# Solutions for Differential Equations for Engineers The Essentials 1st Edition by Kalbaugh

**CLICK HERE TO ACCESS COMPLETE Solutions** 



# Solutions

### CLICK HERE TO ACCESS THE COMPLETE Solutions

Differential Equations for Engineers: the Essentials – Example Course Plan

| Date | Class | # of   | Topics                                                        | Reading         | Problems  | Problems   |
|------|-------|--------|---------------------------------------------------------------|-----------------|-----------|------------|
|      | #     | slides | ·                                                             | Assigned        | Assigned  | Reviewed   |
|      | 1     | 36     | Administrative matters, course                                | Chap 1          |           | _          |
|      |       |        | objectives, importance of DEs to                              | (14 pages)      |           | _          |
|      |       |        | engineers, review of math                                     |                 |           |            |
|      |       |        | foundations, classes of DEs                                   |                 |           |            |
|      | 2     | 31     | First order linear ODEs:                                      | Chap 2          |           | _          |
|      |       |        | RC circuit; general solution to                               | (11 pages)      |           |            |
|      |       |        | homogeneous eqns; in-class                                    |                 |           |            |
|      |       |        | homogeneous problems;                                         |                 |           |            |
|      |       |        | water pipe temperature example;                               |                 |           |            |
|      |       |        | general solution nonhomogeneous;                              |                 |           |            |
|      |       |        | In-class nonhomogeneous problems                              |                 |           |            |
|      | 3     | 35     | 1st order linear ODEs: System viewpt                          | Chap 3          |           | From       |
|      |       |        | First order nonlinear separable ODEs:                         | thru Sec        |           | Class #1   |
|      |       |        | General solution approach;                                    | 3.1             |           |            |
|      |       |        | In-class problems; Sounding rocket                            | (7 pages)       |           |            |
|      | _     |        | phases 1 & 2                                                  |                 |           |            |
|      | 4     | 21     | First order nonlinear separable ODEs:                         | Chap 3,         |           | From       |
|      |       |        | Sounding rocket phase 3;                                      | Sec 3.2, 3.3    |           | Class #2   |
|      |       | 22     | Short quiz #1                                                 | (5 pages)       |           |            |
|      | 5     | 32     | Review of short quiz #1                                       | Chap 4,         |           | From       |
|      |       |        | First order ODEs: successive                                  | thru Sec<br>4.4 |           | Class #3   |
|      |       |        | approximations with example; in-class problems; existence and |                 |           |            |
|      |       |        | uniqueness                                                    | (9 pages)       |           |            |
|      | 6A/B  | 30/36  | Qualitative analysis                                          | Chap 4,         | Computing | From       |
|      |       | 30/30  | Stability revisited                                           | Sec 4.5, 4.6    | project   | Class #4   |
|      |       |        | Computing project phase 1                                     | (3 pages)       | phase 1   | C1033 // 1 |
|      | 7     | 24     | 2nd order LTI homogeneous ODEs                                | Chap 5          | pridoc 1  | From       |
|      | ,     |        | LRC circuit, characteristic equation,                         | thru Sec        |           | Class #5   |
|      |       |        | real and repeated roots; in-class                             | 5.1.2           |           | 0.0.00     |
|      |       |        | problems                                                      | (6 pages)       |           |            |
|      | 8     |        | Test #1                                                       | ,               |           |            |
|      | 9     | 28     | Review of Test #1                                             | Chap 5,         |           | <br>From   |
|      |       |        | 2nd order LTI homogeneous ODEs,                               | Sec 5.1.3,      |           | Class #7   |
|      |       |        | LRC circuit, complex roots,                                   | 5.1.4, 5.2      |           |            |
|      |       |        | fundamental solutions,                                        | (5 pages)       |           |            |
|      |       |        | In-class example problems                                     |                 |           |            |
|      | 10    | 41     | 2nd order LTI Nonhomogeneous                                  | Chap 5,         |           | From       |
|      |       |        | ODEs;                                                         | Sec 5.3,        |           | Class #6   |
|      |       |        | Cruise control                                                | 5.4             |           |            |
|      |       |        | Undetermined coefficients method                              | (15 pages)      |           |            |
|      |       |        | LRC circuit with sine source                                  |                 |           |            |
|      | 11    | 42     | Process & example for kernel method                           | Chap 6          |           | From       |
|      |       |        | Undetermined coefficients example                             | (10 pages)      |           | Class      |
|      |       |        | Higher order ODEs                                             |                 |           | #9         |

