## Solutions for Applied Exercise and Sport Physiology With Labs 4th Edition by Housh

**CLICK HERE TO ACCESS COMPLETE Solutions** 



# Solutions



**Chapter 2** 

# Structure of Muscle Tissue and Muscle Contraction

#### **Lecture Outline**

- I. Types of Muscle Tissue and General Characteristics of Each
  - 1. Smooth Muscle
  - 2. Skeletal Muscle
  - 3. Cardiac Muscle
- II. Skeletal Muscle Structure
  - 1. Connective Tissue Layers
    - A. Epimysium
    - B. Perimysium
    - C. Endomysium
  - 2. Structure of the Muscle Fiber
- III. Muscle Fiber Types
  - 1. Classification Systems
  - 2. Three Fiber Types and Their Characteristics
    - A. Slow Oxidative
    - B. Fast Oxidative Glycolytic
    - C. Fast Glycolytic
  - 3. The Motor Unit
  - 4. Determinants of Fiber Type in an Individual
- IV. Structure of the Myofibril and the Contractile Mechanism
  - 1. The Structural Unit of the Myofibril: The Sarcomere
  - 2. Sliding Filament Model of Muscle Contraction
    - A. Steps involved
    - B. Role of ATP

#### V. Summary

#### **Student Assignments**

- 1. In small groups, discuss how the structural components of the sarcomere are related to the way in which muscle tissue contracts.
- 2. **Develop reference skills.** Find an article on the subject of fiber typing in athletes and summarize the practical implications of the article for the class.
- 3. List three sports/events where you might expect athletes to have a high percentage of (a) FG, (b) FOG, and (c) SO type fibers. Explain why.
- 4. Draw a diagram outlining the series of events that occur during skeletal muscle contraction. Include all relevant structures and events.

#### **Discussion/Essay Questions**

- 1. Describe the composition and distribution of muscle fibers within a motor unit.
- 2. Describe the process of muscle contraction from the activation of the muscle fiber to the breakdown of ATP.
- 3. Describe and contrast the two theories of ATP use during muscle contraction.
- 4. Diagram a cross-sectional and a longitudinal view of skeletal muscle. Label all relevant structures, including connective tissue layers.
- 5. Discuss the different methods of classifying muscle fiber type. In what ways are the resulting categories related? How are they different?

#### **Quiz Questions**

- 1. Which of the following structures is the cell membrane of a muscle fiber?
  - A. Epimysium
  - B. Perimysium
  - C. Endomysium
  - D. Sarcolemma
- 2. The perimysium divides muscle into which of the following?
  - A. Filaments
  - B. Myofibrils
  - C. Fasciculi
  - D. Fibers
- 3. What does a motor unit contain?
  - A. One fiber type
  - B. All fiber types in equal proportions
  - C. All fiber types in different proportions

- D. Any of the above, depending on the muscle
- 4. What happens with endurance training?
  - A. FG fibers improve their oxidative capacity.
  - B. FOG fibers become more glycolytic in nature.
  - C. SO fibers improve their anaerobic capacity.
  - D. Both A and B.
- 5. Which of the following are most resistant to fatigue?
  - A. SO fibers
  - B. FOG fibers
  - C. FG fibers
  - D. Both B and C
- 6. Which of the following is the neurotransmitter of the motor nerves?
  - A. Serotonin
  - B. Epinephrine
  - C. Acetylcholine
  - D. Norepinephrine
- 7. Which of the following is the functional unit of the myofibril?
  - A. A band
  - B. I band
  - C. Sarcomere
  - D. Z line
- 8. What happens during muscle contraction?
  - A. The A band shortens.
  - B. The H zone may disappear.
  - C. The I band stays the same length.
  - D. Z lines are stretched further apart.
- 9. Depolarization of the sarcolemma results in which of the following?
  - A. Calcium release from the sarcoplasmic reticulum
  - B. Calcium uptake by the mitochondria
  - C. Calcium uptake by the t-tubules
  - D. Calcification of muscle tissue
- 10. What happens during relaxation?
  - A. Calcium is removed from the sarcoplasmic reticulum.
  - B. Calcium is bound to troponin.
  - C. Actin-myosin interaction is inhibited.

