Test Bank for How to Use SPSS A Step By Step Guide to Analysis and Interpretation 9th Edition by Cronk

CLICK HERE TO ACCESS COMPLETE Test Bank

Test Bank

Test Bank

How To Use SPSS Statistics, 9th Ed.

Chapter 2: Entering and Modifying Data

- 1. True/False: Will SPSS conduct an analysis that is not appropriate for your data?
- 2. When you define your variable, the *Measure* column allows you to:
 - a. indicate what kind of data you have.
 - b. indicate that you have nominal data.
 - c. indicate that you have ordinal data.
 - d. indicate that you have scaled data.
 - e. All of the above
- 3. Choose the statement(s) that is/are correct.

Missing data:

- a. is represented by a period in the data window.
- b. is represented by 999 in the data window.
- c. is represented by the word "missing" in the data window.
- d. is considered a weakness in an analysis.
- e. is an expected part of data collection.
- f. always means the subject will be eliminated from the analysis.
- 4. Selecting a subset of your data is appropriate if:
 - a. your data is nominal only.
 - b. your data is ordinal only.
 - c. your data is scaled only.
 - d. you want to run an analysis on only part of your data.
 - e. you want to run an analysis on all of your data.
- 5. You can select a subset of your data under the Data menu using:
 - a. the Sort Cases option.
 - b. the Select Cases option.
 - c. the Define Variable Properties option.
 - d. the Define Multiple Response Sets option.
 - e. the Identify Duplicate Cases option.

- 6. In the data window, what does it mean when there is a diagonal slash through the case number?
 - a. that case is missing data.
 - b. that case is not missing data.
 - c. that case is deleted from the dataset.
 - d. that case has been selected as part of a subset of the data.
 - e. that case has not been selected as part of a subset of the data.
- 7. Once you select a subset of your data,
 - a. that subset remains in effect until you select All Cases.
 - b. that subset remains in effect until you select the Variable View tab.
 - c. that subset is in effect for one analysis only.
 - d. you will lose your other data.
 - e. an additional file is created for the subset.
- 8. True/False: It is recommended that you save your data file while a subset is selected.
- 9. To compute a new variable using your existing variables, you use:
 - a. the Edit menu.
 - b. the View menu.
 - c. the *Data* menu.
 - d. the Transform menu.
 - e. the Analyze menu.
- 10. When using the Compute Variable menu option, the Target Variable is:
 - a. one of the variables you are using in your calculation.
 - b. both of the variables you are using in your calculation.
 - c. the new variable you are creating using existing variables or equations.
 - d. where you identify which variables you will use for the new variable.
 - e. what you call the equation you use for the new variable.
- 11. **True**/False: You will be required to create a name for any new variables you create using existing variables or mathematical equations.
- 12. After you create a new variable using existing variables and/or mathematical equations, you should:
 - a. save your data file in order to save your new variable.
 - b. switch to the Variable View tab to make sure your new variable is listed.
 - c. use the *Analyze* menu to analyze your new variable.
 - d. start your analysis using the Descriptive Statistics menu option.

- 13. You use the Recode into Different Variables menu option when you want to:
 - a. create a new variable.
 - b. change the name of a variable.
 - c. save a new or existing variable.
 - d. use an existing variable to sort your data into groups.
 - e. create a new variable to sort your data into groups.
- 14. When you recode an existing variable into different variables:
 - a. a new variable shows up in the Edit window.
 - a. a new variable shows up in the *View* window.
 - b. a new variable shows up in the Data window.
 - c. a new variable shows up in the *Transform* window.
 - d. a new variable shows up in the Analyze window.

Section 1.7

Follow the previous example (where TRAINING is the new variable). Make the modifications to your SAMPLE.sav data file and save it.

	id	day	time	morning	grade	work	training
1	4593	2.00	2.00	.00	85.00	.00	1.00
2	1901	1.00	1.00	1.00	83.00	1.00	1.00
3	8734	2.00	1.00	.00	80.00	.00	.00
4	1909	1.00	1.00	1.00	73.00	1.00	.00
5							

Section 3.1

Using Practice Data Set 1 in Appendix B, create a frequency distribution table for the mathematics skills scores. Determine the mathematics skills score at which the 60th percentile lies.