### CLICK HERE TO ACCESS THE COMPLETE Solutions

Differential Equations for Engineers: the Essentials – Example Course Plan

|       |       | Satellite orbit decay                                               |                     |           |            |
|-------|-------|---------------------------------------------------------------------|---------------------|-----------|------------|
| 12    |       | Review for Midterm                                                  |                     |           | From       |
|       |       |                                                                     |                     |           | Classes    |
|       |       |                                                                     |                     |           | #10, 11    |
| 13    |       | Mid-term exam                                                       | _                   |           | _          |
| 14A/B | 42/44 | Review of mid-term                                                  | Chap 7              | Computing |            |
|       |       | Laplace transforms: intro,                                          | thru Sec            | project   |            |
|       |       | homogeneous equations                                               | 7.5                 | phase 2   |            |
| 15    | 4.0   | Computing project phase 2                                           | (11 pages)          |           |            |
| 15    | 46    | Laplace transforms:                                                 | Chap 7,<br>Sec 7.6  |           |            |
|       |       | Nonhomogeneous equations et al                                      | (20 pages)          |           |            |
| 16    | 43    | State space format:                                                 | Chap 8              |           |            |
| 10    | 43    | Numerical methods                                                   | thru Sec            |           |            |
|       |       | Review of matrix algebra                                            | 8.4                 |           |            |
|       |       | Linear systems in state space format                                | (11 pages)          |           |            |
| 17    | 20    | State space format: Heat transfer                                   | Chap 8,             |           | From class |
|       |       | Short quiz #2                                                       | Sec 8.5.1.1         |           | #15        |
|       |       | ·                                                                   | (8 pages)           |           |            |
| 18    | 35    | Review of short quiz #2                                             | Chap 8,             |           | From       |
|       |       | State space format: Two-state                                       | Sec 8.5.1.2,        |           | classes    |
|       |       | electrical circuit; Aircraft dynamics                               | 8.5.1.3             |           | #14,#16    |
|       |       |                                                                     | (15 pages)          |           |            |
| 19    | 42    | Three state electrical circuit                                      | Chap 8,             |           | From       |
|       |       | Repeated eigenvalues; Coordinate                                    | Sec 8.5.1.4         |           | classes    |
|       |       | systems: Vehicle suspension system                                  | thru 8.5.1.7        |           | #17,#18    |
|       |       |                                                                     | (12 pages)          |           |            |
| 20    | 27    | Test #2                                                             | CI O                |           |            |
| 21    | 37    | Review of Test #2                                                   | Chap 8,             |           | From class |
|       |       | Coordinate systems; state transition                                | Sec 8.5.1.5<br>thru |           | #19        |
|       |       | matrix; nonhomogeneous equations, kernel method, 2-state electrical | 8.5.2.1             |           |            |
|       |       | circuit example                                                     | (15 pages)          |           |            |
| 22    | 35    | Nonhomogeneous equations: Laplace                                   | Chap 8,             |           |            |
|       |       | transform method, trial and error                                   | Sec 8.5.2.2,        |           |            |
|       |       | method, PDEs: IV heat equation                                      | 8.5.2.3             |           |            |
|       |       | ,                                                                   | (6 pages)           |           |            |
| 23    | 24    | PDEs: BV heat equation – Fourier                                    | Chap 9              |           | From class |
|       |       | series                                                              | thru                |           | #21        |
|       |       | Short quiz #3                                                       | Sec 9.1             |           |            |
|       |       |                                                                     | (11 pages)          |           |            |
| 24    | 35    | Review of Short quiz #3                                             | Chap 9,             |           | From class |
|       |       | PDEs: wave equation; IV wave                                        | Sec 9.2             |           | #22        |
|       |       | equation, BV problem: membrane –                                    | thru                |           |            |
|       |       | power series I                                                      | 9.2.3               |           |            |
|       |       |                                                                     | (16 pages)          |           | _          |
| 25    | 35    | PDEs: higher order Bessell functions;                               | Chap 9,             |           | From class |