- D. All of the above.
- E. None of the above.

#### **Quiz Answers**

- 1. D
- 2. C
- 3. A
- 4. A
- 5. A
- 6. C
- 7. C
- 8. B
- 9. A
- 10. C

#### **Chapter 2 Lab**

Determination of One-Repetition Maximum Bench Press and Leg Press Strength.



# Structure of Muscle Tissue and Muscle Contraction

**Chapter 2** 

Copyright 2016
by Holcomb Hathaway, Publishers

#### After Reading This Chapter, You Will...

- Be able to describe differences among smooth, skeletal, and cardiac muscle.
- Understand the basic structure of skeletal muscle.
- Know the characteristics that differentiate fast-twitch from slow-twitch muscle fibers.
- Be familiar with the sliding filament model of muscle contraction.

# Reflections on... What Happens When You Move

- Have you ever thought about the series of events that your muscles undergo in order to throw a baseball, dunk a basketball, do a push up, or jog a mile?
- How do you think understanding the processes of muscle contraction will help you later as an exercise professional, physical educator, or coach?



## **Types of Muscle Tissue**

- Smooth, nonstriated muscle
- Skeletal striated muscle
- Cardiac striated muscle

#### Structure of Smooth Muscle

- Long, spindle-shaped fibers
- An external shape that may change to conform to surrounding elements
- One nucleus per fiber

#### Structure of Skeletal Muscle

- Long, cylindrical fibers
- Up to several hundred nuclei in each cell
- Structural independence from each neighboring fiber or cell
- Cross-striations of alternating light and dark bands.

# **Skeletal Muscle Fibers Showing Cross-Striations**



Copyright 2016 by Holcomb Hathaway, Publishers

#### **Structure of Cardiac Muscle**

- A network (syncytium) of interwoven striated muscle fibers
- Discrete fibers that can contract individually
- A network of fibers that responds to innervations with a wavelike contraction that passes through entire muscle

### **Gross and Microscopic Structure** of Skeletal Muscles

- Gross structure:
  - Fascia
  - Epimysium
  - Fasciculus
  - Perimysium

- Microscopic structure:
  - Endomysium
  - Vary in diameter from approximately 10 to 100 microns
  - Vary in length from 1 mm to the length of the whole muscle

# Muscle Fibers and Connective Tissue Sheaths



From J.W. Hole, Jr., Human Anatomy and Physiology, 5th Edition. Copyright © 1990 Wm. C. Brown Communications, Inc., Dubuque, Iowa. Reprinted with permission of The McGraw-Hill Companies.

Copyright 2016 by Holcomb Hathaway, Publishers

#### Structure of the Muscle Fiber

- Sarcolemma
- Sarcoplasm
- Myofibrils

## Classification of Muscle Fiber Types

#### Based on . . .

- Anatomical appearance
- Muscle function
- Biochemical properties
- Histochemical properties

## **Characteristics of Muscle Fiber Types**

| Older systems                       | Red slow-twitch (ST) | White fast-twitch (FT)               |                       |
|-------------------------------------|----------------------|--------------------------------------|-----------------------|
| 2. Dubowitz and Brooke <sup>4</sup> | Type I               | Type IIa                             | Type IIb              |
| 3. Smerdu et al. <sup>11</sup>      | Beta/slow            | Type IIa                             | Type IIx              |
| 4. Peter et al.9                    | Slow, oxidative (S0) | Fast, oxidative,<br>glycolytic (FOG) | Fast, glycolytic (FG) |
| B. CHARACTERISTICS                  |                      |                                      |                       |
| Speed of contraction                | Slow                 | Fast                                 | Fast                  |
| 2. Strength of contraction          | Low                  | High                                 | High                  |
| 3. Fatigability                     | Fatigue resistant    | Fatigable                            | Most fatigable        |
| 4. Aerobic capacity                 | High                 | Medium                               | Low                   |
| 5. Anaerobic capacity               | Low                  | Medium                               | High                  |
| 6. Size                             | Small                | Large                                | Large                 |
| 7. Capillary density                | High                 | High                                 | Low                   |

