Solutions for Numerical Methods for Engineers and Scientists Using MATLAB 2nd Edition by Esfandiari

CLICK HERE TO ACCESS COMPLETE Solutions

Problem Set (Chapter 2)

All calculations must be performed in MATLAB.

- 1 Evaluate the function $g(x, y) = \frac{1}{2}e^{-2x/3}\tan(y+1)$ for x = 0.3, y = -0.7
- (a) Using the subs command,
- (b) By conversion into a MATLAB function.

Solution

- 2 Evaluate the function $h(x, y) = \cos(\frac{1}{3}x 1)\sin(y + \frac{1}{2})$ for $x = \frac{3}{4}$, y = 1 using
- (a) The subs command,
- (b) An anonymous function.

Solution

- 3 Evaluate the vector function $f(x, y) = \begin{cases} x-1 \\ 2y+x \end{cases}$ for $x = 2, y = \frac{2}{3}$ using
- (a) The subs command,
- (b) An anonymous function.

```
(a) 
>> f = sym('[x-1;2*y+x]'); 
>> x = 2; y = 2/3; double(subs(f))
```

CLICK HERE TO ACCESS THE COMPLETE Solutions

Solutions for "Numerical Methods for Engineers and Scientists Using MATLAB®, 2nd ed."

```
ans =
    1.0000
    3.3333

(b)
>> F = @(x,y)([x-1;2*y+x]);
>> F(2,2/3)

ans =
    1.0000
    3.3333
```

- 4 Evaluate the matrix function $f(x, y) = \begin{bmatrix} 1 2x & x + y \\ 0 & \cos y \end{bmatrix}$ for x = 1, y = -1
- (a) Using the subs command,
- (b) By conversion into a Matlab function.

Solution

- 5 Consider $g(t) = t \sin(\frac{1}{2}t) + \ln(t-1)$. Evaluate dg / dt at $t = \frac{4}{3}$
- (a) Using the subs command,
- (b) By conversion into a Matlab function.

- 6 Consider $h(x) = 3^{x-2} \sin x + \frac{2}{3} e^{1-2x}$. Evaluate dh/dx at x = -0.3
- (a) Using the subs command,
- (b) By conversion into a Matlab function.

Solution

```
(a)
>> h = sym('3^(x-2)*sin(x)+2*exp(1-2*x)/3');
>> dh = diff(h); x = -0.3; double(subs(dh))
ans =
    -6.5536

(b)
>> dH = matlabFunction(dh); dH(-0.3)
ans =
    -6.5536
```

7 Evaluate $\left[x^2 + e^{-a(x+1)}\right]^{1/3}$ when a = -1, x = 3 using an anonymous function in another anonymous function.

Solution

```
>> A = @(a,x)(x^2+\exp(-a^*(x+1)));
>> B = @(a,x)(A(a,x)^(1/3));
>> B(-1,3)
ans =
3.9916
```

8 Evaluate $\sqrt{|x+\ln|1-e^{(a+2)x/3}|}$ when a=-3, x=1 using an anonymous function in another anonymous function.

Solution

```
>> A = @(a,x)(x+2*log(abs(1-exp((a+2)*x/3))));
>> B = @(a,x)(sqrt(abs(A(a,x))));
>> B(-3,1)
ans =
    1.2334
```

In Problems 9 through 12 write a script file that employs any combination of the *flow control commands* to generate the given matrix.

$$\mathbf{9} \qquad \mathbf{A} = \begin{bmatrix} 1 & 0 & -1 & 0 & 0 & 0 \\ 0 & 2 & 0 & -1 & 0 & 0 \\ 2 & 0 & 3 & 0 & -1 & 0 \\ 0 & 2 & 0 & 4 & 0 & -1 \\ 0 & 0 & 2 & 0 & 5 & 0 \\ 0 & 0 & 0 & 2 & 0 & 6 \end{bmatrix}$$

