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Chapter 2

Sequences

2.1 Convergence of Sequences

1. The answer is no. We can even construct a sequence with arbitrarily
long repetitive strings that has subsequences converging to any real
number α. Indeed, order Q into a sequence {qn}. Consider the follow-
ing sequence

{q1, q2, q2, q1, q1, q1, q2, q2, q2, q2, q3, q3, q3, q3, q3, q1, q1, q1, q1, q1, q1, · · · } .
In this way we have repeated each rational number infinitely many
times, and with arbitrarily long strings. From the above sequence we
can find subsequences that converge to any real number.

2. If, to the contrary, the βj remain bounded by some number M > 0,
then any such sequence αj/βj will have a subsequence αjk

/βjk
with

all denominators having the same value β∗. But then the only way
that αjk

/βjk
can converge is if the αjk

eventually assume the same
constant value. Thus αjk

/βjk
converges to a rational number. That is

a contradiction.

4. Let aj = αj/βj be a sequence of rational numbers with the property
that all the βj are powers of 2, and none of those powers is greater than
210. Then some subsequence αjk

/βjk
will have all the βjk

equal. But
then the only way that the sequence can converge is if the αjk

eventually
assume some constant value. Thus the subsequence must converge to
a rational number with denominator a power of 2 not exceeding 210.
Therefore the entire sequence must have the same property.

9
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10 CHAPTER 2. SEQUENCES

5. We know that ∫ 1

0

dt

1 + t2
= Tan−1(t)

∣∣∣∣
1

0

=
π

4
.

As we know from calculus (and shall learn in greater detail in Chapter
7 of the present text), the integral on the left can be approximated by
its Riemann sums. So we obtain

k∑

j=0

f(sj)∆xj ≈
π

4
.

Here f(t) = 1/(1 + t2). Since the sum on the left can be written out
explicitly, this gives a means of calculating π to any desired degree of
accuracy.

7. Let ε > 0. Choose an integer J so large that j > J implies that
|aj −α| < ε. Also choose an integer K so large that j > K implies that
|cj − α| < ε. Let M = max{J,K}. Then, for j > M , we see that

α − ε < aj ≤ bj ≤ cj < α + ε .

In other words,
|bj − α| < ε .

But this says that limj→∞ bj = α.

9. The sequence

aj = π +
1

j
, j = 1, 2, . . .

is decreasing and certainly converges to π.

10. Let SR be bounded above and let t = supS. Let ε > 0. Then t− ε is
not an upper bound for S. So there is an element s ∈ S so that

t− ε < s ≤ t .

11. If the assertion were not true then the sequence {aj} does not converge.
So, for any ε > 0 there exist arbitarily large j so that |aj − α| > ε.
Thus we may choose j1 < j2 < · · · so that |ajk

− α| > ε. This says
that the subsequence {ajk

} does not converge to α. Nor does it have a
subsequence that converges to α. That is a contradiction.
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2.2. SUBSEQUENCES 11

* 12. We know that, for any N > M > 0, it holds that

|aM − aM+1| + |aM+1 − aM+2| + · · · |aN−1 − aN | ≤ 1 .

This tells us that the series

∞∑

j=1

|aj − aj+1|

converges. [Refer to Chapter 3 for more on series.] But then, given any
ε > 0, there are N > M > 0 so large that

N∑

j=M

|aj − aj+1| < ε .

From this we may conclude from the triangle inequality that

|aM − aN+1| ≤
N∑

j=M

|aj − aj+1| < ε .

It follows that the sequence is Cauchy, so it converges.

2.2 Subsequences

1. Let a1 ≥ a2 ≥ · · · be a decreasing sequence that is bounded below by
some number M . Of course the sequence is bounded above by a1. So
the sequence is bounded. By the Bolzano-Weierstrass theorem, there
is a subsequence {ajk

} that converges to a limit α.

Let ε > 0. Choose K > 0 so that, when k ≥ K, |ajk
−α| < ε. Then,

when j > jK ,

α − ε < aj ≤ ajK
< α+ ε .

Thus

|aj − α| < α .

So the sequence converges to α.
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12 CHAPTER 2. SEQUENCES

y = 1/x

Figure 2.1: Sum of shaded regions is 1 + 1/2 + · · · 1/j − log j.

2. Let {qj} be an enumeration of the rationals. Consider the sequence

q1, q1, q2, q1, q2, q3, q1, q2, q3, q4, . . . .