ANSWER: 38

Statistics

skill		
N	Valid	23
	Missing	0
Percentiles	60	38.0000

skill

		Frequency	Percent	Valid Percent	Cumulative Percent
Valid	19.00	1	4.3	4.3	4.3
	20.00	2	8.7	8.7	13.0
	24.00	1	4.3	4.3	17.4
	26.00	1	4.3	4.3	21.7
	29.00	2	8.7	8.7	30.4
	30.00	1	4.3	4.3	34.8
	32.00	1	4.3	4.3	39.1
	34.00	1	4.3	4.3	43.5
	37.00	1	4.3	4.3	47.8
	38.00	4	17.4	17.4	65.2
	40.00	2	8.7	8.7	73.9
	42.00	1	4.3	4.3	78.3
	44.00	1	4.3	4.3	82.6
	45.00	2	8.7	8.7	91.3
	47.00	1	4.3	4.3	95.7
	59.00	1	4.3	4.3	100.0
	Total	23	100.0	100.0	

Section 3.2

Using Practice Data Set 1 in Appendix B, create a contingency table using the *Crosstabs* command. Determine the number of participants in each combination of the variables SEX and MARITAL. What percentage of participants are married? (ANSWER: 30.4%) What percentage of participants are male and married? (ANSWER: 21.7%)

Case Processing Summary

			Cases				
		Valid		Missing		Total	
		N	Percent	N	Percent	N	Percent
	sex * marital	23	100.0%	0	.0%	23	100.0%

sex * marital Crosstabulation

				marital		
			Single	Married	Divorced	Total
sex	Male	Count	6	5	1	12
		% within sex	50.0%	41.7%	8.3%	100.0%
		% within marital	50.0%	71.4%	25.0%	52.2%
		% of Total	26.1%	21.7%	4.3%	52.2%
	Female	Count	6	2	3	11
		% within sex	54.5%	18.2%	27.3%	100.0%
		% within marital	50.0%	28.6%	75.0%	47.8%
		% of Total	26.1%	8.7%	13.0%	47.8%
Total		Count	12	7	4	23
		% within sex	52.2%	30.4%	17.4%	100.0%
		% within marital	100.0%	100.0%	100.0%	100.0%
		% of Total	52.2%	30.4%	17.4%	100.0%

Section 3.3

Using Practice Data Set 1 in Appendix B, obtain the **descriptive statistics** for the age of the participants. What is the **mean**? (ANSWER: 29.5652) The **median**? (ANSWER: 28.0) The **mode**? (ANSWER: 23.0) What is the **standard deviation**? (ANSWER: 8.9434) Minimum? (ANSWER: 18.0) Maximum? (ANSWER: 50.0) The **range**? (ANSWER: 50–18+1=33)

By using the *Descriptives* command, you can get everything except the **median** and **mode**. Using the *Frequencies* command, you can get all of the information.

Descriptive Statistics

						Std.
	N	Range	Minimum	Maximum	Mean	Deviation
AGE	23	32.00	18.00	50.00	29.5652	8.9434
Valid N (listwise)	23					

Statistics

AGE

N Valid Missing Mean 29	23 0 0.5652
I " I	0 0.5652
Moon	.5652
IVIEATI ZS	
Median 28	3.0000
Mode	23.00 ^a
Std. Deviation	3.9434
Range	32.00
Minimum	18.00
Maximum	50.00

a. Multiple modes exist. The smallest value is shown

Section 3.4

Using Practice Data Set 1 in Appendix B, compute the **mean** and **standard deviation** of ages for each value of marital status. What is the average age of the married participants? (ANSWER: 35.1429) The single participants? (ANSWER: 22.4167) The divorced participants? (ANSWER: 41.25)

Report

AGE			
			Std.
Marital Status	Mean	N	Deviation
Single	22.4167	12	3.0289
Married	35.1429	7	5.2099
Divorced	41.2500	4	6.2915

23

8.9434

29.5652

Section 3.5

Using Practice Data Set 2 in Appendix B, determine the *z*-score that corresponds to each employee's salary. Determine the **mean** *z*-scores for salaries of male employees (ANSWER: .130) and female employees (ANSWER: -.130). Determine the **mean** *z*-score for salaries of the total sample. (ANSWER: 0)

Report

Total

Zscore(salary)

sex	Mean	N	Std. Deviation
1.00	.1304467	6	1.19894414
2.00	1304467	6	.84952561
Total	.0000000	12	1.00000000

	,	1				
	salary	yos	sex	classify	educ	Zsalary
1	35000.00	8.00	1.00	2.00	14.00	.02007
2	18000.00	4.00	2.00	1.00	10.00	-1.00344
3	20000.00	1.00	1.00	3.00	16.00	88302
4	50000.00	20.00	2.00	3.00	16.00	.92316
5	38000.00	6.00	1.00	3.00	20.00	.20069
6	20000.00	6.00	2.00	1.00	12.00	88302
7	75000.00	17.00	1.00	3.00	20.00	2.42831
8	40000.00	4.00	2.00	2.00	12.00	.32110
9	30000.00	8.00	1.00	2.00	14.00	28096
10	22000.00	15.00	2.00	1.00	12.00	76261
11	23000.00	16.00	1.00	1.00	12.00	70241
12	45000.00	2.00	2.00	3.00	16.00	.62213
40						