Solution

```
clear
clc
A = zeros(6,6);
for i = 1:6,
  for j = 1:6,
      A(i,i) = i;
     if j == i+2,
A(i,j) = -1;
elseif i == j+2,
A(i,j) = 2;
    end
  end
end
>> A
A =
      1
             0
                    -1
                             0
                                    0
                                            0
      0
              2
                     0
                            -1
                                    0
                                            0
                                            0
      2
             0
                     3
                            0
                                   -1
      0
              2
                     0
                             4
                                    0
                                           -1
      0
             0
                     2
                             0
                                    5
                                            0
                                    0
      0
             0
                     0
                             2
                                            6
```

$$\mathbf{10} \quad \mathbf{A} = \begin{bmatrix} 4 & 1 & -2 & 3 & 0 & 0 \\ 0 & 4 & -1 & 2 & 3 & 0 \\ 0 & 0 & 4 & 1 & -2 & 3 \\ 0 & 0 & 0 & 4 & -1 & 2 \\ 0 & 0 & 0 & 0 & 4 & 1 \\ 0 & 0 & 0 & 0 & 0 & 4 \end{bmatrix}$$

```
clear
clc
A = 4*eye(6);
for i = 1:6,
  for j = 1:6,
if j == i+1,
      A(i,j) = (-1)^{(i+1)};
elseif j == i+2,
A(i,j) = 2*(-1)^i;
     elseif j == i+3,
         A(i,j) = 3;
     end
  end
end
>> A
A =
                            3
      4
             1
                    -2
      0
             4
                    -1
                            2
                                    3
                                           0
      0
             0
                     4
                            1
                                   -2
                                           3
                                           2
      0
             0
                     0
                            4
                                   -1
                            0
                                    4
      0
             0
                     0
                                           1
             0
                     0
                            0
                                    0
                                           4
```

$$\mathbf{11} \quad \mathbf{B} = \begin{bmatrix} 1 & 1 & 0 & 0 & 0 & 0 \\ 0 & -2 & 2 & 0 & 0 & 0 \\ -1 & 0 & 3 & 3 & 0 & 0 \\ 0 & 1 & 0 & -4 & 4 & 0 \\ 0 & 0 & -1 & 0 & 5 & 5 \\ 0 & 0 & 0 & 1 & 0 & -6 \end{bmatrix}$$

Solution

```
clear
clc
B = zeros(6,6);
for i = 1:6,
  for j = 1:6,
     B(i,i) = (-1)^{(i+1)*i}
    if j == i+1,
     B(i,j) = i;
elseif i == j+2,
   B(i,j) = (-1)^i;
    end
  end
end
>> B
B =
     1
              0
                    0
         1
                            0
                                   0
                     0
    0
          -2
                2
                                   0
                             0
    -1
          0
                 3
                      3
                             0
                                   0
     0
          1
                 0
                      -4
                             4
                                   0
     0
          0
                -1
                      0
                             5
                                   5
                0
                                  -6
```

$$\mathbf{12} \quad \mathbf{B} = \begin{bmatrix} 0 & 0 & -1 & 0 & 0 \\ 0 & -1 & 0 & -2 & 0 \\ 4 & 0 & 2 & 0 & -3 \\ 0 & 5 & 0 & -3 & 0 \\ 0 & 0 & 6 & 0 & 4 \end{bmatrix}$$

```
clear
clc
B = zeros(5,5);
for i = 1:5,
    for j = 1:5,
        B(i,i) = (-1)^(i+1)*(i-1);
    if j == i+2,
        B(i,j) = -i;
elseif i == j+2,
        B(i,j) = i+1;
    end
end
end
```

CLICK HERE TO ACCESS THE COMPLETE Solutions

Solutions for "Numerical Methods for Engineers and Scientists Using MATLAB®, 2nd ed."

13 Using any combination of commands diag, triu and tril, construct matrix B from A.

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -1 & 2 \\ 3 & 0 & 4 & 1 \\ 1 & 5 & -1 & 3 \\ 0 & 2 & 6 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 0 & 0 & 0 \\ 3 & 0 & 0 & 0 \\ 1 & 5 & 0 & 0 \\ 0 & 2 & 6 & 0 \end{bmatrix}$$

Solution

14 Using any combination of commands diag, triu and tril, construct matrix $\, B \,$ from $\, A \,$.

$$\mathbf{A} = \begin{bmatrix} 2 & 1 & -1 & 2 \\ 3 & 0 & 4 & 1 \\ 1 & 5 & -1 & 3 \\ 0 & 2 & 6 & 1 \end{bmatrix}, \quad \mathbf{B} = \begin{bmatrix} 0 & 1 & -1 & 2 \\ 3 & 0 & 4 & 1 \\ 0 & 5 & 0 & 3 \\ 0 & 0 & 6 & 0 \end{bmatrix}$$

```
>> A = [2 1 -1 2;3 0 4 1;1 5 -1 3;0 2 6 1];
>> D = diag(diag(A)); C = triu(A) - D;
>> B = C + diag(diag(A,-1),-1)
```