#### Fiber Types in Human Skeletal Muscle

- 1. Slow-twitch oxidative
- Fast-twitch oxidative glycolytic
- 3. Fast-twitch glycolytic

- Significance for athletes:
  - High percentage of SO fibers: good for endurance events
  - High percentage of FT fibers: good for power and sprint events
- Non-athletes: Even mix of fibers

#### Structure of a Sarcomere

- Functional unit of the myofibril
- Z-line:
  - The membrane that separates sarcomeres
- Myofilaments:
  - Interlocking parallel filaments: Myosin and actin
- ▶ Bands:
  - A, H, and I

#### Sarcomere

- Extends from Z-line to Z-line
- ▶ A, H, and I bands give muscle a striated appearance



Copyright 2016 by Holcomb Hathaway, Publishers

#### Actin, Myosin, Troponin, and Tropomyosin



Copyright 2016
by Holcomb Hathaway, Publishers

# Sliding Filament Model

Widely accepted as the most complete explanation of the mechanism of muscle contraction.

#### At Rest

- Tropomyosin inhibits actin-myosin binding.
- Calcium is stored in the sarcoplasmic reticulum.

#### Contraction

- Neural stimulation causes the sarcoplasmic reticulum to release calcium.
- Calcium binds to troponin, which removes the inhibitory effect of tropomyosin and actin-myosin bind.
- Myosin cross-bridges swivel, pulling the actin and Z-lines.
- Fresh ATP binds to the myosin cross-bridges, leading to cross-bridge recycling.
- Neural stimulation ceases and relaxation occurs.



5

# Reflections on... Muscle Contractions

- Does it surprise you that debate continues regarding the exact mechanism of muscle contraction?
- Considering the explanation as laid out on pages 25–28 of the textbook:
  - Does it surprise you that something so apparently simple is actually so complex?
  - Or does it make sense to you that many different steps are involved?

### **Learning More**

- Muscles
- Muscle Physiology—Myofilament
   Structure
- Sliding Filament Model

#### **Student Website**

▶ Go to the <u>Chapter 2 page</u> of the student website to see the Study Guide, Practice Quiz, Key Concepts, Artwork, and more.



# Determination of One-Repetition Maximum Bench Press and Leg Press Strength

## **Background**

- One-repetition maximum (1-RM):
  - The maximum amount of weight that can be lifted one time
  - The standard index to quantify muscle strength
- After a warm-up period, progressively heavier weights are lifted until the subject cannot successfully complete the lift of a given weight.
- ▶ A 1-RM value is affected not only by the subject's strength but also by the subject's skill in performing the task

#### In This Lab...

- Learn to perform 1-RM strength testing for bench press and leg press exercises.
- Compare the 1-RM strength values to ageand gender-specific norms.

## **Bench Press (with spotter)**



The subject should lower the weight slowly until the barbell touches the mid-chest.



During ascent and descent, the forearms should be vertical to the floor and parallel to each other.

## **Leg Press**



The subject lowers the weight slowly until the angle at the knee reaches approximately 90 degrees.



The subject should keep the legs in line with the hips and ankles.

#### **Extension Questions for This Lab**

- 1. What are some common mistakes that may occur in administering this lab?
- Identify possible sources of error in this lab.
- 3. Assess the practicality of using this lab in the field.
- 4. Research the reliability and/or validity of this lab using online resources, journal articles, and other credible sources.