### CLICK HERE TO ACCESS THE COMPLETE Solutions

Differential Equations for Engineers: the Essentials – Example Course Plan

|    |    | power series II               | Sec 9.2.4    | #23        |
|----|----|-------------------------------|--------------|------------|
|    |    |                               | thru         |            |
|    |    |                               | 9.2.6        |            |
|    |    |                               | (8 pages)    |            |
| 26 | 34 | PDEs: BV potential equation – | Chap 9,      | From class |
|    |    | Legendre's eq'n;              | Sec 9.3, 9.4 | #24, #25   |
|    |    | cantilever beam               | (13 pages)   |            |
| 27 |    | Test #3                       |              |            |
| 28 |    | Review of Test #3             |              |            |
|    |    | Review for final exam         |              |            |
| 29 |    | Review for final exam         |              |            |
|    |    | Final Exam                    |              |            |

# Differential Equations for Engineers: the Essentials

Supplement to Class 4 Notes

## **Contents of Supplement**

Differences Between Linear and Nonlinear ODEs in Their Input / Output Response

**Example: Nonlinear Circuit** 

# Differences Between Linear and Nonlinear ODEs in Their Input / Output Response

# Input / Output Characteristics for a Linear System

In a linear system of any order (time-varying or time-invariant):

If the output is  $y_1(t)$  when the input is  $u_1(t)$  and the output is  $y_2(t)$  when the input is  $u_2(t)$  then the output is  $ay_1(t)+by_2(t)$  when the input is  $au_1(t)+bu_2(t)$  for any constants a and b

In a linear <u>time-invariant</u> system of any order, after transients have died away, when the input is a sine-wave of a given frequency the output is a steady-state oscillation of only that frequency.

These characteristics are <u>not</u> generally true of nonlinear systems

# Existence and Uniqueness of Solutions to Linear ODEs

**Theorem:** Given a linear nth order ODE:

$$\frac{d^{n}y}{dt^{n}} + a_{1}(t)\frac{d^{n}y}{dt^{n}} + \dots + a_{n-1}(t)\frac{dy}{dt} + a_{n}(t)y = g(t)$$

with initial conditions

$$\frac{d^{n-1}y}{dt^{n-1}}(0) = y_0^{(n-1)} \qquad \frac{d^{n-2}y}{dt^{n-2}}(0) = y_0^{(n-2)} \qquad \dots \qquad \frac{dy}{dt}(0) = y_0' \qquad y(0) = y_0$$

If the coefficients  $a_i(t)$  and the input g(t) are continuous for all t then there exists a unique solution to the ODE satisfying the initial conditions for all t.

(Stated without proof.)

This is <u>not</u> generally true of nonlinear ODEs.

# Key Points from the Following Nonlinear Example

The method of <u>successive approximations</u> (solving a sequence of linear equations to approximate the solution of a nonlinear equation) is a powerful tool.

Nonlinearities in systems designed to be linear cause distortions in the frequency response, introducing "harmonics" (oscillations that are multiples of the input frequency).