B = 0 1 -1 2 3 0 4 1 0 5 0 3

15 Plot $\int_{1}^{t} e^{t-2x} \sin x dx$ versus $-1 \le t \le 1$, add grid and label.

Solution

>> syms t x
>> integ = int(exp(t-2*x)*sin(x),x,1,t);
>> ezplot(integ,[-1,1])

16 Plot $\int_{0}^{t} (x+t)^2 e^{-(t-x)} dx$ versus $-2 \le t \le 1$, add grid and label.

Solution

>> syms x t >> integ = int((x+t)^2*exp(-(t-x)),x,0,t); >> ezplot(integ,[-2,1])

Figure Solution of Problem 16

17 Plot $y_1 = \frac{1}{3}e^{-t}\sin(t\sqrt{2})$ and $y_2 = e^{-t/2}$ versus $0 \le t \le 5$ in the same graph. Add grid, and label.

Solution

```
syms t
y1 = sym('(1/3)*exp(-t)*sin(sqrt(2)*t)');
y2 = sym('exp(-t/2)');
ezplot(y1,[0,5])
hold on
ezplot(y2,[0,5])
```


18 Generate 100 points for each of the two functions in Problem 17 and plot versus $0 \le t \le 5$ in the same graph. Add grid, and label.


```
19 Evaluate \int_{0}^{\infty} \frac{\sin \omega}{\omega} d\omega.
```

Solution

```
>> syms w
>> int(sin(w)/w,w,0,inf)
ans =
pi/2
```

20 Plot $u(x,t) = \cos(1.7x)\sin(3.2t)$ versus $0 \le x \le 5$ for four values of t = 1,1.5,2,2.5 in a 2×2 tile. Add grid and title.

Figure Solution of Problem 20

21 Plot $u(x,t) = (1-\sin x)e^{-(t+1)}$ versus $0 \le x \le 5$ for two values of t=1,3 in a 1×2 tile. Add grid and title.

Solution

Figure Solution of Problem 21

22 Given that $f(x) = e^{-2x} + \cos(x+1)$, plot f'(x) versus $0 \le x \le 8$.

```
>> f = sym('exp(-2*x)+cos(x+1)');
>> df = matlabFunction(diff(f));
>> ezplot(df,[0,8])
```


Write a user-defined function with function call val = f_eval(f,a,b) where f is an anonymous function, and a and b are constants such that a < b. The function calculates the midpoint m of the interval [a,b] and returns the value of $f(a) + \frac{1}{2}f(m) + f(b)$. Execute f_eval for $f = e^{-x/3}$, a = -4, b = 2.

Solution

```
function val = f_eval(f,a,b)
m = (a + b)/2;
val = f(a) + f(m)/2 + f(b);

>> f = @(x)(exp(-x/3));
>> val = f_eval(f,-4,2)

val =
    5.0049
```

Write a user-defined function with function call $m = mid_seq(a,b,tol)$ where a and b are constants such that a < b, and tol is a specified tolerance. The function first calculates the midpoint m_1 of the interval [a,b], then the midpoint m_2 of $[a,m_1]$, then the midpoint m_3 of $[a,m_2]$, and so on. The process terminates when two successive midpoints are within tol of each other. Allow a maximum of 20 iterations. The output of the function is the sequence m_1, m_2, m_3, \ldots Execute the function for a = -4, b = 10, tol $= 10^{-3}$.

Solution

```
m =
 Columns 1 through 8
    3.0000
             -0.5000
                       -2.2500
                                -3.1250
                                                     -3.7813
                                         -3.5625
                                                              -3.8906
                                                                         -3.9453
 Columns 9 through 14
   -3.9727
             -3.9863
                       -3.9932
                                 -3.9966
                                           -3.9983
                                                     -3.9991
```

Write a user-defined function with function call $C = temp_conv(F)$ where F is temperature in Fahrenheit, and C is the corresponding temperature in Celsius. Execute the function for F = 87.

```
function C = temp_conv(F)
C = (F-32)*100/180;

>> C = temp_conv(87)
C =
    30.5556
```

26 Write a user-defined function with function call $P = partial_eval(f,a)$ where f is a function defined symbolically, and a is a constant. The function returns the value of f' + f'' at x = a. Execute the function for $f = 3x^2 - e^{x/3}$, and a = 1.