Call these sequence elements {rj}. We see that each qj is repeated
infinitely many times in the sequence.

If α is any real number, then select a sequence pj of rational numbers
so that pj → α. Then p1 occurs in the sequence {rj}. Call the first
occurrence rj1. And p2 occurs in the sequence {rj} after rj1 . Call that
occurrence rj2 . Continuing in this fashion, we can realize the numbers
p1, p2, p3, . . . as a subsequence of {rj}. And pj → α. So that does the
job.

A similar argument applies when α = ±∞.

3. Suppose that {a} has a subsequence diverging to +∞. If in fact {aj}
converges to some finite real number α, then every subsequence con-
verges to α. But that is a contradiction.

5. Consider Figure 2.1.

The sum of the areas of the four shaded regions is

1 +
1

2
+

1

3
+

1

4
− log j ,
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2.2. SUBSEQUENCES 13

where of course we use the natural logarithm. All four of these shaded
regions may be slid to the left so that they lie in the first, large box.
And they do not overlap. This assertion is true not just for the first
four summands but for any number of summands. So we see that the
value of

lim
j→∞

(
1 +

1

2
+

1

3
+ · · · + 1

j

)
− log j

is not greater that 1 × 1 = 1. In particular, the sequence is increasing
and bounded above. So it converges.

6. Similar to the solution of Exercise 1 above.

7. Similar to the solution of Exercise 13 in Section 1.1 above.

8. Similar to the solution of Exercise 13 in Section 1.1 above.

9. Define the sequence aj by

0, 0, 1, 0, 1, 1/2, 0, 1, 1/2, 1/3, 0, 1, 1/2, 1/3, 1/4, . . . .

Then, given an element 1/j in S, we may simply choose the subsequence

1/j, 1/j, 1/j, . . .

from the sequence aj to converge to 1/j. And it is clear that the
subsequences of aj have no other limits.

10. Let {aj} be a bounded sequence. Define bj = inf{aj, aj+1, . . . }. Cer-
tainly each bj is finite and b1 ≤ b2 ≤ · · · . Also {bj} is bounded above
because {aj} is. So, by Proposition 2.16, the sequence {bj} converges
to some number α. But the sequence {bj} also converges to the liminf
of the aj. So some subsequence of the aj will converge to α.

* 12. We see that
sin2m

m
=

1 − cos 2m

2
.

Now ∑

m

1

2
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14 CHAPTER 2. SEQUENCES

diverges because this is the harmonic series. And

∑

m

cos 2m

m

converges by an argument similar to that for Exercise 11. It follows
then that ∑

m

sin2m

m

diverges.

2.3 Lim sup and Lim inf

1. Consider the sequence

1,−1, 1,−1, 5,−5, 1,−1, 1,−1, . . . .

Then, considered as a sequence, the limsup is plainly 1. But the supre-
mum of the set of numbers listed above is 5. Also the liminf is −1. But
the infimum of the set of numbers listed above is −5.

What is true is that
lim sup aj ≤ sup{aj}

and
lim inf aj ≥ inf{aj} .

We shall not prove these two inequalities here.

2. Let α = lim sup aj. Then there is a subsequence {ajk
} that converges

to α. Assume that α 6= 0. Then the subsequence {1/ajk
} converges

to 1/α. If there were a subsequence {1/aj`
} that converges to some

number β < 1/α then {aj`
} would converge to 1/β > α, and that is

impossible. Hence 1/α is the liminf of the 1/aj .

A similar argument applies to the situation where γ = lim inf aj and
then we consider 1/aj .

3. Let α = lim sup aj. Then there is a subsequence {ajk
} that converges

to α. But then {−ajk
} converges to −α. If there is some other sub-

sequence {−aj`
} that converges to some number β < −α then {aj`

}
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2.3. LIM SUP AND LIM INF 15

would converge to −β > α. And that is impossible. Hence −α is the
liminf of {−aj}.
A similar argument applies to γ = lim inf aj and the consideration of
{−aj}.

4. Let α = lim sup aj = lim inf aj. But the limsup is the greatest subse-
quential limit of the aj and the liminf is the least subsequential limit of
the aj. Since they are equal, we must conclude that all subsequential
limits are the same, and they all equal α. So the full sequence converges
to α.