## Nonlinear Example: LR Circuit

#### Kirchhoff's Law:

Sum of voltage drops around a closed circuit = 0

**Voltage drop over an inductor:** 

$$V = L \frac{dI}{dt}$$

Voltage drop over a resistor:

$$V = IR$$

Voltage drop over source:

$$V = -V_0 \sin(\omega t)$$



**Resulting equation:** 

$$L\frac{dI}{dt} + IR = V_0 \sin(\omega t)$$

### Nonlinear Example: LR Circuit (2)

The solution to

$$L\frac{dI}{dt} + IR = V_0 \sin(\omega t)$$
$$I(0) = 0$$



is

$$I(t) = \frac{\lambda}{\sqrt{\lambda^2 + \omega^2}} (V_0 / R) \sin(\omega t - \theta_1) + \frac{\lambda \omega}{\lambda^2 + \omega^2} (V_0 / R) e^{-\lambda t}$$

where

$$\theta_1 = \arctan(\omega/\lambda)$$
  $\lambda = R/L$ 

## Nonlinear Example: Recalling the LR Circuit (3)

### **Input / output response**:

The "input" to the "system" is the voltage source. The "output" is the current (or voltage) over the resistor.

Ignoring the transient, the system passes the sine wave <u>frequency</u> perfectly - it introduces no other frequencies.

We only discuss frequency response in the context of <u>time-invariant</u> systems.

### What if the Resistor is Slightly Nonlinear?

Instead of

$$L\frac{dI}{dt} + IR = V_0 \sin(\omega t)$$

suppose we have



$$L\frac{dI}{dt} + R(I + \varepsilon I^3) = V_0 \sin \omega t$$

$$\frac{dI}{dt} + \lambda (I + \varepsilon I^{3}) = \lambda \left(\frac{V_{0}}{R}\right) \sin(\omega t) = \lambda I_{0} \sin(\omega t)$$

**Equation 1** 

## What if the Resistor is Slightly Nonlinear? (2)



Nonlinear resistor characteristic

# Approach to Solution of Slightly Nonlinear ODE

### Since $\mathcal{E}$ is small, consider the <u>successive approximations</u>

$$\frac{dI_1}{dt} + \lambda I_1 = \lambda I_0 \sin(\omega t)$$
 Equation 2
$$I_1(0) = 0$$

$$\frac{dI_2}{dt} + \lambda I_2 = \lambda I_0 \sin(\omega t) - \varepsilon \lambda I_1^3(t)$$
 Equation 3
$$I_2(0) = 0$$

$$\frac{dI_3}{dt} + \lambda I_3 = \lambda I_0 \sin(\omega t) - \varepsilon \lambda I_2^3(t)$$
 Equation 4
$$I_3(0) = 0$$

# Approach to Solution of Slightly Nonlinear ODE (2)

We are solving the <u>nonlinear</u> Equation 1 approximately by the sequential solution of a series of <u>linear</u> Equations 2, 3 and 4.

The general solution of

$$\frac{dI}{dt} + \lambda I = g(t) \qquad \text{is} \qquad I(t) = \int_0^t e^{-\lambda(t-\tau)} g(\tau) d\tau \qquad \text{Equation 5}$$
 
$$I(0) = 0$$

Using Equation 5, we have already found that the solution to Equation (2) is

$$I_{1}(t) = \frac{\lambda}{\sqrt{\lambda^{2} + \omega^{2}}} I_{0} \sin(\omega t - \theta_{1}) + \frac{\lambda \omega}{\lambda^{2} + \omega^{2}} I_{0} e^{-\lambda t}$$

In what follows we will ignore the transient. We are examining the steady state frequency response.

# Approach to Solution of Slightly Nonlinear ODE (3)

### **Repeating Equation 3:**

$$\frac{dI_2}{dt} + \lambda I_2 = \lambda I_0 \sin \omega t - \lambda \varepsilon I_1^3$$

This has solution

$$I_{2}(t) = \int_{0}^{t} e^{-\lambda(t-\tau)} \left( \lambda I_{0} \sin(\omega \tau) - \lambda \varepsilon I_{1}^{3} \right) d\tau$$

Now

$$\int_0^t e^{-\lambda(t-\tau)} \lambda I_0 \sin(\omega \tau) d\tau = I_1(t)$$

SO

$$I_{2}(t) = I_{1}(t) - \lambda \varepsilon \int_{0}^{t} e^{-\lambda(t-\tau)} I_{1}^{3}(\tau) d\tau$$

