarily square) matrix is equal to the maximum size of a

square submatrix with a non-zero determinant.

Consider an m× n matrix Aij . The matrix can be considered to be a representation of a linear map A

from an n-dimensional space X with a basis ei, i = 1, . . . , n, into an m-dimensional space Y with a

basis g1, . . . , gm. The transpose of the matrix represents the transpose operator AT mapping dual space

Y ∗ into the dual space X∗, with respect to the dual bases g∗1 , . . . , g
∗
m and e∗1, . . . , e

∗
n. The rank of the

matrix is equal to the dimension of the range space of operator A and operator AT . Let ej1 , . . . , ejk be

such vectors that Aej1 , . . . , Aejk is the basis for the range of operator A. The corresponding submatrix

represents a restriction B of operator A to a subspace X0 = span(ej1 , . . . , ejk) and has the same rank

as the original whole matrix. Its transpose has the same rank equal to k. By the same argument, there

exist k vectors gi1 , . . . , gik such that AT g∗i1 , . . . , A
T g∗ik are linearly independent. The corresponding

k × k submatrix represents the restriction of the transpose operator to the k-dimensional subspace

Y ∗
0 = span(g∗i1 , . . . , g

∗
ik
), with values in the dual space X∗

0 , and has the same rank equal k. Thus,

the final submatrix represents an isomorphism from a k-dimensional space into a k-dimensional space

and, consequently, must have a non-zero determinant.

Conversely, let v1, . . . ,vm be k column vectors in IRm. Consider a matrix composed of the columns.

If there exists a square submatrix of the matrix with a non-zero determinant, the vectors must be

linearly independent. Indeed, the determinant of any square submatrix of the matrix represents a k-

linear, antisymmetric functional of the column vectors, so, by Exercise 2.13.3, v1, . . . ,vk are linearly

independent vectors. The same argument applies to the rows of the matrix.
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Euclidean Spaces

2.14 Scalar (Inner) Product. Representation Theorem in Finite-Dimensional Spaces

2.15 Basis and Cobasis. Adjoint of a Transformation. Contra- and Covariant Com-
ponents of Tensors

Exercises

Exercise 2.15.1 Go back to Exercise 2.11.1 and consider the following product in IR2,

IR2 × IR2 � (x, y) → (x, y)V = x1y1 + 2x2y2

Prove that (x, y)V satisfies the axioms for an inner product. Determine the adjoint of map A from

Exercise 2.11.1 with respect to this inner product.

The product is bilinear, symmetric and positive definite, since (x, x)V = x2
1+2x2

2 ≥ 0, and x2
1+2x2

2 =

0 implies x1 = x2 = 0. The easiest way to determine a matrix representation of A∗ is to determine the

cobasis of the (canonical) basis used to define the map A. Assume that a1 = (α, β). Then

(a1, a
1) = α = 1

(a2, a
1) = α+ 2β = 0 =⇒ β = − 1

2

so a1 = (1,− 1
2 ). Similarly, if a2 = (α, β) then,

(a1, a
2) = α = 0

(a2, a
2) = α+ 2β = 1 =⇒ β = 1

2

so a2 = (0, 1
2 ). The matrix representation of A∗ in the cobasis is simply the transpose of the original

matrix, �
1 1
0 2

�

In order to represent A∗ in the original, canonical basis, we need to switch in between the bases.

a1 = e1 − 1
2e2

a2 = 1
2e2

=⇒ e1 = a1 + a2

e2 = 2a2
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Then,

A∗y = A∗(y1e1 + y2e2) = A∗(y1(a1 + a2) + y22a
2) = A∗(y1a1 + (y1 + 2y2)a

2)

= y1A
∗a1 + (y1 + 2y2)A

∗a2 = y1a
1 + (y1 + 2y2)(a

1 + 2a2)

= y1(e1 − 1
2e2) + (y1 + 2y2)(e1 +

1
2e2) = 2(y1 + y2)e1 − 1

2y1e2

= (2(y1 + y2), y2)

Now, let us check our calculations. First, let us compute the original map (that has been given to us in

basis a1, a2), in the canonical basis,

A(x1, x2) = A(x1e1 + x2e2) = A(x1a1 + x2(a2 − a1))

= A((x1 − x2)a1 + x2a2) = (x1 − x2)(a1 + a2) + x22a2

= (x1 − x2)(2e1 + e2) + 2x2(e1 + e2)

= (2x1, x1 + x2)

If our calculations are correct then,

(Ax, y)V = 2x1y1 + 2(x1 + x2)y2

must match

(x,A∗y)V = x12(y1 + y2) + 2x2y2

which it does! Needless to say, you can solve this problem in many other ways.
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