Conversely, if the full sequence converges to some number α then
every subsequence converges to α. But then the subsequence that con-
verges to the limsup converges to α and the subsequence that converges
to the liminf converges to α. We must conclude that both the limsup
and the liminf are equal to α.

5. Consider the sequence

a, b, a, b, a, b, a, b, . . . .

Then clearly the limsup of this sequence is equal to b and the liminf of
this sequence is equal to a.

6. The complex numbers do not form an ordered field, so we cannot speak
of the least or greatest subsequential limit.

8. Consider the sequence {aj} given by

1

2
,−1

2
,
1

2
,−1

2
,
1

2
,−1

2
, . . . .

Then lim inf aj = −1/2 and lim supaj = 1/2. So

lim supaj − lim inf aj =
1

2
−
(
−1

2

)
= 1 .

9. The limsup is defined to be the limit of the sequence bj = sup{aj, aj+1, aj+2, . . . }.
Clearly bj ≥ aj. Therefore

lim
j→∞

bj = lim
k→∞

bjk
≥ lim

k→∞
ajk

.

CLICK HERE TO ACCESS THE COMPLETE Solutions

https://testbanks.ac/product/9781498777681-SOLUTIONS-5/


16 CHAPTER 2. SEQUENCES

So
lim
k→∞

ajk
≤ lim sup aj .

A similar argument shows that

lim
k→∞

ajk
≥ lim inf aj .

11. Let {aj`
} be any subsequence of the given sequence. Define bj`

=
sup{aj`

, aj`+1
, . . .}. Then

bj`
≥ aj`

so
lim sup

`→∞
bj`

≥ lim sup ` → ∞aj`

so that
lim sup aj`

≥ lim sup aj`
.

A similar argument applies to the liminf.

* 13. The numbers {sin j} are dense in the interval [−1, 1] (see Exercise 7 of
Section 2.2). Thus, given ε > 0, there is an integer j so that | sin j−1| <
ε. But then

| sin j|sin j > (1 − ε)1−ε .

It follows that
lim sup | sin j|sin j = 1 .

A similar argument shows that

lim inf | sin j|sin j = (1/e)1/e .

2.4 Some Special Sequences

1. Let r = p/q = m/n be two representations of the rational number r.
Recall that for any real α, the number αr is defined as the real number
β for which

αm = βn.

Let β ′ satisfy
αp = β ′q.
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2.4. SOME SPECIAL SEQUENCES 17

We want to show that β = β ′. we have

βn·q = αm·q

= αp·n

= β ′q·n.

By the uniqueness of the (n · q)th root of a real number it follows that

β = β ′,

proving the desired equality. The second equality follows in the same
way. Let

α = γn.

Then

αm = γn·m.

Therefore, if we take the nth root on both sides of the above inequality,
we obtain

γm = (αm)1/n.

Recall that γ is the nth root of α. Then we find that

(α1/n)m = (αm)1/n.

Using similar arguments, one can show that for all real numbers α and
β and q ∈ Q

(α · β)q = αq · βq.

Finally, let α, β, and γ be positive real numbers. Then

(α · β)γ = sup{(α · β)q : q ∈ Q, q ≤ γ}
= sup{αqβq : q ∈ Q, q ≤ γ}
= sup{αq : q ∈ Q, q ≤ γ} · sup{βq : q ∈ Q, q ≤ γ}
= αγ · βγ.

2. By Example 2.44, j1/j converges to 1. It follows that (1/j)1/j converges
to 1.
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18 CHAPTER 2. SEQUENCES

3. We write

jj

(2j)!
=

1

1 · 2 · · · (j − 1) · (j) ·
j · j · · · · · j

(j + 1) · (j + 2) · · · · · 2j .

Now the second fraction is clearly bounded by 1, while the first fraction
is bounded by 1/((j − 1)j). Altogether then,

0 ≤ jj

(2j)!
≤ 1

j2 − j
.

The righthand side clearly tends to 0. So

lim
j→∞

jj

(2j)!
= 0 .

* 6. The first two terms a0 and a1 are each defined to be 1. Then, for j ≥ 0,
we define

aj+2 = aj + aj+1 .

We shall show that the following formula for the Fibonacci sequence
is valid:

aj =

(
1+

√
5

2

)j

−
(

1−
√

5
2

)j

√
5

.

We shall use the method of generating functions.