# Approach to Solution of Slightly Nonlinear ODE (4)

Continuing in this way, we find

$$I_{n+1}(t) = I_1(t) - \lambda \varepsilon \int_0^t e^{-\lambda(t-\tau)} I_n^3(\tau) d\tau$$

which one can show can be written as

$$I_n(t) = I_1(t) - G_1 I_0 \eta_n(t)$$

where

$$G_{1} = \frac{\lambda}{\sqrt{\lambda^{2} + \omega^{2}}} \qquad I_{0} = V_{0} / R$$

$$\eta_n(t) = \sum_{m=1}^{N_n} k_{mn} \sin(m\omega t - \phi_{mn})$$

Note the higher frequencies – the harmonics

# Approach to Solution of Slightly Nonlinear ODE (4)

### Challenge problem:

Given the steady state solution

$$I_1(t) = G_1 I_0 \sin(\omega t - \theta_1)$$

find the steady state component of  $oldsymbol{I}_{\scriptscriptstyle 2}(t)$ 

# Differential Equations for Engineers: the Essentials

Class 2 notes

### Agenda: Class 2

### First order linear differential equations:

- (1) Engineering example: RC circuit
- (2) General solution of homogeneous equation
- (3) In-class homogeneous problems
- (4) Example: Exposed water pipe in cyclical air temperature
- (5) General solution of nonhomogeneous equation
- (6) In-class nonhomogeneous problems

**Homework Assignment 2** 

### First Order Linear Differential Equations

Example: The RC Electrical Circuit

## Example: RC Electrical Circuit



## Example: RC Circuit (2)

### Kirchhoff's Law:

Sum of voltage drops around a closed circuit = 0

Voltage drop over a capacitor:

$$V=q$$
 /  $C$   $q=$  charge on capacitor

Voltage drop over a resistor:

$$V = IR$$
  $I =$  current through resistor

**Conservation of electrical charge:** 

$$\frac{dq}{dt} = I$$



## Example: RC Circuit (3)

### **Resulting differential equation**

$$IR + V = 0$$

$$\frac{dq}{dt}R + V = 0$$

$$RC \frac{dV}{dt} + V = 0$$

$$\frac{dV}{dt} + \frac{1}{RC}V = 0$$



### **Initial condition:**

$$V(0) = V_0$$

## Example: RC Circuit (4)

This is a linear first order ODE. To solve it, we separate variables: i.e., we put all terms involving V on the left side and all terms involving t on the right: specifically, we divide by V, move 1/RC to the right side and multiply by dt:

$$\frac{dV}{dt} + \frac{1}{RC}V = 0$$

$$\frac{1}{V}\frac{dV}{dt} + \frac{1}{RC} = 0$$

$$\frac{1}{V}\frac{dV}{dt} = -\frac{1}{RC}$$

$$\frac{dV}{V} = -\frac{1}{RC}dt$$



The text justifies this short-cut procedure

## Example: RC Circuit (5)

Next, we integrate both sides:

$$\int_{V(0)}^{V(t)} \frac{dV}{V} = -\int_{0}^{t} \frac{dt}{RC}$$

$$\ln\left(\frac{V(t)}{V(0)}\right) = -t/RC$$

Taking the exponential of both sides:

$$\exp\left(\ln\left(\frac{V(t)}{V(0)}\right)\right) = \exp(-t/RC)$$

$$\frac{V(t)}{V(0)} = e^{-t/RC}$$



### Example: RC Circuit (6)

Hence:

$$V(t) = V(0)e^{-t/RC}$$

We require that the voltage over the capacitor at time 0 be given by

$$V(0) = V_0$$

and so

$$V(t) = V_0 e^{-t/RC}$$

## Example: RC Circuit (7)

In summary, the solution to

$$\frac{dV}{dt} + \frac{1}{RC}V = 0$$

$$V\left(0\right)=V_{_{0}}$$

is

$$V(t) = V_0 e^{-t/RC}$$



The product RC has the dimension of time and is called the time constant for the circuit

# Example: RC Circuit (8)



### First Order Linear Differential Equations

General Solution of Homogeneous Equation

### General Solution of Homogeneous Equation

The general form of a first order linear time-varying ordinary differential equation (ODE) is

$$\frac{dy}{dt} + p(t)y = 0 y(t_0) = y_0 Equation 1$$

How do we solve it?