Solution

```
function P = partial_eval(f,a)
del = diff(f, 'x') + diff(f, 2, 'x');
x = a; P = double(subs(del));
\Rightarrow f = sym('3*x^2-exp(x/3)'); P = partial_eval(f,1)
   11.3797
```

27 Write a user-defined function with function call $P = partial_eval2(f,q,a)$ where f and g are functions defined symbolically, and a is a constant. The function returns the value of f' + g' at x = a. Execute the function for $f = x^2 + e^{-x}$, $g = \sin(0.3x)$, and a = 0.8.

Solution

```
function P = partial_eval2(f,g,a)
del = diff(f, 'x') + diff(g, 'x');
x = a; P = double(subs(del));
\Rightarrow f = sym('x^2+exp(-x)'); q = sym('sin(0.3*x)'); P = partial_eval2(f,q,0.8)
    1.4421
```

28 Write a user-defined function with function call [r, k] = root_finder(f,x0,kmax,tol) where f is an anonymous function, x0 is a specified value, kmax is the maximum number of iterations, and tol is a specified tolerance. The function sets $x_1 = x_0$, calculates $|f(x_1)|$, and if it is less than the tolerance, then x_1 approximates the root r. If not, it will increment x_1 by 0.01 to obtain x_2 , repeat the procedure, and so on. The process terminates as soon as $|f(x_k)| < \text{tol for some } k$. The outputs of the function are the approximate root and the number of iterations it took to find it. Execute the function for $f(x) = x^2 - 3.3x + 2.1$, $x_0 = 0.5$, kmax = 50 tol = 10^{-2} .

```
function [r, k] = root_finder(f,x0,kmax,tol)
if abs(f(x(1))) < tol,
    r = x(1);
end
for k = 2:kmax,
    x(k) = x(k-1) + 0.01;
    if abs(f(x(k))) < tol,
        r = x(k); break, end
\Rightarrow f = @(x)(x^2-3.3*x+2.1); [r, k] = root_finder(f,0.5,50,1e-2)
    0.8600
    37
```

29 Repeat Problem 28 for $f(x) = 3 + \ln(2x - 1) - e^x$, $x_0 = 1$, kmax = 25 tol = 10^{-2} .

Solution

```
function [r, k] = root_finder(f,x0,kmax,tol)
x(1) = x0;
if abs(f(x(1))) < tol,
    r = x(1);
end
for k = 2:kmax,
    x(k) = x(k-1) + 0.01;
    if abs(f(x(k))) < tol,
        r = x(k); break, end
end

>> f = @(x)(3+log(2*x-1)-exp(x));
>> [r, k] = root_finder(f,1,25,1e-2)

r =
    1.2100
k =
    22
```

Write a user-defined function with function call [opt, k] = opt_finder(fp,x0,kmax,tol) where fp is the derivative (as a MATLAB function) of a given function f, x0 is a specified value, kmax is the maximum number of iterations, and tol is a specified tolerance. The function sets $x_1 = x_0$, calculates $|fp(x_1)|$, and if it is less than the tolerance, then x_1 approximates the critical point opt at which the derivative is near zero. If not, it will increment x_1 by 0.1 to obtain x_2 , repeat the procedure, and so on. The process terminates as soon as $|fp(x_k)| <$ tol for some k. The outputs are the approximate optimal point and the number of iterations it took to find it. Execute the function for $f(x) = x + (x-2)^2$, $x_0 = 1$, kmax = 50 tol = 10^{-3} .

```
function [opt, k] = opt_finder(fp,x0,kmax,tol)
x = zeros(kmax); % Pre-allocate
x(1) = x0;
if abs(fp(x(1))) < tol,
    opt = x(1);
end
for k = 2:kmax,
    x(k) = x(k-1) + 0.1;
    if abs(fp(x(k)))<tol,</pre>
        opt = x(k); break, end
end
>> f = sym('x + (x-2)^2');
>> fp = matlabFunction(diff(f));
>> [opt, k] = opt_finder(fp,1,50,1e-3)
opt =
    1.5000
k =
     6
```