We write F (x) = a0+a1x+a2x
2+ · · · . Here the aj’s are the terms of

the Fibonacci sequence and the letter x denotes an unspecified variable.
What is curious here is that we do not care about what x is. We intend
to manipulate the function F in such a fashion that we will be able to
solve for the coefficients aj. Just think of F (x) as a polynomial with a
lot of coefficients.

Notice that

xF (x) = a0x+ a1x
2 + a2x

3 + a3x
4 + · · ·

and

x2F (x) = a0x
2 + a1x

3 + a2x
4 + a3x

5 + · · · .
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2.4. SOME SPECIAL SEQUENCES 19

Thus, grouping like powers of x, we see that

F (x)− xF (x)− x2F (x)

= a0 + (a1 − a0)x+ (a2 − a1 − a0)x
2

+(a3 − a2 − a1)x
3 + (a4 − a3 − a2)x

4 + · · · .

But the basic property that defines the Fibonacci sequence is that
a2 − a1 − a0 = 0, a3 − a2 − a1 = 0, etc. Thus our equation simplifies
drastically to

F (x)− xF (x)− x2F (x) = a0 + (a1 − a0)x.

We also know that a0 = a1 = 1. Thus the equation becomes

(1 − x− x2)F (x) = 1

or

F (x) =
1

1 − x− x2
. (∗∗∗)

It is convenient to factor the denominator as follows:

F (x) =
1[

1 − −2
1−

√
5
x
]
·
[
1 − −2

1+
√

5
x
]

(just simplify the right hand side to see that it equals (∗∗∗)).
A little more algebraic manipulation yields that

F (x) =
5 +

√
5

10

[
1

1 + 2
1−

√
5
x

]
+

5 −
√

5

10

[
1

1 + 2
1+

√
5
x

]
.

Now we want to apply the formula (∗∗) to each of the fractions in
brackets ([ ]). For the first fraction, we think of − 2

1−
√

5
x as λ. Thus

the first expression in brackets equals

∞∑

j=0

(
− 2

1 −
√

5
x

)j

.
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20 CHAPTER 2. SEQUENCES

Likewise the second sum equals

∞∑

j=0

(
− 2

1 +
√

5
x

)j

.

All told, we find that

F (x) =
5 +

√
5

10

∞∑

j=0

(
− 2

1 −
√

5
x

)j

+
5 −

√
5

10

∞∑

j=0

(
− 2

1 +
√

5
x

)j

.

Grouping terms with like powers of x, we finally conclude that

F (x) =
∞∑

j=0

[
5 +

√
5

10

(
− 2

1 −
√

5
x

)j

+
5 −

√
5

10

(
− 2

1 +
√

5
x

)j
]
xj.

But we began our solution of this problem with the formula

F (x) = a0 + a1x+ a2x
2 + · · · .

The two different formulas for F (x) must agree. In particular, the
coefficients of the different powers of x must match up. We conclude
that

aj =
5 +

√
5

10

(
− 2

1 −
√

5

)j

+
5 −

√
5

10

(
− 2

1 +
√

5

)j

.

We rewrite

5 +
√

5

10
=

1√
5
· 1 +

√
5

2

5 −
√

5

10
= − 1√

5
· 1 −

√
5

2

and

− 2

1 −
√

5
=

1 +
√

5

2
− 2

1 +
√

5
=

1 −
√

5

2
.

Making these four substitutions into our formula for aj, and doing
a few algebraic simplifications, yields

aj =

(
1+

√
5

2

)j

−
(

1−
√

5
2

)j

√
5

as desired.
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2.4. SOME SPECIAL SEQUENCES 21

7. Use a generating function as in the solution of Exercise 6 above.

8. Use a generating function as in the solution of Exercise 6 above.

* 9. Notice that (
1 +

1

j2

)
≤ exp(1/j2)

(just examine the power series expansion for the exponential function).
Thus

aj =

(
1 +

1

12

)
·
(

1 +
1

22

)
·
(

1 +
1

13

)
· · · · ·

(
1 +

1

j2

)

≤ exp(1/12) · exp(1/22) · exp(1/32) · · · · · exp(1/j2)

= exp(1/12 + 1/22 + 1/32 + · · · + 1/j2) .

Of course the series in the exponent on the right converges. So we may
conclude that the infinite product converges.

10. Imitate Example 2.47. Use the binomial expansion.
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