### General Solution of Homogeneous Equation (2)

### We separate variables

$$\frac{dy}{y} = -p(t)dt$$

Integrate both sides

$$\int_{y_0}^{y(t)} \frac{dy}{y} = -\int_{t_0}^t p(\tau) d\tau$$

$$\ln\left(\frac{y(t)}{y_0}\right) = -\int_{t_0}^t p(\tau)d\tau$$

Take the exponential of both sides

$$\exp\left(\ln\left(\frac{y(t)}{y_0}\right)\right) = \exp(-\int_{t_0}^t p(\tau)d\tau)$$

$$\frac{y(t)}{y_0} = \exp(-\int_{t_0}^t p(\tau)d\tau)$$

### General Solution of Homogeneous Equation (3)

### **Summary:**

The solution of

$$\frac{dy}{dt} + p(t)y = 0 y(t_0) = y_0$$

is

$$y(t) = y_0 \exp(-\int_{t_0}^t p(\tau)d\tau)$$

Success depends entirely on being able to do the integral

# Homogeneous First Order Linear ODEs: In-class problems

$$\frac{dy}{dt} + ky = 0$$
$$y(0) = a$$

$$\frac{dy}{dt} + ty = 0$$
$$y(0) = b$$

$$\frac{dy}{dt} + \left(\frac{1}{t}\right)y = 0$$
$$y(1) = c$$

### First Order Linear Differential Equations

Example: Exposed water pipe in cyclical ambient temperature

### Exposed Water Pipe in Cyclical Ambient Temperature



Water at temperature

$$T_{W} = \overline{T} + T$$

 $\overline{T}$  = average daily temperature

### Exposed Water Pipe in Cyclical Ambient Temperature (2)

Assuming pipe wall is thin and made of material that is a good heat conductor, by Newton's law of cooling, the heat transferred from air to water is

$$q = hA(T_{\infty} - T_{W})$$

where

A = Exposed surface area of the pipe

h = Convection coefficient

### Exposed Water Pipe in Cyclical Ambient Temperature (3)

The thermal energy stored in the water is

$$E = mcT_w$$

where

m = mass of the water

c = specific heat of water

### Exposed Water Pipe in Cyclical Ambient Temperature (4)

### **Key physical principle:**

$$\frac{dE}{dt} = q$$

which leads to

$$mc \, \frac{d}{dt} \left( \overline{T} + T \right) = hA \left( (\overline{T} + T_0 \sin \omega t) - (\overline{T} + T) \right)$$

$$mc \, \frac{dT}{dt} + (hA)T = (hA)T_0 \sin \omega t$$

$$\frac{dT}{dt} + \lambda T = \lambda T_0 \sin \omega t \quad \text{where} \quad \lambda = \frac{hA}{mc}$$

### Exposed Water Pipe in Cyclical Ambient Temperature (5)

How do we solve

$$\frac{dT}{dt} + \lambda T = \lambda T_0 \sin \omega t \qquad ? \qquad \text{Equation 2}$$

Let's be more inclusive and ask how do we solve the general linear first order nonhomogeneous equation

$$\frac{dy}{dt} + p(t)y = g(t)$$
 Equation 3 
$$y(t_0) = y_0$$

# General Solution to Nonhomogeneous Linear First Order ODEs

We begin by searching for an integrating factor  $\mu(t)$  that, when multiplied into the equation, turns the left-hand side into

$$\frac{d}{dt}(\mu(t)y)$$

Multiplying Equation 3 by  $\mu(t)$  :

$$\mu(t)\frac{dy}{dt} + \mu(t)p(t)y = \mu(t)g(t)$$

Search for  $\mu(t)$  such that left hand side is

$$\mu(t)\frac{dy}{dt} + \mu(t)p(t)y = \frac{d}{dt}(\mu(t)y)$$

### General Solution to Nonhomogeneous Linear First Order ODEs (2)

#### We must have

$$\mu(t)\frac{dy}{dt} + \mu(t)p(t)y = \frac{d}{dt}(\mu(t)y) = \mu(t)\frac{dy}{dt} + \frac{d\mu}{dt}y$$

#### which means that

$$\frac{d\mu}{dt} = p(t)\mu(t)$$

$$\frac{1}{\mu(t)}\frac{d\mu}{dt} = p(t)$$

### General Solution to Nonhomogeneous Linear First Order ODEs (3)

$$\frac{d}{dt}(\ln \mu(t)) = p(t)$$

$$\ln(\mu(t)/\mu(t_0)) = \int_{t_0}^t p(u)du$$

$$\mu(t) = \mu(t_0) \exp \int_{t_0}^t p(u)du$$
 Equation 4

This is the desired integrating factor.

But we can simplify the form.

### General Solution to Nonhomogeneous Linear First Order ODEs (4)

We do not know what value to assign to  $\mu(t_0)$  but it turns out not to matter. (The value cancels out.) So we set

$$\mu(t_0) = 1$$

It also suffices to use the indefinite integral form:

$$\mu(t) = \exp \int_{0}^{t} p(u) du$$
 Equation 5

You should remember, or be able to derive, Equation 5

### Exposed Water Pipe in Cyclical Ambient Temperature (6)

For the water pipe temperature problem (Equation 2):

$$\frac{dy}{dt} + p(t)y = g(t)$$

becomes

$$\frac{dT}{dt} + \lambda T = \lambda T_0 \sin \omega t$$

SO

$$p(t) = \lambda$$

$$\mu(t) = \exp(\int_{-t}^{t} p(u)du) = \exp(\int_{-t}^{t} \lambda du) = e^{\lambda t}$$

### Exposed Water Pipe in Cyclical Ambient Temperature (7)

**Applying the integration factor to Equation 2:** 

$$e^{\lambda t} \left( \frac{dT}{dt} + \lambda T \right) = e^{\lambda t} (\lambda T_0 \sin \omega t)$$

$$\frac{d}{dt}(e^{\lambda t}T) = \lambda T_0 e^{\lambda t} \sin \omega t$$

Now the value of the integration factor becomes clear: We can solve the problem with an integration:

$$e^{\lambda t}T(t)-T(0)=\lambda T_0\int_0^t e^{\lambda \tau}\sin\omega\tau d\tau$$

$$T(t) = T(0)e^{-\lambda t} + e^{-\lambda t} \int_0^t e^{\lambda \tau} \sin \omega \tau d\tau$$

# Exposed Water Pipe in Cyclical Ambient Temperature (9)

### After performing the integral we have

$$T(t) = T_I e^{-\lambda t} + \left(\frac{\lambda}{\lambda^2 + \omega^2}\right) T_0(\lambda \sin(\omega t) - \omega \cos(\omega t) + \omega e^{-\lambda t})$$

where

$$T_{I} = T(0) = T_{W}(0) - \overline{T}$$

# Inhomogeneous First Order Linear ODEs: In-class Problems

$$\frac{dy}{dt} + \left(\frac{2}{t}\right)y = 4$$
$$y(1) = 2$$

$$\frac{dy}{dt} + 4\left(\frac{e^{4t} - e^{-4t}}{e^{4t} + e^{-4t}}\right)y = e^{3t}$$
$$y(0) = 6$$

$$\frac{dy}{dt} - (\tan t)y = \sec t$$
$$y(0) = 0$$

## Homework Assignment 2

### In text:

Read: Chapter 2

Work: On course website: Homework Assignment #2 Problems

Solutions for Homework Assignment #2 Problems will be provided on course website on (date)

Always read over the day's lecture notes and be sure you understand them.